
PROOFS: A FAST, MEMORY EFFICIENT
SEQUENTIAL CIRCUIT FAULT SIMULATOR

Thomas M. Niemann Wu-Tung Cheng Jan& H. Pate1
University of Illinois ADAS Software Inc. University of Illinois

Urbana, 11.61801 San Jose, Ca. 95132 Urbana, 11.61801

This paper describes PROOFS, a super fast fault simulator
for synchronous sequential circuits. PROOFS achieves high per-
formance by combining all the advantages of differential fault
simulation, single fault propagation, and parallel fault simulation,
while minimizing their individual disadvantages. PROOFS minim-
izes the memory requirements, reduces the number of events that
need to be evaluated, and simplifies the complexity of the software
implementation. PROOFS requires an average of one fifth the
memory required for concurrent fault simulation and runs 6 to 67
times faster on the ISCAS sequential benchmarks.

1. Introduction
With the development of VLSI technologies, test sequences

with very high fault coverage have become increasingly important
in order to maintain acceptable field reject rates [11. Fault simula-
tors are used to determine which faults are detected by a test
sequence. This information not only grades the quality of this test
sequence but also speeds up the test generation process. After a
test sequence is generated for one target fault by a time consuming
test generator, a fault simulator is usually used for Snding other
faults that are also detected. In this manner, the number of faults
which need to be attempted by a test generator can be dramatically
reduced. Fault simulators are also used to find test vectors by
guided search methods[2].

The single stuck-at fault model has been successfully used
in many contemporary fault simulators. Therefore, only single
stuck-at faults are considered in this paper. In fault simulation,
each test pattem is run with the good machine as well as with
every faulty machine, where the good machine is the fault free cir-
cuit description and a faulty machine is the circuit with one line
fixed at a high voltage (a stuck-at-1 fault) or staying fixed at a low
voltage (a stuck-at-0 fault). If the output responses of any one
faulty machine differs from those of the good machine, the
corresponding fault is said to have been detected.

This paper presents an improved fault simulation algorithm
based on a combination of the parallel, concurrent and differential
fault simulation algorithms. This fault simulator is shown to
require much less memory while being 6.6 to 67 times faster than
a traditional concurrent fault simulator.

Table 1 represents the task of fault simulation. Each
column corresponds to a test vector and each row corresponds to a
machine. There is one good machine and m faulty machines
corresponding to different faulty lines, n test vectors, and (m+I)n
machine states. The task of fault simulation is to find all the pri-
mary output values of the (m+I)n machine status, and determine
which faulty machines have output vectors different from the good
machine. There have been different fault simulation strategies
developed based on different orders of filling in this table.

Table 1. The Tasks of Fault Simulation

Fault
Fault

1.1. Concurrent
Concurrent[3,4] and deductive fault[5] simulation both use

a strategy of filling the table from left to right, computing all the
faulty machines’ values for a vector concurrently using the same
previously computed information to compute a Fi j , see Figure 1.
They use the values from the previous vector for the same faulty
machine Fij-1 that are different from the good circuit values and
the current good machine values G, . This strategy results in a low
number of events, but it has two main drawbacks. First for every
line in the circuit there is a large list of active faulty machines
associated with it. These lists on all the lines have a large memory
requirement. The second drawback is that to evaluate a gate for a
fault, the faulty machine list for each of the gates inputs must be
searched to check for common faulty machines among the lists.
This list searching has a big time overhead. PROOFS also deter-
mines F ; j from Fij-1 and G,, but it avoids the large memory
requirement by only storing the faulty machine values at the state-
nodes, such as flip-flops and latches. It also avoids the time over-
head of the gate evaluation by using a technique that is as fast as
logic simulation gate evaluation.

~ ~ ~ ~ m p u ~ ~ ~ ~ t e * Fij-1 Fi j 1
.........................

Fig. 1 . Concurrent and deductive table filling

27th ACMllEEE Design Automation Conference@

@ 1990 IEEE 0738-1 00X/90/0006/0535 $1 .OO

Paper 31.3
535

1.2. Differential
The differential simulation algorithm [6] determines Fij

exclusively from Fi-lj, as shown in Figure 2. To determine if a
fault is detected a count of the number of times each primary out-
put has changed is kept. Differential simulation requires very little
memory because it only stores one copy of all the line values of
the circuit and the differences between adjacent faulty machines.
The differential fault simulation algorithm suffers from the inabil-
ity to drop detected faults easily because subsequent faulty
machines rely on the differences from the hopped faulty machine.
Fault dropping is easy in PROOFS since no faulty machine
depends on any other faulty machine for its simulation.

