
INFOTEH-JAHORINA Vol. 15, March 2016.

 - 563 -

Performance Analysis of 64-bit

ext4, xfs and btrfs filesystems on the Solid-State disk

technology

Jelena Kljajić, Nada Bogdanović,

Marko Nankovski, Marjan Tončev

School of electrical engineering, University of Belgrade

Mihajlo Pupin Institute, University of Belgrade

Belgrade, Serbia

jelena.kljajic@pupin.rs

Borislav Djordjević

Mihajlo Pupin Institute, University of Belgrade

Belgrade, Serbia

bora@impcomputers.com

Abstract— In this paper a comprehensive performance analysis

of three commonly used journaling filesystems, xfs, ext4 and

btrfs, on a solid-state drive (SSD) is undertaken. It has been

proved that solid-state drives are superior to traditional magnetic

discs [1]. Successful methods for existing HDDs might not be fully

suitable for SSDs. It is thus important to determine which

filesystem meets the requirements of the new technology mostly.

Performances of the selected filesystems were compared using

random and sequential benchmark tests. The results show the

capability of the young btrfs to become the default filesystem on

many Linux distributions.

Keywords- ext4; xfs; btrfs; filesystem; solid-state drive; Linux

I. INTRODUCTION

With the increase in the presence of computers in everyday
life and growing amount of information that is kept, it is of
paramount importance to properly organize the stored data.
The data is handled by local storage devices. Filesystems are
used to systemize that data.

Two types of disk drives are commonly in use: magnetic hard
disk drives (HDD) and solid-state disk drives (SSD). Storing,
retrieving, caching and cleaning up data define the overall
performance of each disk drive. The standard hard drive
(HDD) has been the predominant storage device for a long
time. Its greatest advantages are the storage size and low cost.
However, solid state drives (SSD) tend to replace them as
faster and more reliable.

Filesystems are used to control how a hard drive stores,
accesses and manages files. They organize data placed in a
storage area by separating and organizing it, usually into
multiple physical units on the device, and identifying it. Some
of the most common filesystems for Linux, and the ones
presented in this paper are xfs, ext4 and btrfs.

Recently, it has been the goal of commercial as well as
scientific research to develop an optimal Linux kernel.
It is important to provide additional features that allow Linux
to scale to larger amounts of storage. [2] With that on mind,
our idea was to consider filesystems that are currently in use

and have the potential for improvement, and compare their
performance on a SSD.

In the following section, solid state disk technology is briefly
presented. Section III, gives an overview of the three
commonly used Linux filesystems. The fourth section includes
experimental results and comparative performance analysis of
all three filesystems considered. The report is rounded off with
a conclusion.

II. SOLID STATE DRIVE

Solid State Drives (SSD) have been introduced as a
transformative solution for computer storage systems. Their
most important feature is the outstanding performance for
random data access. [3] In addition, they are compact in size
and shock resistant, which makes more reliable in comparison
to traditional magnetic disks.

SSD are based on NAND flash memory, designed for data
storage with greater capacity, which only allows access in
blocks. [1] It is organized in layers in the order of block, page,
row, and cell. The write unit is a page and the erase unit is a
block. [4]

Most solid state disks have the same host interface as in hard
disks drives. However, under this common interface, their
mode of operation is much more different. [1]

Since they are assembled from semiconductor chips and have
no rotating parts, solid state disks provide lower seek times
and fewer mechanical delays. Therefore, read latency of SSD
is negligible. [4]

Delay occurs in random write. Hard disk drives can be written
and re-written many times. Erasing on magnetic storage is
performed by simply overwriting with new data. On the other
side, writing data in solid state technology requires two stages:
erase and write.

Internal organization of the flash memory determines that old
data must be erased before blocks can be reused. On update of
the present data, the content of the entire block is copied into a

mailto:jelena.kljajic@pupin.rs
mailto:bora@impcomputers.com

 - 564 -

new location. Then, the old block is deleted. Updated contents
of the old block are then written to the new block. The process
of removing temporary blocks that are not used any more is
called garbage collection.

