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This paper describes PROOFS, a super fast fault simulator 
for synchronous sequential circuits. PROOFS achieves high per- 
formance by combining all the advantages of differential fault 
simulation, single fault propagation, and parallel fault simulation, 
while minimizing their individual disadvantages. PROOFS minim- 
izes the memory requirements, reduces the number of events that 
need to be evaluated, and simplifies the complexity of the software 
implementation. PROOFS requires an average of one fifth the 
memory required for concurrent fault simulation and runs 6 to 67 
times faster on the ISCAS sequential benchmarks. 

1. Introduction 
With the development of VLSI technologies, test sequences 

with very high fault coverage have become increasingly important 
in order to maintain acceptable field reject rates [ 11. Fault simula- 
tors are used to determine which faults are detected by a test 
sequence. This information not only grades the quality of this test 
sequence but also speeds up the test generation process. After a 
test sequence is generated for one target fault by a time consuming 
test generator, a fault simulator is usually used for Snding other 
faults that are also detected. In this manner, the number of faults 
which need to be attempted by a test generator can be dramatically 
reduced. Fault simulators are also used to find test vectors by 
guided search methods[2]. 

The single stuck-at fault model has been successfully used 
in many contemporary fault simulators. Therefore, only single 
stuck-at faults are considered in this paper. In fault simulation, 
each test pattem is run with the good machine as well as with 
every faulty machine, where the good machine is the fault free cir- 
cuit description and a faulty machine is the circuit with one line 
fixed at a high voltage (a stuck-at-1 fault) or staying fixed at a low 
voltage (a stuck-at-0 fault). If the output responses of any one 
faulty machine differs from those of the good machine, the 
corresponding fault is said to have been detected. 

This paper presents an improved fault simulation algorithm 
based on a combination of the parallel, concurrent and differential 
fault simulation algorithms. This fault simulator is shown to 
require much less memory while being 6.6 to 67 times faster than 
a traditional concurrent fault simulator. 

Table 1 represents the task of fault simulation. Each 
column corresponds to a test vector and each row corresponds to a 
machine. There is one good machine and m faulty machines 
corresponding to different faulty lines, n test vectors, and (m+I)n 
machine states. The task of fault simulation is to find all the pri- 
mary output values of the (m+I)n machine status, and determine 
which faulty machines have output vectors different from the good 
machine. There have been different fault simulation strategies 
developed based on different orders of filling in this table. 

Table 1. The Tasks of Fault Simulation 

Fault 
Fault 

1.1. Concurrent 
Concurrent[3,4] and deductive fault[5] simulation both use 

a strategy of filling the table from left to right, computing all the 
faulty machines’ values for a vector concurrently using the same 
previously computed information to compute a Fi j , see Figure 1. 
They use the values from the previous vector for the same faulty 
machine Fij-1 that are different from the good circuit values and 
the current good machine values G, . This strategy results in a low 
number of events, but it has two main drawbacks. First for every 
line in the circuit there is a large list of active faulty machines 
associated with it. These lists on all the lines have a large memory 
requirement. The second drawback is that to evaluate a gate for a 
fault, the faulty machine list for each of the gates inputs must be 
searched to check for common faulty machines among the lists. 
This list searching has a big time overhead. PROOFS also deter- 
mines F ; j  from Fij-1 and G,, but it avoids the large memory 
requirement by only storing the faulty machine values at the state- 
nodes, such as flip-flops and latches. It also avoids the time over- 
head of the gate evaluation by using a technique that is as fast as 
logic simulation gate evaluation. 

~ ~ ~ ~ m p u ~ ~ ~ ~ t e *  Fij-1 Fi j 1 
......................... 

Fig. 1 .  Concurrent and deductive table filling 
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1.2. Differential 
The differential simulation algorithm [6] determines Fij 

exclusively from Fi-lj, as shown in Figure 2. To determine if a 
fault is detected a count of the number of times each primary out- 
put has changed is kept. Differential simulation requires very little 
memory because it only stores one copy of all the line values of 
the circuit and the differences between adjacent faulty machines. 
The differential fault simulation algorithm suffers from the inabil- 
ity to drop detected faults easily because subsequent faulty 
machines rely on the differences from the hopped faulty machine. 
Fault dropping is easy in PROOFS since no faulty machine 
depends on any other faulty machine for its simulation. 