1.3. Parallel
The parallel fault simulation algorithm [7] determines Fij

exclusively from Fij-1 but takes advantage of the word level
parallelism of the computer to simulate 32 (for a 32 bit machine)
faulty machines per pass, as in Figure 3. The parallel algorithm
suffers from the repetition of the good machine simulation in every
pass and also from the inability to drop detected faults. After a
fault is detected. one bit space is wasted for the remainder of that
pass of the simulation. The algorithm presented in this paper
makes full utilization of all the bits in the parallel word for every
vector by using a dynamic fault grouping strategy and avoids the
resimulation of the good circuit.
1.4. Other

A different strategy is to generate each machine status from
its reference machine status in the same column (same test vector,
different machine). This strategy was first used exclusively for
combinational circuits in testdetecf [8] (which was later called sin-
gle fault propagation [9]). Since single fault propagation always
uses the good machine as the reference machine, it simulates only

r
precomputed uncomputed i I data 1 data

.............................. i
Fig. 2. Differential table filling

the fault effects of each faulty machine from the good machine.
For example, in Table 1, Flj+l is generated from G,+l by simu-
lating the fault site of F 1 as the initial event source. However, res-
toring the status of the good machine before every faulty machine
simulation results in a performance overhead. Single fault propa-
gation was further improved by Waicukauski [IO] to use the full
length of a computer word for a parallel simulation of several
machine statuses in the same row of Table 1 (same machine with
several different input vectors). This is the well-known parallel
pattern single fault propagation technique. Furthermore, there are
efficient heuristics proposed in [ll-141 to trace the fault effects in
combinational circuits. Therefore, the number of faulty machines
which need to be simulated explicitly is very small, and thus the
total overhead to restore the good machine status before every
faulty machine simulation is reduced. In general, for combina-
tional circuits, single fault propagation is faster than concurrent
fault simulation [13].

Moreover, there are other approximate fault simulation
approaches which trade some loss of accuracy in the resulu for a
significant reduction in computational time, namely, fart fault
grading [17], critical path tracing [18], and statistical fault
analysis [19]. In the remainder of this paper, we will deal only
with accurate fault simulation of sequential circuits.

2. PROOFS
The PROOFS fault simulation algorithm can be thought of

as a hybrid of the concurrent, differential, and parallel fault simu-
lation algorithms. It retains the advantage of fault dropping that
concurrent allows while, exploiting the word level parallelism of
the computer, and retaining the low memory requirement of dif-
ferential. It uses a dynamic fault grouping strategy to fully utilize
all the bit spaces in the computer word to simulate several faulty
machine at once. This dynamic strategy avoids wasting space in
the machine word for faults already detected. In addition the
dynamic strategy removes faults from the parallel word in the time
frames in which they are inactive. A different technique to inject
faults is used to avoid a computation overhead for each evaluation.
Instead of using bit masks, the circuit is changed to reflect the
faults that are active.

The overall algorithm of PROOFS is shown in Figure 4. It
consists of a main loop which reads in the next input vector, does
the good machine evaluation, and then for each fault grouping
does the faulty evaluation. To evaluate a fault group, first the
group-id is inaemented so that the faulty values of other machines
are not used in the evaluation of this machine. Next. the 32 faulty
machines to be included in the fault group are decided upon. The
faults are then injected into the circuit and the node values for the
state-nodes from the previous input vector are inserted into the
faulty line values. The faulty machines in this fault group are
evaluated, and the state-node values are stored for the next vector.
We will now go through each of these steps and the data struc-
tures used in detail.

