CONVERGENCE-CONFINEMENT METHOD

Application of the Convergence-Confinement
Method of Tunnel Design to Rock Masses That
Satisfy the Hoek-Brown Failure Criterion

C. Carranza-Torres and C. Fairhurst

Abstract —This paper discusses the practical application of the Convergence-Confinement Method of tunnel
design to rock-masses that satisfy the Hoek-Brown failure criterion. The strength of intact rock and jointed
rock-masses, as defined by the Hoek-Brown criterion, and the basis of the Convergence-Confinement method
are reviewed. Equations that allow the construction of the three basic components of the Convergence-
Confinement method, i) the Longitudinal Deformation Profile (LDP), ii) the Ground Reaction Curve (GRC)
and iii) the Support Characteristic Curve (SCC) are given. A practical case of support design for a circular
tunnel is discussed and solved using the Convergence Confinement method. A spreadsheet summarizing the
implementation of the method is also included. Reference values of typical rock properties and geometrical
and mechanical properties for typical support systems are presented in tables and charts.© 2000 Published

by Elsevier Science Ltd. All rights reserved.

1. Introduction

stimation of the support required to stabilize a
tunnel excavation, especially in the vicinity of the
face, is essentially a four-dimensional problem. Time-
dependent weakening of the rock compounds the three-
dimensional redistribution of forces around the excavation,
and the nature of the rock is uncertain until it is exposed in
the face. Labasse (1949) describes the situation as follows:

First, the types of supports to be used must be
limited to one or two in order not to disrupt the
material supply operations underground. This stan-
dardization makes precise calculation of a support for
each cross-section useless.

Further, the need to install the support immedi-
ately after excavation does not allow time to make
calculations and fabricate the support. In order to
arrive at a precise determination it would be neces-
sary, in fact, to study each cross-section separately
because it would differ from neighboring cross-sec-
tions with respect to the rock layers encountered, their
dip and their deposition. It would be necessary to take
a test specimen from each layer, determine its proper-
ties and the influence of these properties on neighbor-
ing layers. This would require a series of experiments
and mathematical analyses whose solution, assuming
that a solution is possible, would take up precious time
during which the excavation would certainly have
collapsed.

Given these constraints, it is valuable to have a general
albeit simplified appreciation of the nature of the interplay
between the (variable) rock-mass and the installed support,
and the effect of variaticn in assumed rock properties on the
support loads.
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The ‘Convergence-Confinement’ method is such a tool.
Although the term was developed in the 1960°s and 70s (see,
for example, AFTES, French Association for Underground
Works 1978), the method has been known at least since the
paper by Fenner (1938). Application of the Convergence-
Confinement method, as is discussed later in detail, re-
quires a knowledge of the deformation characteristics of the
ground and of the support.

Estimation of the mechanical response of a jointed rock-
mass is one of the fundamental problems in rock mechanics.
The Hoek-Brown criterion (Hoek and Brown 1980) for rock
failure is widely used as an attempt to address the problem.
The presence of joints and associated in situ geological
effects (e.g., weathering and inhomogeneities) can consider-
ably reduce the mechanical strength and stiffness of the
rock-mass compared to the corresponding properties of
intact specimens taken from the mass. The Hoek-Brown
criterion ‘adjusts’ the strength properties of intact rock
cores measured in triaxial tests in order to estimate the
reduced strength that the rock-mass will exhibit in the field
scale.

The following sections review the practical implementa-
tion of the Convergence-Confinement method to rock-masses
that can be described by the Hoek-Brown failure criterion.
Because of its importance in defining the strength and
deformability properties of rock-masses, a detailed discus-
sion of the Hoek-Brown failure criterion is presented as
Appendix A to this paper.
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2. The Convergence-Confinement Method of
Tunnel Design

As noted in the Introduction, the Convergence-Confine-
ment method is a procedure that allows the load imposed on
a support installed behind the face of a tunnel to be esti-
mated. When a section of support is installed in the imme-
diate vicinity of the tunnel face, it does not carry the full load
to which it will be subjected eventually. A part of the load
that is redistributed around the excavation is carried by the
face itself. As the tunnel and face advance (i.e., away from
the installed support), this ‘face effect’ decreases and the
support must carry a greater proportion of the load that the
face had carried earlier. When the face has moved well away
from the support in question, it carries effectively, the full
design load.

The problem is illustrated in Figure la. A cylindrical
tunnel of radius R is driven (e.g., by the conventional drill-
and-blast method) through a rock-mass that is assumed to
be subject initially to a uniform (i.e., hydrostatic) stress
field. A circular support is installed at a section A—A’
located a distance L from the face of the tunnel (the support
is assumed to be of unit length in the direction of the tunnel
axis). The objective of the analysis is to determine the load
that the rock-mags will transmit to the support at section
A—A’, from the time of installation —indicated in Figure
la— until the time when the face has moved ahead, suffi-
ciently far that the ‘face effect’ has disappeared.

The variables involved in the analysis are shown in
Figure 1b, which is a cross-section of the excavation at the
position A-—A’ (the support has been ‘removed’ for clarity
in this figure). The stress ¢ represents the hydrostatic far-
field stress acting on the rock-mass. The radius R, indi-
cates the extent of the ‘fajlure’ (or plastic) zone that devel-
ops around the tunnel (a discussion of the development of
this failure region will be presented in Section 3).

To simplify the problem, it is assumed that all deforma-
tions occur in a plane perpendicular to the axis of the tunnel
(i.e., the problem is two-dimensional plane strain) and that
the radial displacement ©_and the pressure p,—the latter
representing the reaction of the support on the walls of the
tunnel—are uniform at the section. Figure 1c shows a cross-

section of a circular annular support of thickness ¢ and
external radius R installed at the section A—A’. The uni-
form pressure p, represents the load transmitted by the
rock-mass to the support; the radial displacement u_repre-
sents the displacement induced by the load p . For compat-
ibility of deformations at the rock support interface, the
radial displacement of the support must equal the radial
displacement of the rock wall , indicated in Figure 1b.

The basis of the Convergence-Confinement method is
illustrated in the sequences (a) through (c) in Figure 2. The
situation at the initial time ¢, when the lining is installed
at section A—A’, is represented in the upper sketch (Figure
2a). At this instant, the section is located at a distance L
from the face and the ground has converged radially by the
amount u ?. It is assumed that, provided the face does not
advance, the rock-mass transmits no load to the support —
i.e., p? =0 at this stage. (Time-dependent weakening, with
associated deformation, is not considered in this analysis.)