SSD encounter an additional problem concerning flash
memory. Flash memory has a limited number of erase cycles,
after which memory cells cease to hold data. There are three
main strategies to overcome this problem. The first is to write
on different memory blocks on every new input, tending to use
blocks equally for their lifetime extension. This is called wear
leveling. [4] The other ones include occasionally moving files
that are not used often to other memory blocks and having
additional memory blocks to replace expired memory cells.[3]

In conclusion, Solid State Drives are becoming a new standard
for data storage, replacing hard disks in many modern devices.
This has motivated an ongoing effort to optimize filesystems
according to their architecture. [5]

III. LINUX FILESYSTEMS

A. xfs

Xfs is a 64-bit filesystem developed by Silicon Graphics, Inc.
in 1993. It was first used on IRIX 5.3 and ported to Linux in
2001. In 2002. it was first added to the Linux kernel version
2.4. Starting from June 2014, Red Hat Enterprise Linux
(RHEL) 7.0 uses xfs as the default system. [6] Today it is the
default filesystem for Red Hat Enterprise Linux 7. [7]

Xfs is a high performance journaling filesystem, which means
that it maintains a log, or journal, of activity that has taken
place in the main data areas of the disk. Updates to the
metadata in directories and bit maps are written to a serial log,
so that any lost data can be recreated. This provides a
protection in case of a system crash or power failure. [8]

All of the filesystems presented in this paper use allocation for
setting aside the space on a hard drive for storing files. Those
files can be either ones already modified or newly created. Xfs
supports the following allocation methods: extent-based
allocation, stripe-aware allocation policies, space pre-
allocation and delayed allocation. There are several
advantages to the delayed allocation method:

1. Larger sets of blocks are processed before being written,
which reduces the processor utilization.

2. A large number of blocks that are most likely
contiguous are allocated at once – this reduces fragmentation.

3. Delayed allocation reduces processor time and disk
space for files that are short-term temporary files used and
deleted in cache before being written.

Delayed allocation is probably the best method for files where
the file size is unknown at the time of writing, usually because
they are still being created or modified at the time. [9]

For preventing fragmentation and increasing performance,
besides delayed allocation method, xfs uses sparse files. If the
real file contains large sections of zeroes, metadata will be
written instead of all the zeroes, so the space can be saved.
When accessed again, the file is expanded to its normal state
in memory.

Even with the mentioned methods for reducing fragmentation,
it can still occur in case of a low free space. To lessen this
issue, xfs uses online defragmentation. In this process, files
can be moved into contiguous blocks to reduce fragmentation.
xfs can be defragmented and enlarged while mounted and
active.

For allocating space on the filesystem, xfs uses extents.
Managing the free space on the filesystem is accomplished by
using B+ trees for tracking these spaces. [6]

B. ext4

Ext4 stands for "fourth extended filesystem" and was
developed as a scalable extension of the ext3 filesystem. It
was introduced in 2008. The ext2 and ext3 filesystems are
based on an indirect block mapping scheme, known to be very
efficient for small files, but not so for larger ones. Instead of
its predecessors, ext4 introduces extents, which improve
performance and reduce metadata overhead for large files.
Extents are basically descriptors that represent a range of
contiguous physical blocks. In ext4, files can allocate extents
instead of individual blocks. [10] [11]

Similar to the ext3, the ext4 is also a journaling filesystem for
Linux, with additional journal checksums. This way, a disk
I/O wait during journaling can be avoided, which results in
quicker crash recovery, and in that way, an improvement in
performance.

As for the faster filesystem checking, ext4 also labels
unallocated block groups and inode table sections, which
allows them to be skipped during a filesystem check.

The ext4 features the following allocation schemes: persistent
pre-allocation, delayed allocation, multi-block allocation and
stripe-aware allocation. Delayed allocation is also known as
allocate-on-flush, and is used by both ext3 and ext4
filesystem. The main difference is that ext3 automatically
writes newly created files to disk almost immediately.
Meanwhile, the ext4 often waits several seconds to write out
changes to disk. This allows the ext4 filesystem to reduce
fragmentation and improve performance comparing to ext3.

C. btrfs

Btrfs, “B-Tree File System” or “Better F S”, was created by
Oracle in 2007. and merged into the mainline Linux Kernel
2.6.29 in 2009.

The principal data structure for btrfs is a B+ tree. It consists of
a root, internal nodes and leaves. The main advantage is that
their logarithmic growth in depth enables and improves
accessing and updating large blocks of data no matter how
large the tree grows. B+ trees are also used in xfs filesystem.
The main difference between those two is that in btrfs, in-
place modification is avoided by copying the processed data to
a new location. The benefit is faster crash recovery.

Btrfs implements implicit sharing, otherwise known as Copy-
on-Write (CoW). It is used for handling resources when
multiple tasks are using the same data. Usually, when an
application requests data from a file, the data is sent to
memory or cache, meaning that each application then has its
own memory space. In that case, each application has its own

 - 565 -

memory space. In order to save the space, if multiple
applications request the same data, that data is then allocated
in one place and pointed to by all the applications. In case one
of the applications needs to change the data, then that
application will be given its own memory space with the new
updated information, while the other applications continue
using the older pointers with original data.