1.3. Parallel 
The parallel fault simulation algorithm [7] determines Fij 

exclusively from Fij-1 but takes advantage of the word level 
parallelism of the computer to simulate 32 (for a 32 bit machine) 
faulty machines per pass, as in Figure 3. The parallel algorithm 
suffers from the repetition of the good machine simulation in every 
pass and also from the inability to drop detected faults. After a 
fault is detected. one bit space is wasted for the remainder of that 
pass of the simulation. The algorithm presented in this paper 
makes full utilization of all the bits in the parallel word for every 
vector by using a dynamic fault grouping strategy and avoids the 
resimulation of the good circuit. 
1.4. Other 

A different strategy is to generate each machine status from 
its reference machine status in the same column (same test vector, 
different machine). This strategy was first used exclusively for 
combinational circuits in testdetecf [8] (which was later called sin- 
gle fault propagation [9]). Since single fault propagation always 
uses the good machine as the reference machine, it simulates only 

r ...................... 
precomputed uncomputed i I data 1 data 

.............................. i 
Fig. 2. Differential table filling 

the fault effects of each faulty machine from the good machine. 
For example, in Table 1, Flj+l  is generated from G,+l by simu- 
lating the fault site of F 1 as the initial event source. However, res- 
toring the status of the good machine before every faulty machine 
simulation results in a performance overhead. Single fault propa- 
gation was further improved by Waicukauski [IO] to use the full 
length of a computer word for a parallel simulation of several 
machine statuses in the same row of Table 1 (same machine with 
several different input vectors). This is the well-known parallel 
pattern single fault propagation technique. Furthermore, there are 
efficient heuristics proposed in [ll-141 to trace the fault effects in 
combinational circuits. Therefore, the number of faulty machines 
which need to be simulated explicitly is very small, and thus the 
total overhead to restore the good machine status before every 
faulty machine simulation is reduced. In general, for combina- 
tional circuits, single fault propagation is faster than concurrent 
fault simulation [13]. 

Moreover, there are other approximate fault simulation 
approaches which trade some loss of accuracy in the resulu for a 
significant reduction in computational time, namely, fart fault 
grading [17], critical path tracing [18], and statistical fault 
analysis [19]. In the remainder of this paper, we will deal only 
with accurate fault simulation of sequential circuits. 

2. PROOFS 
The PROOFS fault simulation algorithm can be thought of 

as a hybrid of the concurrent, differential, and parallel fault simu- 
lation algorithms. It retains the advantage of fault dropping that 
concurrent allows while, exploiting the word level parallelism of 
the computer, and retaining the low memory requirement of dif- 
ferential. It uses a dynamic fault grouping strategy to fully utilize 
all the bit spaces in the computer word to simulate several faulty 
machine at once. This dynamic strategy avoids wasting space in 
the machine word for faults already detected. In addition the 
dynamic strategy removes faults from the parallel word in the time 
frames in which they are inactive. A different technique to inject 
faults is used to avoid a computation overhead for each evaluation. 
Instead of using bit masks, the circuit is changed to reflect the 
faults that are active. 

The overall algorithm of PROOFS is shown in Figure 4. It 
consists of a main loop which reads in the next input vector, does 
the good machine evaluation, and then for each fault grouping 
does the faulty evaluation. To evaluate a fault group, first the 
group-id is inaemented so that the faulty values of other machines 
are not used in the evaluation of this machine. Next. the 32 faulty 
machines to be included in the fault group are decided upon. The 
faults are then injected into the circuit and the node values for the 
state-nodes from the previous input vector are inserted into the 
faulty line values. The faulty machines in this fault group are 
evaluated, and the state-node values are stored for the next vector. 
We will now go through each of these steps and the data struc- 
tures used in detail. 