As the tunnel advances to the right, the ground and the
support (at section A—A’) deform together and the support
receives part of the load that the face had been carrying
previously. Figure 2b shows the situation at a time ¢ when
the section is located at the distance L, from the face; at that
moment, the ground has converged the amountu ¢ >4 ? and
the rock-mass transmits the pressure p‘ to the support.

Once the face of the tunnel has moved ahead far enough
(Fig. 2c), the ground-support system at the sectionA—A’ is
in equilibrium and the support carries the final (or design)
load p?. At this time ¢,, the effect of the face has disap-
peared and the support and ground have converged to-
gether by the final amount u 2.

As can be seen from Figure 2, determination of the load
transferred to the support requires an analysis of the
interaction of the load-deformation characteristics of the
elements comprising the system, (i) the tunnel as it moves
forward; (ii) the section of excavation perpendicular to the
tunnel axis; and (iii) the support installed at that section.

The three basic components of the Convergence-Confine-
ment method are, therefore, (i) the Longitudinal Deforma-
tion Profile (LDP); (ii) the Ground Reaction Curve (GRC);
and (iii) the Support Characteristic Curve (SCC).

b)

o

Figure 1. a) CGylindrical tunnel of radius R driven in the rock-mass. b) Cross-section of the rock-mass at section A—A’.
¢) Cross-section of the circular support installed at section A—A’.
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The LDP is the graphical representa-
tion of the radial displacement that oc-
curs along the axis of an unsupported  8)
cylindrical excavation —for sections lo-
cated ahead of and behind the face. The
upper diagram in Figure 3 represents
such a profile. The horizontal axis indi-
cates the distance x from the section

analyzed to the tunnel face; the vertical
axis indicates the corresponding radial
displacement u_(the right part of the
diagram is included for use later in re-
lating the LDP to the GRC and the SCC).
The diagram indicates that at somedis- b) timet
tance behind the tunnel face the effect of
the face is negligibly small, so that be-
yond this distance the unlined tunnel
section has converged by the final

amount z ¥ . Similarly, at some distance

L¢

¥

ahead of the face, the advancing tunnel
has no influence on the rock-mass and
the radial displacement is zero.
Considering now the section of un-
lined tunnel represented in Figure 1b,
the GRC is defined as the relationship c)
between the decreasing internal pres-
sure p, and the increasing radial dis-
placement of the wall u . The relation-
ship depends on the mechanical proper-

ties of the rock-mass and can be ob-
tained from elasto-plastic solutions of
rock deformation around an excavation
{(Section 3 discusses the construction of
the GRC). The GRC is shown as the
curve OEM in the lower diagram of Fig-
ure 3, extending from point O ~—where
the internal pressure p, is equal to the
initial stress g , to point M correspond-
ing to the case where the internal pres-
sure is equal to zero (i.., the tunnel is unsupported) and the
maximum closure (i.e., the radial displacement) z ¥ is the
maximum possible. Point E defines the internal pressure
p ¢ and corresponding closure at which the elastic limit of
the rock is reached (at the tunnel wall) —if the internal
pressure falls below this value, a failed region of extent R,
develops around the tunnel, as shown in Figure 1b.

The SCC is similarly defined as the relationship between
the increasing pressure p_on the support (shown in Fig. 1¢)
and the increasing radial displacement u_of the support.
This relationship depends on the geometrical and mechani-
cal characteristics of the support (Section 4 discusses the
construction of the SCC). The SCC is shown as the curve KR
in the lower diagram of Figure 3. Point K corresponds to a
support pressure equal to zero (i.e., when the support is first
installed) and point R to the pressure p ®** that produces
failure of the support.

Interpretation of the interaction between the LDP, GRC
and SCC allows us to define the pressure p_that the ground
transmits to the support as the face advances. To illustrate
the procedure, consider again the sequences a) through ¢
illustrated in Figure 2. Installation of the support at section
A—A’ at time £,in Figure 2a, corresponds in the LDP of
Figure 3 as point I of coordinates x = L and u_ =u ?. Point J
on the right side of the diagram has a horizontal coordinate
u,= u ?and defines point K of the SCC in the diagram below.
As long as the face does not move, stability is maintained
solely by the ability of the face to carry the load redistributed
by excavation. Thus, the vertical segment KN in the lower
diagram of Figure 3 corresponds to the pressure taken by
the face at time ¢,. (Again, note that time dependent weak-
ening of the rock-mass is not considered here.)

the tunnel face.

Volume 15, Number 2, 2000

Figure 2. Loading of the support at section A—A’ due to progressive advance of

As the face advances in Figure 2, both the support and
excavation deform by the same amount —with the pressure
p,onthe supportincreasing and the confining effect p,on the
periphery of the tunnel decreasing.

At time ¢, in Figure 2c, when the supporting effect of the
face has disappeared completely, the system reaches equi-
librium at point D in the lower diagram of Figure 3—i.e. at

the intersection of the GRC and the SCC. The pressurep P
defined by point D then represents the final pressure (or
design load) that the rock transmits to the support.

Inspection of the LDP, GRC and SCC in Figure 3 leads to

two conclusions of practical interest:

i) the support will not be subject to a radial pressure
larger than pL -—defined by point L in the lower
diagram. This pressure would be achieved only in the
hypothetical case of an infinitely rigid support in-
stalled at the face itself —i.e., the SCC would be a
vertical one, starting from point H; and

ii) a support will take no load if placed beyond point M,
since the maximum possible convergence has occurred
already.

These two cases correspond to the two limiting cases of
load that the rock-mass can transmit to the support. In
general, as is seen from the LDP, GRC and SCC in Figure
3, the further that the support is installed from the tunnel
face, the lower the final load p P on the support (assuming,
again, that no time-dependent weakening or disintegration
of the rock-mass occurs).