The line value data structures used in PROOFS are shown
in Figure 5 . First there is a one dimensional array that stores the
good circuit value of every line in the circuit. There is also an
array which keeps the value of every line in the faulty circuit.
Accompanying the faulty circuit value is a group-id for each value.
Each value consists of two 32 bit words VO and V I where each bit
is used to store a different faulty machine's value. A four valued

Paper 31.3
536

I Clear Circuit I
I I

Read Next
Vector

J.
Simulate good

circuit

increment
group-id

.1

J.
Choose next

group of faults

Simulate
faulty circuit

Drop detected

Store faulty
state-nodes

vector?
no

Fig. 4. PROOFS algorithm

logic (0, 1, X,and 2) is used To code these four values two bits are
used, one in VO and one in V1; 0 is coded as (LO), 1 as (0.1). X as
(0.0). and 2 as (1.1). Table 2 shows the logic used to evaluate dif-
ferent gates, 32 faulty machines at a time. In Table 2, each of the
gates have two inputs A and B and an output V. The histate gate,
TRIG, has an input A and an enable input E. The BUS element has
two inputs A and B wired to a bus. In our simulator, mstate gate
outputs can only be connected to a BUS element. The good
machine values also use a 32 bit word to allow easy comparison to
the faulty machine values.

Good Circuit Simulation: The good machine evaluation is
performed by a standard event driven logic simulator. The value of
every node in the circuit is kept in a single array which is separate
from where the values of the faulty machines are kept. When the
circuit is parsed, it is also levelized to prevent the repetition of
evaluating a gate that receives multiple events on its inputs.

Fault grouping: The dynamic fault grouping strategy
regroups the faulty machines into groups of 32 machines for each
vector that is applied to the circuit. The fault list consists of a
linked list of all the remaining undetected faults as shown in Fig-
ure 7. To choose the next group of 32 faults, the list is traversed
linearly, and a fault is added to the fault group if the faulty
machine is active. A faulty machine is considered active if the
faulty machine propogated a value to a state-node different from
the good machine value in the previous time frame, or if in the
current time frame, the fault results in a different value from the
good machine line value for the faulty line (e.g. a good machine
value of 1 on line L for fault L s-a-0). The faulty machine
corresponding to an inactive fault is guaranteed to have no line
values different from the good machine. Therefore, adding it to the
fault group would waste one bit space in the word for the current
time frame. The exclusion of the inactive faults results in
significant reduction in the number of distinct group simulations,
that is, it reduces the number of iterations of the inner loop in Fig-
ure 4.

Group-Id: Before evaluating any fault group, the groupid
is incremented. A group-id is kept to distinguish between faulty
machine values from different faulty machines groups. For the
good machine the value of every line is kept, but for the faulty
machine every line has a value and a group-id. If the group-id does
not match the current time stamp then the faulty value is a residual
value from a previous computation and the good machine value
should be used. An example of a gate evaluation is shown in Fig-
ure . In this example the current group-id is 29, so to evaluate the
gate for the faulty machine group, the good machine value of the
middle input is used because the groupid is not 29. Without this
group-id feature, one has to clean up the faulty value array by
copying the good machine values. Therefore the group-id avoids
the overhead to restore the good machine values for every fault.

Fault injection: Next, every fault in the chosen fault group
must be injected into the circuit. The faults are injected into the
circuit in a novel way. Traditionally, fault injection is accom-
plished by associating a bit-mask with each gate. The mask essen-
tially is a flag for each line associated with gate inputs or outputs.
The flag indicates if the values to be used during the gate evalua-
tion are the line values produced by the predecessor gates or the
value to be used is a stuck-at value associated with the gate. This
methcd requires that the flags be examined for every gate evdua-
tion even though only a few gates have faults. Instead of using

Paper 31.3
537

Good Circuit Faulty Circuit

value group
line

number id line value number

vo v 1 vo v 1

32 32 32 32
bits bits bits bits

(a) (b)