The line value data structures used in PROOFS are shown 
in Figure 5 .  First there is a one dimensional array that stores the 
good circuit value of every line in the circuit. There is also an 
array which keeps the value of every line in the faulty circuit. 
Accompanying the faulty circuit value is a group-id for each value. 
Each value consists of two 32 bit words VO and V I  where each bit 
is used to store a different faulty machine's value. A four valued 
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Fig. 4. PROOFS algorithm 

logic (0, 1, X,and 2) is used To code these four values two bits are 
used, one in VO and one in V1; 0 is coded as (LO), 1 as (0.1). X as 
(0.0). and 2 as (1.1). Table 2 shows the logic used to evaluate dif- 
ferent gates, 32 faulty machines at a time. In Table 2, each of the 
gates have two inputs A and B and an output V. The histate gate, 
TRIG, has an input A and an enable input E. The BUS element has 
two inputs A and B wired to a bus. In our simulator, mstate gate 
outputs can only be connected to a BUS element. The good 
machine values also use a 32 bit word to allow easy comparison to 
the faulty machine values. 

Good Circuit Simulation: The good machine evaluation is 
performed by a standard event driven logic simulator. The value of 
every node in the circuit is kept in a single array which is separate 
from where the values of the faulty machines are kept. When the 
circuit is parsed, it is also levelized to prevent the repetition of 
evaluating a gate that receives multiple events on its inputs. 

Fault grouping: The dynamic fault grouping strategy 
regroups the faulty machines into groups of 32 machines for each 
vector that is applied to the circuit. The fault list consists of a 
linked list of all the remaining undetected faults as shown in Fig- 
ure 7. To choose the next group of 32 faults, the list is traversed 
linearly, and a fault is added to the fault group if the faulty 
machine is active. A faulty machine is considered active if the 
faulty machine propogated a value to a state-node different from 
the good machine value in the previous time frame, or if in the 
current time frame, the fault results in a different value from the 
good machine line value for the faulty line (e.g. a good machine 
value of 1 on line L for fault L s-a-0). The faulty machine 
corresponding to an inactive fault is guaranteed to have no line 
values different from the good machine. Therefore, adding it to the 
fault group would waste one bit space in the word for the current 
time frame. The exclusion of the inactive faults results in 
significant reduction in the number of distinct group simulations, 
that is, it reduces the number of iterations of the inner loop in Fig- 
ure 4. 

Group-Id: Before evaluating any fault group, the groupid 
is incremented. A group-id is kept to distinguish between faulty 
machine values from different faulty machines groups. For the 
good machine the value of every line is kept, but for the faulty 
machine every line has a value and a group-id. If the group-id does 
not match the current time stamp then the faulty value is a residual 
value from a previous computation and the good machine value 
should be used. An example of a gate evaluation is shown in Fig- 
ure . In this example the current group-id is 29, so to evaluate the 
gate for the faulty machine group, the good machine value of the 
middle input is used because the groupid is not 29. Without this 
group-id feature, one has to clean up the faulty value array by 
copying the good machine values. Therefore the group-id avoids 
the overhead to restore the good machine values for every fault. 

Fault injection: Next, every fault in the chosen fault group 
must be injected into the circuit. The faults are injected into the 
circuit in a novel way. Traditionally, fault injection is accom- 
plished by associating a bit-mask with each gate. The mask essen- 
tially is a flag for each line associated with gate inputs or outputs. 
The flag indicates if the values to be used during the gate evalua- 
tion are the line values produced by the predecessor gates or the 
value to be used is a stuck-at value associated with the gate. This 
methcd requires that the flags be examined for every gate evdua- 
tion even though only a few gates have faults. Instead of using 
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Good Circuit Faulty Circuit 

value group 
line 

number id line value number 

vo v 1  vo v 1  

32 32 32 32 
bits bits bits bits 

(a) (b) 

Fig. 5 .  Line Value Storage (a) good circuit (b) faulty circuit 

Table 2. Gate evaluation 

Good Faulty 
Circuit Circuit 

vog v1 VOf v1 
g f id 

Good Faulty 
Circuit circuit 

vogvl VOfVl *Oup 
g f id 

11110000 01001010 29 

11110000 00001110 29 

Fig. 6. Gate Evaluation 

faulty bit masks at every line, extra gates are inserted into the cir- 
cuit. To inject a fault at a line stuck-at-1 an OR gate is inserted at 
that line. Figure 8 illustates the injection of the fault A stuck-at-1 
in the third bit position of the value word. First, all the succesors 
of A become the succesors of the added OR gate, then A becomes 
one of the inputs of the OR gate. The other input of the OR gate is 
a dummy line which is set to the value of all zeros except a one in 
the bit position of the injected fault. Therefore, if the first four 
faulty values of line A were (wxyz), after evaluating the OR gate, 
it would have the first four faulty values be (wxlz), forcing the 
third bit position to the value 1. Similarly, to inject a stuck-at-0 
fault an AND gate would be used with a dummy line value of all 
ones except a zero at the fault position. This technique of fault 
injection saves time compared to the technique of fault bit masks 
because the bit masks require extra time for every evaluation 
irrespective of whether a fault was active on that node, or not. Our 
technique only requires the changing of a few pointers per fault 
and evaluations are as fast as an efficient logic simulation. For 
each fault in the circuit, the pointers that need to be changed to 
inject that fault are determined in the preprocessing stage; there- 
fore fault injection takes very little time. 