3. Construction of the Ground Reaction Curve

The Ground Reaction Curve (GRC) shown in Figure 3
can be constructed from the elasto-plastic solution of a
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Figure 3. Schematic representation of the Longitudinal Deformation Profile (LDP), Ground Reaction Curve (GRC) and

Support Characteristic Curve (SCC).

circular opening subject to uniform (i.e., hydrostatic) far-
field stresses and uniform internal pressure (see Fig. 1b).
Several solutions of this type, based on the Hoek-Brown
failure criterion for the rock, have been published in the
past. Some of these solutions include approximations in the
equations of deformations to simplify the problem —see for
example Brown (1983); others resort directly to numerical
treatment to obtain a relationship between internal pres-
sure and radial deformation (for example, Wang 1996).

In the present work, an analytical solution derived by
Carranza-Torres and Fairhurst (1999) will be considered.
The solution is based on the ‘general’ form of the Hoek-
Brown criterion proposed by Londe (1988) —the reader is
referred to Appendix A for a detailed review of the Hoek-
Brown failure criterion and the coefficients characterizing
the strength and deformability of the rock-mass, that will be
used in the equations presented this section.

Consider the section of a cylindrical tunnel of radius R
subject to uniform far-field stress o, and internal pressure
p, shown in Figure 1b. The rock-mass is assumed to satisfy
the Hoek-Brown failure criterion defined by equation (A-2);
the variables characterizing the strength of the rock-mass
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are the unconfined compressive strength o, the intact rock
parameter m, and the rock-mass parameters m, and s
discussed in Appendix A (as mentioned there, the analysis
assumes the parameter a to be 0.5).

The uniform internal pressure p, and far-field stress o,
can be ‘scaled’ according to the transformation (A-8), to give
the scaled internal pressure P, and far-field stress S
respectively, ’

P s
P‘_mbca*' 2

e (1
S =% . s
°~m, o, 2
’ ™ @

The pressure p{", defined by point E in the GRC of
Figure 3, marks the transition from elastic to plastic behav-
ior of the rock-mass —i.e., for an internal pressurep, >2p¢",
the rock remains elastic, and for p, <p ", a plastic region of
radius Rp, develops around the tunnel (see Fig, 1b).

The scaled critical (internal) pressure P { for which the
elastic limit is achieved is given by the following expression:

Volume 15, Number 2, 2000



P°’=—[1 J1+168, @

The actual (i.e., non-scaled) critical pressure is found
from the inverse of equation (1),

pi =[Pfr —%me O 4
myg
Provided p, 2p{", the relationship between the radial
displacements ue’ and internal pressure p, in the elastic
part of the GRC (i.e., segment OF in Fig. 3) is given by the
equation,
e O, =D,

u = ﬁ R (5)
where GG is the shear modulus of the rock-mass defined by
equation (A-10).

For values of internal pressurep, <p ¢, the extent of the
plastic region R , that. develops around the tunnel is

R, =R exp[2(VP{-VP, )|

To define the plastic part of the Ground Reaction Curve
(i.e., the curve EM in the GRC of Figure 3), a flow rule for
the material is needed. The flow rule defines the relation-
ship between the strains that produce distortion and those
that produce volumetric changes, as plastic deformation
occurs in the material—see, for example, Atkinson (1993).
In underground excavation practice, the flow rule is usu-
ally assumed to be linear, with the magnitude of volumet-
ric change characterized by a ‘dilation’ angle , such that,
if ¥ = 0°, the material undergoes no change in volume
during plastic deformation; if y> 0°, the volume increases
during plastic deformation.

In the solution described here, the flow rule will be
characterized by a dilation coefficient K, that is computed
from the dilation angle, y, according to the expression
K =1+ siny)/[1 - siny]. Note, for example, that for y=0°,
the dilation coefficient is K =1 and for ¥ = 30°, the
coefficient is K =3.

With the flow rule characterized by the dilation coeffi-
cientK ,the plastlc part of the GRC —i.e., the segment EM
in Flgure 3—is given by

ut! 2G,, _Ky-1 9 (sz)KV“
R oo—-pf’—K,,hL K,+1\R

=
==Y n|=2L
IS, -PO\R

1-20 JPT 1-v K,-1 1 ]

(6)

N

|Ky+18,-P7 2 (K,+1? S,-P7
R . R . Ky+l
X (KV+1)ln(—RL)-(T”) +1

where v is Poisson’s ratio for the rock-mass.

Hoek and Brown (1997) suggest that in some cases the
assumption of no plastic volume-change for the rock-mass
may be more appropriate. For the case of non-dilating rock-
masses, characterized by the coefficient K, =1, equation (7)
becomes

u? 2G,, [1 2v JPT +1}( )
R - R

R o,-p¢ 2 §,-PY7

@®)
1-2v ﬁr
4(S,,-P§')[ln( R )

15 ST ().
2 5. P 2In 7"
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Toillustrate the construction of Ground Reaction Curves
using equations (1) through (8), let us consider the case
shown in Figure 4 of an unsupported section A—A’ of a
tunnel, radius R, located at a distance of 10 R behind the
face of the tunnel (as will be discussed in Section 5), a
distance of 10 R is large enough that the face has no further
effect on the section).

We wish to determine the radial convergence and the
extent of the plastic region as the internal pressure D, is
reduced from the (initial) in-situ stress value o, towards zero.

In this particular example, the radius of the tunnel is
R = I m, the initial stress field is g, = 7.5 MPa and the
properties of the intact rock are g, = 90 MPa and m, =15,
Rock-masses of decreasing quahty, characterized by GSI
values equal to 50, 40 and 30, are considered. The param-
eters defining the strength and deformability of the rock-
mass according to the Hoek-Brown criterion are computed
from equations (A-3) through (A-5) and (A-9) through (A-10)
are listed in Figure 4a.

The ground reaction curves constructed using expres-
sions (1) through (8)for GSIvalues equal to 50,40 and 30 are
shown in Figure 4b. The dashed-line curves represent the
corresponding extent R  of the failure zone (the values of R,
are read on the vertlcal axis on the right side of the
diagram). Points A, B and C represent the condition at
which the elasticlimit of the rock-massis reached. Note that
these points are associated with a failure region of extent
R, =R =1m (ie., a failure zone that is about to start to
develop around the tunnel).

To validate the analytical results presented in Figure 4,
a numerical analysis was carried out with the finite differ-
ence code FLAC? (Itasca Consulting Group 1997). The
models were set up and solved for values of internal pres-
sures p, =0.5, 1.0 and 1.5 MPa. The values of radial
displacement obtained from these models, represented as
open squares in Figure 4b, are in good agreement with the
analytical results.