Fig. 5 . Line Value Storage (a) good circuit (b) faulty circuit

Table 2. Gate evaluation

Good Faulty
Circuit Circuit

vog v1 VOf v1
g f id

Good Faulty
Circuit circuit

vogvl VOfVl *Oup
g f id

11110000 01001010 29

11110000 00001110 29

Fig. 6. Gate Evaluation

faulty bit masks at every line, extra gates are inserted into the cir-
cuit. To inject a fault at a line stuck-at-1 an OR gate is inserted at
that line. Figure 8 illustates the injection of the fault A stuck-at-1
in the third bit position of the value word. First, all the succesors
of A become the succesors of the added OR gate, then A becomes
one of the inputs of the OR gate. The other input of the OR gate is
a dummy line which is set to the value of all zeros except a one in
the bit position of the injected fault. Therefore, if the first four
faulty values of line A were (wxyz), after evaluating the OR gate,
it would have the first four faulty values be (wxlz), forcing the
third bit position to the value 1. Similarly, to inject a stuck-at-0
fault an AND gate would be used with a dummy line value of all
ones except a zero at the fault position. This technique of fault
injection saves time compared to the technique of fault bit masks
because the bit masks require extra time for every evaluation
irrespective of whether a fault was active on that node, or not. Our
technique only requires the changing of a few pointers per fault
and evaluations are as fast as an efficient logic simulation. For
each fault in the circuit, the pointers that need to be changed to
inject that fault are determined in the preprocessing stage; there-
fore fault injection takes very little time.

State-node events: Each of the remaining faulty machines
in the fault list has associated with it a linked list which contains
each state-node of the faulty machine, which has a value different
from the good machine value. The state-nodes are stored in this
list from the previous input vector. These values must be inserted
into the circuit with the current input vector and events must be
scheduled for their successors.

Simulare faulty machines: The faulty machines in the
current fault group are evaluated using an event driven fault

(wxyz..) D(5E (-Yz..)

(a) before fault injection

(wxlz..)

I (wxlz..)

(b) circuit with line A s-a-1 injeded at bit p s i t i o n 3

Fig. 8. Fault injection
Fig. 7. Fault list and state storage data structure

Paper 31.3
538

simulator. A gate is evaluated by checking if each gate input faulty
line has the current group-id. If it does, then the faulty value of
that input is used, else the good value is used, as shown in Figure
6.

Dropping faults and storing fault state-nodes: A fault is
detected if there is a faulty value at a primary output d the good
circuit has a known value on that primary output. If a fault is
detected then it is removed from the linked list of faults. If a fault
is not detected then all the state-nodes with values different from
the good machine values are stored in the linked list associated
with the fault for the next vector.

2.1. Fault ordering
The proper grouping of faults is crucial in exploiting the

benefit of parallelism from the 32 bit operation. If faults that cause
the same events are in the same fault group, then the number of
events to evaluate the faulty circuits is reduced. The fault list is
constantly changing because of the dropping of detected faults,
therefore it is necessary to consider the order of the complete list
rather than a static grouping as in parallel simulation.

The faults are ordered by a depth first search of the circuit
starting at the primary outputs. The paity of the faults are main-
tained in this search. This ordering tends to put faults with the
same sensitized paths to an output, in the same word. This
increases the probability that a sensitizing path is completely in a
word. This fault ordering often reduced the number of faulty
machine events by 50% over a random fault order. We also tried
other ordering heuristics, for example depth first from the primary
inputs, breadth first , and random ordering. We found that the
depth first ordering from the primary outputs caused the fewest
events.

3. RESULTS
The PROOFS algorithm was implemented in C t t and run

on many of the ISCAS sequential benchmark circuits[21,22].
Table 3 shows a summary of the circuits and test vectors used to
evaluate the fault simulator. The vectors were generated using the
sequential circuit test generator STG3 [23-251. These circuits were
run on a SUN 3/280. Aside from " i n g these circuits on
PROOFS, they were also run on a state of the art concurrent fault
simulator. The run time and average memory usage of the
PROOFS and concurrent algorithms are shown in Table 4. A com-
parison of the two algorithms shows the PROOFS is 6 to 67 times
faster than the concurrent algorithm while always requiring less
memory. Memory is reduced by up to 7.5 times over the con-
current algorithm.

4. Conclusion
A very fast fault simulation algorithm has been described in

this paper. Several new techniques were introduced as part of this
algorithm. The new techniques introduced were: 1. Use of group-
id to avoid the overhead of restoring the good values after each
fault propagation 2. Concept of active and inactive faults to
prevent eventless fault simulation 3. Efficient method of fault
injection by circuit modification and 4. An efficient fault ordering
to minimize events in word parallel operations. It has been shown
that this algorithm is 6.6 to 67 times faster than a state of the art

concurrent fault simulator while also requiring much less memory.
It also has the advantage of being easy to implement because many
parts of the code are only slight enhancements to a logic simulator.