State-node events: Each of the remaining faulty machines 
in the fault list has associated with it a linked list which contains 
each state-node of the faulty machine, which has a value different 
from the good machine value. The state-nodes are stored in this 
list from the previous input vector. These values must be inserted 
into the circuit with the current input vector and events must be 
scheduled for their successors. 

Simulare faulty machines: The faulty machines in the 
current fault group are evaluated using an event driven fault 

(wxyz..) D(5E (-Yz..) 

(a) before fault injection 

(wxlz..) 

I (wxlz..) 

(b) circuit with line A s-a-1 injeded at bit p s i t i o n  3 

Fig. 8. Fault injection 
Fig. 7. Fault list and state storage data structure 
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simulator. A gate is evaluated by checking if each gate input faulty 
line has the current group-id. If it does, then the faulty value of 
that input is used, else the good value is used, as shown in Figure 
6. 

Dropping faults and storing fault state-nodes: A fault is 
detected if there is a faulty value at a primary output d the good 
circuit has a known value on that primary output. If a fault is 
detected then it is removed from the linked list of faults. If a fault 
is not detected then all the state-nodes with values different from 
the good machine values are stored in the linked list associated 
with the fault for the next vector. 

2.1. Fault ordering 
The proper grouping of faults is crucial in exploiting the 

benefit of parallelism from the 32 bit operation. If faults that cause 
the same events are in the same fault group, then the number of 
events to evaluate the faulty circuits is reduced. The fault list is 
constantly changing because of the dropping of detected faults, 
therefore it is necessary to consider the order of the complete list 
rather than a static grouping as in parallel simulation. 

The faults are ordered by a depth first search of the circuit 
starting at the primary outputs. The paity of the faults are main- 
tained in this search. This ordering tends to put faults with the 
same sensitized paths to an output, in the same word. This 
increases the probability that a sensitizing path is completely in a 
word. This fault ordering often reduced the number of faulty 
machine events by 50% over a random fault order. We also tried 
other ordering heuristics, for example depth first from the primary 
inputs, breadth first , and random ordering. We found that the 
depth first ordering from the primary outputs caused the fewest 
events. 

3. RESULTS 
The PROOFS algorithm was implemented in C t t  and run 

on many of the ISCAS sequential benchmark circuits[21,22]. 
Table 3 shows a summary of the circuits and test vectors used to 
evaluate the fault simulator. The vectors were generated using the 
sequential circuit test generator STG3 [23-251. These circuits were 
run on a SUN 3/280. Aside from " i n g  these circuits on 
PROOFS, they were also run on a state of the art concurrent fault 
simulator. The run time and average memory usage of the 
PROOFS and concurrent algorithms are shown in Table 4. A com- 
parison of the two algorithms shows the PROOFS is 6 to 67 times 
faster than the concurrent algorithm while always requiring less 
memory. Memory is reduced by up to 7.5 times over the con- 
current algorithm. 

4. Conclusion 
A very fast fault simulation algorithm has been described in 

this paper. Several new techniques were introduced as part of this 
algorithm. The new techniques introduced were: 1. Use of group- 
id to avoid the overhead of restoring the good values after each 
fault propagation 2. Concept of active and inactive faults to 
prevent eventless fault simulation 3. Efficient method of fault 
injection by circuit modification and 4. An efficient fault ordering 
to minimize events in word parallel operations. It has been shown 
that this algorithm is 6.6 to 67 times faster than a state of the art 

concurrent fault simulator while also requiring much less memory. 
It also has the advantage of being easy to implement because many 
parts of the code are only slight enhancements to a logic simulator. 
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3 
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*-Concurrent required 15 passes while PROOFS required 1 pass 
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