4, Construction of Support Characteristic Curves

The Support Characteristic Curve (SCC) shown in Fig-
ure 3 can be constructed from the elastic relationship
between the applied stress p_and the resultmg closureu_for
a section of the support of unit length in the direction of the
tunnel (see Fig. 1c).

Ifthe elastic stiffness of the support is denoted by K, the
elastic part of the SCC —i.e., segment KR in Figure 3 can
be computed from the expression,

p..—.Ku (9)

Note that from equation (9), the unit of the stiffness K is
pressure divided by length (e.g., MPa/m if the stresses are
expressed in MPa and the displacements in meters).

The plastic part of the SCC in Figure 3—i.e., the horizon-
tal segment starting at point R, is defined by the maximum
pressure p ™ that the support can accept before collapse.

The following subsections present the equations needed
to compute the maximum pressure p ®** and the elastic
stiffness K, for three different support systems:

i) shotcrete or concrete rings,

it) blocked steel sets and

iii) ungrouted bolts and cables.

These equations have been adapted from Hoek and
Brown (1980) and Brady and Brown (1985). The reader is
referred to the original source for a detailed description of
each of these support systems.

4.1 Shoftcrete or Concrete Rings

Considering the closed ring of shotcrete or concrete
represented in Figure 5a, the maximum pressure provided
by the support is
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Figure 4. a) Analysis of the convergence and the extent of the plastic zone for a section of tunnel located well behind the tunnel
face. b) Ground Reaction Curves and extent of failure curves for section A-A’ in the model—for GSI values of 50, 40 and 30.
The points A, B and C represent the elastic limit in each GRC. The open squares in the diagram correspond to results obtained

with FLAC °,

Table 1. Values of 0,,and E_ for dry and wet shotcrete mixtures after 1 and 28 days

(after Singh and Bortz 1975).

E. [MPa]

Type of mixture o, [MPa]

Dry (1 day) 20.3
(28 days) 29.6

Wet (1 day) 18.9 -20.3
(28 days) 33.3-394

13.6 x 103 -23.4 x 103
17.8 x 10> -23.1 x 103
12.3 x 10°> - 28.0 x 103
23.8 x 103 -35.9 x 10

Cement type III. Maximum aggregate size 13 mm. Mix design —expressed
as a percentage of total bulk weight: i) Dry mixture: 17.9% cement; 29.9%
coarse aggregate; 52.2% sand. ii) Wet mixture: 16.7% cement; 27.9% coarse

aggregate; 48.7% sand; 6.7% water.
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Table 2. Values of o, and E_for concrete mixtures used in
the construction indu. stry (after Leonhardt 1973).

Designation o, [MPa] E.[MPa]
Bn 150 14.7 25.5 x 10°
Bn 250 24.5 29.4 x 103
Bn 350 34.3 33.3 x 10°
Bn 450 44.1 36.3 x 10°
Bn 550 53.9 38.2 x 103

Properties after 28 days, obtained from tests on cubic
samples of 200 mm side. The strength of concrete at
the early age of 7 days is approximately 80% of the o¢¢
values listed above.

2
poox = ]L-(—R%—C)—] (10)
The elastic stiffness is
2 2
K,= E, R*“—(R -t.) 1D

(1-v)R (1-20,)R*+[R -t )

where
o is the unconfined compressive strength of the
shotcrete or concrete [MPa};
E is Young’s Modulus for the shotcrete or concrete
[MPal;
v is Poisson’s ratio for the shotcrete or concrete [di-
mensionless];
t  is the thickness of the ring [m];
R istheexternal radius of the support [m] (taken to be
the same as the radius of the tunnel)

Typical values for o, and E, for dry and wet shotcrete
mixtures? are given in Table 1. Poisson’s ratio for the
shotcrete is usually assumed to be v, = 0.25. The thickness
t_of the shotcrete depends on the roughness of the surface

I The distinction between dry and wet mixtures comes from the
moment at which water is added to the cement/sand mixture. In
the former, sand and cement are mixed dry and water is added
at the nozzle of the shotcrete equipment. In the latter, sand,
cement and water are mixed at the same time and the mixture
pumped to the nozzle for application.

2)

Figure 5. Schematic representation of sections of a) shotcrete or concrete rings and

b) blocked steel sets (adapted from Brady and Brown 1983).

Volume 15, Number 2, 2000

Table 3. Values of Young’s modulus E_and yield strength o,
for different steel types (adapted from Gieck 1977).

Designation  E; [MPa] oy, [MPa]
St 37-11 210 x 10> 80— 120
St 50-11 210 x 103 100 — 150
GS 38 220 x 103 80— 100

The ranges of admissible stress oy listed above are for
static-compressive loads. This assumes a safety coeffi-
cient of 1.75 with respect to the yield strength.

after blasting and scaling. When the shotcrete is applied as
a temporary support system, the thickness usually varies
between 50 and 100 mm.

For pre-cast or cast-in-place concrete support, the pa-
rameters ¢, and E. depend mainly on the type of cement
and aggregate used in the mixture. Table 2, adapted from
Leonhardt (1973), lists values of o, and E_ for typical
concrete mixtures used in the construction industry.
Poisson’s ratio v_for concrete varies between 0.15 and 0.25;
the value v, = 0. 2 is normally used in practice (Leonhardt
1973). The thickness t, for pre-cast or cast-in-place support
is usually larger than that for shotcrete, partly because
structural steel reinforcement is commonly used (struc-
tural steel reinforcement requires a sufficient cover of
concrete to protect the steel from corrosion).

4.2 Blocked Steel Set

Considering steel sets spaced a unit length apart in the
direction of the tunnel axis and tightened against the rock
by wood blocks that are equally spaced circumferentially—
as shown in Figure 5b— the maximum pressure that the
system can sustain is

3 O-ys AsIs
P =S R 63, DA,[E —(t5 +05D)](I—cos d)
(12)
The elastic stiffness is
1 _SR®> SR* 6(6 +sinf cos 6) ,256tp R
Ka_EsAs EsIs 2sin20 E B2
(13)
where

B is the flange width of the steel set
and the side length of the square
block [m]

D  is the depth of the steel section [m]

A, is the cross-sectional area of the
section [m?]

I is the moment of inertia of the sec-

tion [m?]