Acknowledgement This research was performed at the University
of Illinois, Urbana-Champaign, while Wu-Tung cheng was a
Visiting Research Assistant Professor. The work was supported in
part by the Semiconductor Research Corporation under contract
SRC-89-DP-109, and in part by AT&T. We would also like to
thank C. Vivekanand for his valuable input in the preparation of
this manuscript.

5. REFERENCES
[l] V. D. Agrawal, S. C. Seth, and P. Agrawal, " S I Product Qual-
ity and Fault Coverage," 18th Design Automation Conference,
June 1981. pp. 196-203.
[2] V. D. Agrawal. K. T. Cheng, and P. Agrawal, "Contest: A con-
current test generator for sequential circuits" 25th Design Automa-
tion Conference, June 1988. pp.84-89
[3] E. G. Ulrich, and T. Baker, "The Concurrent Simulation of
Nearly Identical Digital Networks," 10th Design Automation
Workshop, Vol. 6, June 1973, pp. 145-150.
[4] P. Goel. H. Lichaa, T. E. Rosser, T. I. Stroh and E. B. Eichel-
berger, "LSSD Fault Simulation Using Conjunctive Combinational
and Sequential Methods." International Test Conference,
November 1980. pp. 371-376.
[5] D. B. Armstrong, "A Deductive Method for Simulating Faults
in Logic Circuits," IEEE Tram. Comput. Vol. C-21, No. 5. May
1972, pp. 46447 1.
[6] W.-T. Cheng. and M.-L. Yu, "Differential Fault Simulation - A
Fast Method Using Minimal Memory," 26th Design Automation
Conference, June 1989, pp. 424428.
[7] S. Seshu. "On An Improved Diagnosis Program," IEEE Trans.
Electron. Comput. Vol. EC-14, February 1965, pp. 76-79.
[8] J. P. Roth. W. G. Bouricius. and P. R. Schneider, "Programmed
Algorithms to Compute Tests to Detect and Distinguish Between
Failures in Logic Circuits,'' IEEE Trans. Electron. Comput., Vol.
EC-16, No. 5, October 1967, pp. 567-580.
[9] F. Ozguner, et al., "On Fault Simulation Techniques," Journal
of Design Automation and Fault Tolerant Computing, Vol. 3, No.
2, 1979, pp. 83-92.
[lo] I. A. Waicukauski, E. B. Eichelberger, D. 0. Forlenza, E.
Lindbloom, and T. McCarthy, "Fault Simulation for Structured
VLSI," VLSI System Design, December 1985, pp. 20-32,
[l l] S. J. Hong, "Fault Simulation Strategy for Combinational
Logic Networks," 8th International Fault-Tolerant Computing
Symposium, June 1978, pp. 96-99.
[12] K. J. Antreich and M. H. Schulz, "Accelerated Fault Simula-
tion and Fault Grading in combinational Circuits,'' IEEE Tram. on
Computer-Aided Design, November 1987, pp. 704-712.
[13] W. Ke. S. C. Seth, and B. B Bhattacharya, "A Fast Fault
Simulation Algorithm for Combinational Circuits," InterMtional
Conference on Computer-Aided Design, November 1988, pp.
166-169.
1141 F. Maamari and J. Kajski, "A Fault Simulation Method Based
on stem Regions," International Conjerence on Computer-Aided
Design, November 1988, pp. 170-173.
[15] P. Goel, and P. R. Moorby, "Fault-Simulation Techniques for
VLSI Circuits," VLSI Design, July, 1984, pp. 22-26.
[16] S. Davidson, and J. L. Lewandowski, "ESIM/AFS - A

Paper 31.3
539

Circuit

s208
s298
s344
s349
s382
s386
s400
s420
S444
s526
s526n
s641
s7 13
s820
s832
s838
s953
sl196
s1238
s1423
s1488
s1494
s5378
s35934

Circuit

s208
s298
s344
s349
s382
s386
s400
s420
s444
s526
s526n
s641
s713
s820
s832
s838
s953
s1196
s1238
s 1423
s1488
s1494
s5378
s35932

-
Sates

96
119
160
161
158
159
164
196
181
193
194
379
393
289
287
390
395
529
508
657
653
647
2779