It also features two types of compression: LZO and ZLIB,
which are used for preventing the filesystem from becoming
full. The LZO method produces smaller files, while ZLIB
compresses faster. If a disk space becomes full, btrfs is
capable of online volume growth and shrinking or online
defragmentation. This functionality improves performance.

Btrfs includes support for redundancy (duplicating parts to
prevent a failure as a whole) and fault tolerance (the ability of
a computer system to continue working after a failure). For
that, btrfs uses RAID, specifically: RAID 0, RAID 1 and
RAID 10; RAID 5 and RAID 6 are considered experimental
features. [12]

If necessary, filesystem snapshots enable a system to roll back
to a prior state, or they can be used to back up files. [13]

Another btrfs feature is checksum functionality, which
improves error detection and ensures data integrity.

D. Filesystem hypothesis

For every workload applies

 (1)

where Tworkload is the total time needed to complete all
operations on the workload.

TDir represents the time needed to complete all directory
related operations, TMeta the time needed to complete all
metadata operations, TFL the time needed to complete all free
lists operations, TFB the time needed to complete direct file
blocks operations, TJ the time needed to complete journaling
operations and THK the time needed to complete housekeeping
operation within the filesystem.

All three filesystems of interest are based on an extent. The
greatest differences between them are in the directory
organization. ext4 filesystem directories are in the form of H-
Trees, while xfs and btrfs directories are in the form of B+
trees.

B+ tree is the dominant structure for all areas of filesystems
management in xfs and btrfs. Computational complexity for
the B+ tree for all 4 types of actions (insertion, retrieval,
updating, deleting) is:

 () (()) (2)

where,

 () () (3)

Another difference between them is in the write cycles. Ext4

and xfs use the overwrite method,

 () () (4)

while btrfs filesystem uses Copy-on-Write (CoW) update

method, which causes the migration of data and increase in the

amount of data to be written.

 () () (5)

For btrfs filesystem there is the greatest housekeeping time, as
it consumes checksum both for metadata and data operations,
which additionally lengthens the write cycles.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Hardware Configuration

The specification of used hardware is presented in table I.
Tests were performed on Ubuntu Linux operating system
using SSD [14], whose specification is shown in tables II.

TABLE I. HARDWARE SPECIFICATION

Hardware Specification

RAM 8 GB

CPU Model Intel(R) Core(TM) i5-4690 CPU @ 3.50GHz

Number of CPU Cores 4

Solid-State Drive Transcend, TS128GSSD370S, 128GB, 2.5"

Operating System
Ubuntu 14.04.1,

kernel – Linux 3.13.0-32 - generic x86_64

TABLE II. SOLID-STATE DRIVE SPECIFICATION

SSD Specification

Model Transcend, TS128GSSD370S, 128GB, 2.5"

Capacity 128 GB

Interface Serial ATA III

Transfer Rate to Host 6 Gb/s

Storage Media Synchronous MLC NAND Flash memory

Controller Transcend TS6500

Buffer None

Max. Read 550 MB/s

Max. Write 170 MB/s

B. Results

The results are obtained using Bonnie++ benchmark program.
It is C++ software used for evaluating performance of different
storage units and filesystems. Results of performance analysis
can be divided into two groups: random (Fig. 1) and sequential
(Fig. 2). Fig. 1a depicts the random write test results obtained
using putchar() function and Fig. 1b shows the random read
test results obtained using getchar() function.

The results are expected. btrfs is conceivably the best in the
random read test, as a result of acceleration coming from B+
trees in many filesystems metadata and data structures by
formulas (2) and (3), whereby for this workload B+ tree
technology for btrfs works better than B+ trees technology for
xfs. In the random write test, xfs and ext4 have similar
performance, while btrfs is noticeably weaker because of CoW
update method, according to the formula (5), as well as time
needed for housekeeping.

 - 566 -

Fig. 2 represent sequential performance of the drives, obtained
using getblock() function. Interesting result is that btrfs is
considerably weaker in all cases of sequential testing except in
the case of sequential write when compared to ext4.

Large sequential write transfers produce much CoW data
traffic, which considerably slows down btrfs filesystem
according to the formula (5).Considering all sequential test
cases under the Ubuntu Linux, the best performances are
generally obtained using xfs filesystem, due to the B+ Tree
structure according to formulas (1) and (2), as well as overwrite
and update method according to the formula (4).