E_ is Young’s modulus for the steel
[MPa]

o, is the yield strength of the steel
[MPa]

S is the steel set spacing along the
tunnel axis [m]

q is half the angle between blocking
points [radians]

is the thickness of the block [m]

is Young’s modulus for the block
material [MPa]

R is the tunnel radius [m]
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Table 4. Values of D, B, A, and I_for typical steel sections (adapted from CONSTRADO 1988).

Universal Beams
Section D [mm] B [mm] As [m?] I, [m*) t[mm] T [mm]
457 x 152 461 153 950x 1073 32435x10°% 99 17.0
406 x 140 402 142  590x 1073 15647 x10°¢ 69 112
356 x 127 353 126 494x1073 10087 x10°% 65 10.7
305 x 127 304 124 475x1073  71.62x 107 7.2 10.7
254 x 102 260 102 3.62x1073  40.08 x 1076 6.4 10.0
203 x 133 203 133 323x1073 23.56 x 107 5.8 7.8
Joists

Section D [mm] B [mm] A; [m?] I, [m*] t[mm] T [mm]
203 x 102 203 102 323x 1073 2294x10% 58 10.4
152 x 89 152 89 2.18 x 1073 8.81 x 106 49 8.3
127 x 76 127 76 1.70 x 1073 4.76 x 10 45 7.6
102 x 64 102 64 1.23x 1073 2,18 x 106 4.1 6.6

89 x 89 89 89 294x 103 3.07x10°° 95 9.9

76 x 76 76 76 1.63 x 1073 1.59 x 1076 5.1 8.4

Universal beams, in contrast to joists, have flanges of the same

thickness throughout. The figure on the right shows a typical joist
section with non-parallel flanges (the thickness T is measured at
the mid-distance on the flange). Note that the values of moment of
inertia I listed above are with respect to the axis x—x indicated in
the figure. This considers that the shortest side (the flange of width

B)is in contact with the wood block placed between the rock surface
and the steel section (see Figure 5b).

Figure 6. Representation of an ungrouted mechanical-anchored bolt (adapted from Stillborg 1994 and Hoek and Brown 1980).
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For the case of blocked steel
sets spaced at intervals d_ other
than unity, both the maximum
stress p ™ given by equation (12)

and thestiffness K givenbyequa-
tion (13) should be divided by

(d,/1.0 m).

Values of Young’s modulus E,
and yield strength g for different
types of steel are listed in Table 3.

Load [kN]

Values of D, B, A and I for
typical sections of steel are given
in Table 4.

The angle 6 in equations (12)
and (13) can be computed as
6 = n/n,, where n, is the total

number of equally spaced blocks
installed in the cross-section.
Young’s Modulus for the wood
block depends on the type of wood
used and on the tightness of the
block at installatior.. For hard
woods (e.g., ash, maple, oak)
Young’s Modulus is typically E, =
10 x 10° MPa and for conifers (e.g., pine, cypress, cedar) it is
E, =7x10° MPa (Derucher and Korfiatis 1988). In order to
take into account the tightness of the block at installation,
Hoek and Brown (1980) suggest the values E, = 10 x 103
MPa for stiff blocking and E, = 500 MPa for soft blocking.

4.3 Ungrouted Bolts and Cables

The sketches in Figure 6 represent mechanically an-
chored bolts installed in the rock-mass surrounding a circu-
lar tunnel of radius R. Assuming that the bolts are equally
spaced in the circumferential direction, the maximum sup-
port pressure provided by this support system is

X _ 71%
p&x= 5.8, (14)
The stiffness is

1 41
—=—=8,8; |- +
K, [[zrdes @

(15)

where

is the bolt or cable diameter [m];

is the free length of the bolt or cable [m];

is the ultimate load obtained from a pull-out test
[MNJ;

is a deformation-load constant for the anchor and
head [m/MN];

is Young’s Modulus for the bolt or cable [MPa],

is the circumferential bolt spacing [m];

is the longitudinal bolt spacing [m].

N

f

B O

§

w

c

8,

Equation (15) assumes that the reaction forces devel-
oped by the bolt are concentrated at the ends of the bar;
therefore the equation should not be applied in the case of
grouted bolts —for which the load transfer is distributed
throughout the length of the shank.

The circumferential bolt spacing s, in equations (14) and
(15) can be computed as s, = 2n R /n,, where n, is the total
number of equally spaced bolts or cables installed in the
cross-section.

Typical values of Young’s modulus for the steel are listed
in Table 3.

To illustrate how the constants be and @ are obtained
from testing of bolts, consider the diagram in Figure 7. This
shows the results of a pull-out test performed by Stillborg
(1994) on a mechanically anchored bolt 16 mm in diameter
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Displacement [mm]

Figure 7. Results of a pull-out test performed on a mechanically anchored bolt
(adapted from Stillborg 1994).

and 3 m long installed in a concrete block of compressive
strength ¢_= 60 MPa (details of the test can be found in the
original article). The load applied to the bolt is shown on the
vertical axis and the bolt deformation on the horizontal axis.
The line OF corresponds to the elastic deformation of the
shank (see Fig. 6). The curve OABCF shows the total
deformation measured at the wall of the concrete block —
this includes the deformation of the shank, anchor, plate,
washer and nut.

The high rate of displacement over the portion AB of the
curve is associated with the initial compliance of the plate,
washer and nut assembly. The steeper portion BC is asso-
ciated with deformation of the bolt shank and the anchor. At
point C in the curve, the bolt starts to yield and at point F
the bolt fails. The constant T, in equation (14) is therefore
defined by point F in Figure ’f

In practice, the bolt will usually be pre-tensioned during
installation, in order to avoid the initial ‘flat’ segment AB
associated to compliance of the plate and its associated
components. The level of pre-tension should be sufficient to
fully ‘seat’ the plate, washer and nut. For the results
presented in Figure 7, for example, an appropriate level of
pre-tensioning would be between 40 and 60 kN. Thus if a
pre-tension of 50 kN is applied, the effect is to move the
origin of the (subsequent) load-deformation curve from
point O to point P.

The constant @ in equation (15) is the rate of deformation
for the portion BC in Figure 7—this disregards the elastic
deformation of the shank that is already accounted by the
first term within brackets in equation (15).