- -

PI

Run Time
(sec)
2.3
4.1
2.9
2.9
67.2
3.0
37.1
9.8
56.2
40.2
35.5
5.0
5.5
23.4
23.2
19.3
3.3
11.9
16.7
9.1
53.7
44.2
174.0
358.3

Table 3. Circuits Descriptions -
Flip

8
14
15
15
21
6
21
16
21
21
21
19
19
5
5
32
29
118
18
74
6
6
179

-
lectors

111
162
90
90
2463
174
1282
172
1880
754
654
133
107
41 1
377
137
16
313
351
36
590
47 1
408
88

-
-
rotal
:aults -
416
596
652
662
764
772
800
840
888
1052
1052
1276
1426
1640
1664
1676
1906
2392
2476
2846
2976
2988
1059(
70581

ktected
Faults
285
526
624
630
722
696
742
374
824
847
849
1114
1184
1419
1445
526
147
2392
2396
1780
2815
2797
8183
62665

Fault
:overage
68.5
88.2
95.7
95.1
94.5
90.1
92.7
44.5
92.7
80.5
80.7
87.3
83.0
86.5
86.8
31.3
7.7
10
96.7
62.5
94.5
93.6
77.2
88.7

Table 4. Comparison of PROOFS to Concurrent

IOFS

Mt3Xi"
Memory(Kb)

80
96
104
112
112
104
112
120
120
120
120
208
216
192
176
224
176
216
216
344
272
272
752
5872

Run Time
(sec)
24.3
32.5
33.5
33.7
445.1
32.2
347.2
69.3
757.5
349.5
235.2
38.5
54.5
182.0
175.7
145.8
32.0
111.9
133.2
254.1
544.6
516.8
1367.8
24148.6

urrent

Mt3XimW
Memory(Kb)

552
608
656
656
728
664
720
632
808
896
992
600
752
744
816
888
720
720
728
1288
1392
1184
1544
5576

Concurrent Architectural Level Fault Simulator," InterMtioml
Test Conference, November 1985, pp. 663-698.
[17] F. Brglez, "A Fast Fault Grader: Analysis and Applications,"
International Test Conference, November 1985, pp. 785-794.
I181 M. Abramovici. P. R. Menon, and D. T. Miller, "Critical Path
Tracing - An Alternative to Fault Simulation," 20th Design Aufo-
mation Conference. June 1983. pp. 214-220.
[19] S . K. J a b , and V. D. Agrawal, "STAFAN: An Alternative to
Fault Simulation," 21th Design Automation Conference. June
1984, pp. 18-23.
[20] Y. H. Levendel, and P. R. Menon, "Fault-Simulation Methods
- Extensions and Comparison," The Bell System Technical J O W M ~

[21] F. Brglez, and H. Fujiwara, "A Neutral Netlist of 10 Combi-
national Benchmark Circuits and A Target Translator in Fortran,"
Internatioml Symposium of Circuits & System, June 1985, pp.
662-698.
[22] F. Brglez, D. Bryan, and K. Kouninski. "Combinational
Profiles of Sequential Benchmark Circuits," International Sympo-
sium of Circuits &Systems, May 1989, pp. 1929-1934
[23] W.-T. Cheng. "SPLIT Circuit Model for Test Generation,"
25th Design Automation Conference. June 1988, pp. 96-101.
[24] W.-T. Cheng, 'The BACK Algorithm for Sequential Test
Generation," Internatwd Conference on Computer Design,
October 1988, pp. 66-69.
[25] W. -T. Cheng. and S. Davidson, "Sequential Circuit Test Gen-
erator (STG) Benchmark Results." Internutiom1 Symposium of
Circuits &Systems, May 1989, pp. 1938-1941

Vol. 60, NO. 9, November 1981, pp. 2235-2258.

Speedup
Ratio

11
8
12
12
7
11
9
7
13
9
7
8
10
8
8
8
10
9
8
28
11
12
8
67

Memory

Reduction
Ratio
7
6
6
6
7
6
6
5
7
8
8
3
3
4
5
4
4
3
3
4
5
4
2

0.95*
*-Concurrent required 15 passes while PROOFS required 1 pass

Paper 31.3

540