V. CONCLUSION

The purpose of this paper was to compare the performances of
three 64 bit filesystems using modern SSD technology, under
Ubuntu Linux OS. Expected results were that the most modern
filesystem, btrfs, will have significantly better performances for
all read tests, but it was detectable only for random read, and
not for sequential read as well. It was expected that the btrfs
has a lower write performance due to the CoW method, which
was confirmed in all tests. On the other hand, two overwrite
update filesystems, ext4 and xfs, exhibited very similar
performance. We can note that the btrfs filesystem is still not
fully accepted for Ubuntu Linux distributions, as it is not in the
recommended choices during the installation procedures, but
has to be installed additionally. On the other hand, there are
numerous papers that prove quality performance of the btrfs
filesystem on the other Linux distributions, like Centos, etc. in
which the btrfs is present in the basic offer on the install.

REFERENCES

[1] F. Cheng, D. A. Koufaty, X. Zhang, “Understanding Intrinsic
Characteristics and System Implications of Flash Memory based Solid
State Drives”, ACM SIGMETRICS Performance Evaluation Review,
Vol. 37 Issue 1, June 2009.

[2] “HTG Explains: What is a File System, and Why Are There So Many of
Them?” (http://www.howtogeek.com/196051/htg-explains-what-is-a-file-
system-and-why-are-there-so-many-of-them/)

[3] P. Bednar, V. Katos, “SSD: New Challenges for Digital Forensics”,
ItAIS 2011, Proceedings of the 8th Conference of the Italian Chapter of
the Association for Information Systems In Information Systems

[4] “How is SSD Changing Software Architecture?”,
http://www.cubrid.org/blog/dev-platform/how-ssd-changing-software-
architecture/ [15.01.2015.]

[5] O. Rodeh, J. Bacik, C. Mason, “BTRFS: The Linux B-tree Filesystem”,
Vol. 9 Issue 3, Article No. 9, August 2013.

[6] “XFS File System”, http://www.linux.org/threads/xfs-file-system.4364/
[15.01.2015.]

[7] “The XFS File System”, https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch
-xfs.html [15.01.2015.]

[8] “Journaled filesystem”, http://www.webopedia.com/
TERM/J/journaled_file_system [15.01.2015.]

[9] “Allocation Methods”, http://www.linux.org/threads/allocation-
methods.4319/ [15.01.2015.]

[10] “The ext4 File System”, https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch
-ext4.html [15.01.2015.]

[11] A. Mathur, M. Cao, S. Bhattacharya, “The new ext4 filesystem: current
status and future plans”, Ottawa Linux Symposium (2007).
http://ols.108.redhat.com/2007/Reprints/mathur-Reprint.pdf
[15.01.2015.]

[12] “RAID”, http://www.linux.org/threads/intro-to-raid.4132/ [15.01.2015.]

[13] “Btrfs”, https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/ch
-btrfs.html [15.01.2015.]

[14] http://www.transcend-info.com/products/images/modelpic/
579/No3118_TSXGSSD370S_V10_Datasheet.pdf [15.01.2015.]

Fig. 2 – Sequential performance testing: a) writing; b) read-modify-write; c) reading.

Fig. 1 – Random performance testing: a) writing; b) reading.

http://www.howtogeek.com/196051/htg-explains-what-is-a-file-system-and-why-are-there-so-many-of-them/
http://www.howtogeek.com/196051/htg-explains-what-is-a-file-system-and-why-are-there-so-many-of-them/
http://www.cubrid.org/blog/dev-platform/how-ssd-changing-software-architecture/
http://www.cubrid.org/blog/dev-platform/how-ssd-changing-software-architecture/
http://www.linux.org/threads/xfs-file-system.4364/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch-xfs.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch-xfs.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch-xfs.html
http://www.webopedia.com/%20TERM/J/journaled_file_system
http://www.webopedia.com/%20TERM/J/journaled_file_system
http://www.linux.org/threads/allocation-methods.4319/
http://www.linux.org/threads/allocation-methods.4319/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch-ext4.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch-ext4.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch-ext4.html
http://ols.108.redhat.com/2007/Reprints/mathur-Reprint.pdf
http://www.linux.org/threads/intro-to-raid.4132/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/ch-btrfs.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/ch-btrfs.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/ch-btrfs.html
http://www.transcend-info.com/products/images/modelpic/%20579/No3118_TSXGSSD370S_V10_Datasheet.pdf
http://www.transcend-info.com/products/images/modelpic/%20579/No3118_TSXGSSD370S_V10_Datasheet.pdf

 - 567 -