Table5. Values of the ultimate load T,; andthe deformation-
load constant @ for bolts of different diameters d, and
lengths I (adapted from Hoek and Brown 1980).

dy [mm] [[m] T [MN] Q [m/MN]
16 1.83 0.058 0.241
19 1.83 0.089 0.024
22 3.00 0.196 0.042
25 1.83 0.254 0.143

Values determined for expansion shell bolts in field tests. The
rock types are: i) shale for the 16 mm bolt; ii) sandstone for
the 22 mm bolt; iii) granite for the 25 mm bolt.
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4.4 Combined Effect of Support

3.00

]
concrete + bolts

Systems

If more than one of the support sys-
tems described earlier is installed at the

25
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shotcrete (60 mm)

——— Individual support |
______ Combined support |

same location, their combined effect can
‘ be determined by adding the stiffnesses
! (i.e., theslope of the load vs. deformation
curve) for each of the individual sup-
ports. This has the effect of increasing
the slope of the elastic part of the SCC—

shotcrete + bolts_|

Internal pressure, p, [MPa]

shotcrete (30 mm)

the segment KR in Figure 3.

Consider, for example, the case in
which two supports —characterized by
| maximum pressures p ™* and p ™* and
i elastic stiffnesses K, and K, respec-
\ tively, are installed in a section of tun-

0.5 steel {sets + bolts bolts — nel. The stiffness K_for the two systems
- ‘ acting together can be computed as
/’/ K =K, +K_, This value is assumed to
00 MY————" T remain valid until one of the two sup-
0 2 4 6 10 ports achieves its maximum possible
o elastic deformation u P ——computed as
Radial displacement of the wall, u , [mm] umx = pmex/K and umg = pmex/K

respectlvely (see equatlon 9). The com—
. bined support system is assumed to fail
Individual support systems at that point. The support with the low-
Support type ps [MPa] K [MPa/m] umax [m) est value of u *** determines the maxi-
mum support pressure available for the

Shotcrete (z; = 30 mm) 0.89 0984 x10° 0.90 x 10~3 two supports acting together.
Shotcrete (¢, = 60 mm) 1.75 2019 x 103 087x1073 Figure 8 shows the SCC for four types
Concrete (t, = 75 mm) 2.53 2.893x 103 087 x 1073 of support: shotcrete (with two different
Steel sets (127 x 76) 025  0261x10° 095x1073 thicknetssgsgy lgonfcrete,t Steell S:}ts ;ﬂd
. 3 -3 ungrouted bolts for a tunnel of radius
Bolts (19 mm diameter) 0.32 0.050 x 10 6.36 x 10 R =gr1 m. The figure also considers the
Combined support systems combined effect of two supports acting
together: concrete and bolts; shotcrete
Support type ps [MPa] K [MPa/m] u7"® [m] and bolts; and steel sets and bolts. These
Shotcrete (30 mm) + Bolts 0.93 1.034 x 103 0.90 x 103 SCC s were eva!uated using the equa-
3 _3 tions presented in Sections 4.1 through
Shotcrete (60 mm) + Bolts 1.79 2.069 x 103 0.87 x 10 X 4.3 (the values considered for the vari-
Concrete + Bolts 2.57 2943 x 10° 0.87 x 10~ ables are listed in the lower part of the

Steel sets + Bolts 030  0311x10° 0.95x 1073 figure.)

Mechanical and geometrical properties considered for the supports: i) Shotcrete, o¢c =
30 MPa, E; = 30 x 10> MPa, v = 0.25, fc = 30 mm and 7 = 60 mm. ii) Concrete,
iii) Blocked steel
2, I; = 476 x 107 m

Eg =210 x 103 MPa, oys = 150MPa, S = 1m, 0 = 71/10 rad (10 blocks), tg = 75
mm, Ep = 10 x 103 MPa. iii) Ungrouted bolts, dp = 19 mm, ! = 2 m, Tpyr = 0.1
MN, Q = 0.03 m/MN, E; = 210 x 103 MPa, s, = 0.63 m (10 bolts), 5;

occ = 35 MPa, E;, = 35 x 103 MPav—()2tc—75mm

sets, B_76mm D = 127 mm, Ay = 1.70 x 10~ S3m

Figure 8. Support Characteristic Curves for various support systems applied to a

tunnel of radius R = 1 m.

Considering the magnitudes Ap#¢, Au® and Au®indicated
in the diagram, the constant @ can be computed as
(16)
Au€—-Aub
Q = A p BC

Ideally the values of T and @ should be obtained from
pull-out tests performed dlrectly on bolts installed on the
rock in situ. The values obtained in this way will depend on
the type of rock and the mechanical characteristics of the
bolt being tested. Hoek and Brown (1980) list reference
values for T of and @ obtained from tests in different rock
types. Some of these values are presented in Table 5 (these
are for bolts of diameter 16, 19, 22 and 25 mm and lengths
of 1.83 and 3.0 m).
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For this particular problem, as seen
in Figure 8, the SCC for steel sets is
considerably below that for shotcrete and
concrete linings. This is due to the domi-
nant role played by the (compliant) wood
blocking in the system. The lowest val-
ues of stiffness K, —and therefore the
maximum deformation u [, corre-
sponds to the bolts.

For the combined support systems,
the failure is controlled by the stiffer
shotcrete, concrete or steel set support
types (compare the values of u ™ listed
inboth tables). There is a slight improvement in the support
capacity p P** and the stiffness K. when two supports are
considered acting together.

=0.50 m.

5. Construction of the Longitudinal Deformation
Profile

The Longitudinal Deformation Profile (LDP) discussed
in Section 2 is an important component of the Convergence-
Confinement method. It provides insight into how quickly
the support begins to interact with the rock-mass behind
the face of the tunnel (i.e., it defines the point K in Fig. 3).

When the far-field stresses acting on the rock-mass are
assumed to be uniform, the profile of radial displacements
along the axis of the tunnel can be computed from numerical
models of the problem shown in Figure 9a. The figure
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represents a longitudinal cross-section of an unlined tunnel
of radius R in the vicinity of the face. At a distance x from the
face the radial displacement is . When the distance x is
large enough, the radial displacement reaches the maxi-

mum value u¥. For negative values of x (i.e., ahead of the
face), the radial displacement decreases and the displace-
ment becomes essentially zero at some finite distance ahead
of the face.

From elastic models of the problem represented in Fig-
ure 9a, Panet (1995) suggests the following relationship
between radial displacements and distance to the face:

=0.25+0. 75[1 (%ﬂ 1

This relationship (17), that applies to positive values of
x, is plotted in Figure 9b. The horizontal axis of the diagram
representstheratiox/R and the vertical axisrepresents the
ratiou /u¥.

Chern et al. (1998) present measured values of conver-
gence in the vicinity of the face for a tunnel in the Mingtam
Power Cavern project. The measured data are plotted as
dots in Figure 9b. Based on this data, Hoek (1999) suggests
the following empirical best-fit relationship between radial
displacement of the tunnel and distance to the face:

The relationship (18) is also plotted in Figure 9b. Analysis
ofthe curves defined by equations (17) and (18) indicates that
the maximum radial displacement occurs at approximately 8
tunnel radii behind the face of the tunnel, and that the radial
deformationis zero at approximately 4 tunnel radii ahead the
face. At the face itself, the radial displacement is approxi-
mately 30% of the maximum value. Figure 9b also suggests
that the elastic approximation defined by equation (17) over-
estimates the values of radial displacements when compared
with the measured data at the Mingtam Power Cavern
project and with the statistical approximation to this data. As
seen in Figure 3, this overestimation results in underestima-
tion of the final load transmitted to the support.

Ideally, for tunnels designed according to the Conver-
gence-Confinement method, the LDP should be constructed
from measured data such as the one presented by Chern et al.
(1998). Where such information is not available, the LDP can
be constructed from numerical models considering the same
elasto-plastic parameters used in construction of the Ground
Reaction Curve. Alternatively, and as a first approximation,
the LDP could be evaluated using relationship (18).

6. Example

To illustrate the application of the Convergence-Con-
finement method in the design of tunnel supports we will re-
examine the case of the circular tunnel of radius R =1 m
shown in Figure 4a. The uniform far-field stress acting in

-1.7
u, _ —x /R )
i = 1+exp(—1‘10 18)
P
a)
b)
100 - T
_ 5 Bt
[ | 2; [m}
=1 0.75
g ]
8 ]
2 ]
B os0
._g ]
£ ) — ——  Elastic approximation
B 1 (Panet, 1995)
(,8; 0.25 :* s} Measured data
i (Chern et al., 1998)
1 ———  Best fit curve to measured
data (Hoek, 1999)
o0 ) — ||

8 6 4

Distance to the front / Tunnel radius, =

Figure 9. a) Profile of radial displacements u_for an unsupported tunnel in the vicinity of the tunnel face. b) Deformation
profiles derived from elastic models (Panet '1995); measurements in a tunnel (Chern et al. 1998); and best fit to the

measurements (Hoek 1999).
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Figure 10. a) Influence of the weight of failed rock in the crown and the floor of a tunnel on the Ground Reaction Curve (points
C and F, respectively). b) Rock-support interaction analysis for the tunnel shown in Figure 4 and the support systems shown

in Figure 8.

the rock-mass is 0, =7.5 MPa. A Geological Strength Index
equal to 40 is assumed for the rock. The properties of the
rock-mass are as indicated in the diagram.

We wish to assess the mechanical behavior of the differ-
ent support systems considered in Figure 8, assuming that
the supports are installed at a distance L=1 m behind the
face of the tunnel.

Solution of this problem requires application of the equa-
tions presented in Sections 3, 4 and 5, for construction of the
GRC, SCC and LDP respectively. Appendix C includes the
outline of a spreadsheet for ease in implementation of the
equations and construction of the GRC, SCC and LDP. The
results of the example are summarized in Figure 10.

For the problem being considered, the GRC is the curve
identified as GSI = 40 in Figure 4b. In defining the GRC for
a tunnel, it is usual to distinguish between the convergence
of side wall, roof and floor of the tunnel (Daemen 1975),
since gravitational loading differs for each of these points
around the tunnel periphery. The GRC shown in Figure 4b
(the curve corresponding to GSI = 40) is considered to be
representative of the load-convergence relationship for a
point on the side-wall of the tunnel—point S in Figure 10a.
For the same internal pressure p,, the convergence of the
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roof can be expected to be larger than that at the side
because of the weight of the failed material on top of the
tunnel (point C in the figure). The GRC for the roof can then
be obtained by adding the same amount y (Rp,—R) to the
internal pressure p,, where yis the unit weight of the rock-
mass and R, is the extent of the plastic region —values of y
for different rock types are listed in Table A-1. Similarly, the
GRC for the floor of the tunnel can be obtained by subtract-
ing the amount y(R ~R) from the internal pressure p, (see
point F in Figure 10a).

Figure 10b shows an enlargement of the diagram of
Figure 4b, representing the GRC curve for GSI = 40. The
solid curve that extends from point T to point M represents
the radial displacement of point S in Figure 10a. The dotted
curves above and below this curve are the GRC’s for the
crown (point C) and floor (point F) for an assumed rock-mass
unit weight y =24 x 10® MN/m® Note that the pressure
transmitted at the crown of the tunnel is slightly higher
than the pressure at the floor.

The LDP computed from equation (18) is also shown in
Figure 10b. This curve is an enlargement of the solid curve in
Figure 9b (note that, in Figure 10b, the distance to the face is
shown on the vertical axis on the right side, and the associated
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radial displacement on the horizontal axis). For the distance
L =1 m between the face and the support at installation, the
LDP allows to define the point K (horizontal coordinate u ~ 10
mm), from which the SCC starts (see also point K, Fig. 3).In
Figure 10, the face of the tunnel is identified by the vertical
line passing through point F, that is defined by the coordi-
nate L = 0 m in the vertical axis on the right.

The SCC for the support systems shown in Figure 8 are
also represented in Figure 10b. Note that only shotcrete (30
mm thick), steel sets and bolts are considered as support
alternatives in this problem. The SCC for the combination
of two support systems (shotcrete and bolts and steel sets
and bolts) are also shown in the figure.

Following the notation in Figure 3, the maximum stress
p M2 for each of the different support systems is indicated
as points R and R’ (for the individual and the combined
systems, respectively). For example, the maximum support
pressure for steel sets is = 0.25 MPa, for steel sets and bolts
= 0.30 MPa, for bolts = 0.35 MPa, for shotcrete =~ 0.88 MPa,
and for shotcrete and bolts =~ 0.94 MPa.

Asmentioned above, the point Kis defined by the LDP for
a distance to the face of L = 1 m. It is evident from this
diagram, that the point K cannot lie to the left of point H,
which represents the face of the tunnel. Therefore, the
maximum possible pressure that the rock-mass can trans-
mitto any given supportin this problem will be less than the
pressure defined by the vertical coordinate of point L in the
figure —this is = 0.84 MPa (see Section 2).

Points D, D, and D, in Figure 10 represent the final
support pressure that; ile rock-mass will transmit to the
different support systems, once the tunnel face has moved
well away from the support; for example, the final pressure
transmitted by the rock-mass is = 0.12 MPa for bolts (D, );
= 0.20 MPa for steel sets (D ) and =~ 0.23 MPa for shotcrete
(D).

Analys1s of the location of points D in the diagram
indicates that all the supports considered in this problem
are capable of sustaining the final load transmitted by the
rock-mass (note that points D lie below the corresponding
‘support-capacity’ points R). The relative merits of one or
other of the support systems will depend on the allowable
amount of convergence and/or the value of safety margin
against failure desired for the support.

The final convergence for each support system is given by
the horizontal coordinate of the various points D; for ex-
ample, for shotcrete the convergence is = 10.1 mm, for steel
sets = 10.6 mm and for bolts = 12.4 mm.

The safety coefficients for the different supports can be
obtained as the ratio between the vertical coordinates of
points R and D in the figure; for example, for bolts the ratio
is 0.30/0.12 [MPa/MPa], indicating a safety coefficient of =
2.5. If minimizing the wall closure is a primary concern, the
steel sets and shotcrete are the best alternative (note that
the horizontal coordinate of point D, is significantly larger
than the horizontal coordinates of points D_or D). On the
other hand, if a large safety coefficient is desired, shotcrete
and bolts are superior to steel sets (note that the ratio of
vertical coordinates of points R and D, is significantly lower
than those for points K_and D_and R, and D). If steel sets
are required to be used to line the tunnel anyway, it may be
worth considering installation of bolts in combination with
the sets. This is justified by the significant improvement of
the ‘safety’ margin —i.e., the ratio of vertical coordinates of
points B_and D, (= 0.25/0.20 = 1.25) compared to R’ and D,
(= 0.30/0.20 = 1.5).

7. Limits of Application of the Convergence-
Confinement Method

The Convergence-Confinement method is based on two
important assumptions:
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i) the far-field principal stresses normal to the long
axis of the tunnel are of constant magnitude o,
independent of the radial orientation (such a state of
stress is often referred to as uniform or hydrostatic),

and

it) the tunnel cross-section is circular, of radius R.

This section discusses the validity of the method for cases
in which the far-field (prmc1pal) stresses are unequal and
the tunnel cross-section is non-circular.

The principal stresses that exist at the site prior to
excavation of a tunnel depend on the geological history of
the site and in general are unequal. Figure 11a, adapted
from Hoek and Brown (1980), shows measured values of
vertical stresses g, as a function of depth z for different
regions of the world. The linear function that best fits the
measured data is given by the relationship,

0, =0.027 2 (19)

where o, is expressed in MPa and z in meters. If the vertical
stress at a depth z is assumed to be associated with the
weight of overburden material (i.e., the lithostatic pressure
at the depth 2), equation (19) suggests that the mean unit
weight of the rock where the measurements were made is
about 0.027 MN/m®. This value corresponds to the unit
weight of silicates, a major component of many rocks (see
Table A-1).

The mean horizontal stress o, at a depth z is usually
expressed in terms of the correspondmg vertical stress o,.
The horizontal-to-vertical stress ratio k (also referred to in
soil mechanics as the ‘at-rest’ coefficient of earth pressure)
is defined as

G.
k=5- (20)

z

Figure 11b, adapted from Hoek and Brown (1980), shows
the values of the coefficient % corresponding to the vertical
stresses in Figure 11a. The diagram indicates that the
horizontal stresses g, are bounded by the two curves shown.
The minimum value of mean horizontal stressis=0.5times
the value of vertical stress and the maximum value of
horizontal stress is = 3.5 times the mean value of vertical
stress. Even higher ratios than those indicated in Figure
11b have been recorded. At the Underground Research
Laboratory (URL) in Pinawa (Canada), for example, the
mean horizontal stress in the Lac du Bonnet granite is 52
MPa, at a depth of 420 m —with a vertical stress of
approximately 11 MPa,i.e., 2 =4.6 (see Martin and Simmons
1993).

The diagrams in Figure 11 suggest that the principal
stresses at the site are often unequal. They also indicate
that the vertical stress will probably vary with depth ac-
cording to a lithostatic gradient.

If the dimensions of the cross section of the tunnel are
small compared to the depth z of the tunnel, the far-field
stresses 0, and ¢, can be assumed to be constant over the
proposed tunnel section (e.g., the vertical in-situ stress at
the depth of the crown and invert of the proposed tunnel can
be considered to be the same —and similarly for the horizon-
tal in-situ stresses).

Two quantities can be used to characterize a given non-
uniform plane stress state (0, g,): the dimensionless coef-
ficient k—defined by equatlon (20) and the mean stress g,
defined as

g, + 0,
2

The uniform state of stress assumed by the Convergence-
Confinement method can be expressed as 6, = 0, = ¢, and
k =0 /o, =1 (see Fig. 1b).

The elasto-plastic problem of excavating a circular tun-
nel in a non-uniform stress field has been studied analyti-
cally by a few investigators.

o, = 21)
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2) Vertical stress o, [MPa]
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computed from the friction angle pofthe
intact rock as

K _1+sing

p= m (23)
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It was found that, when the stress
state represented in Figure 12a is ex-
pressed in terms of the parameters ¢
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and k defined by equations (21) and (20)(,)
respectively, cavities with horizontal-
to-vertical stress coefficients 2 smaller

1000

than a limiting value &, are statically

determinate. The authors also made the
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the cavity. In such cases, the value of &,
-] is read from Figure 12b by taking an
equivalent ratio of mean pressure and
compressive strength ¢, /0 | _, as given
. by the expression in equation (q24), (after
Detournay and St. John 1988),

3000

Figure 11. a) Measured values of vertical stress o, as a function of depth z in
different regions of the world. b) Corresponding values of horizontal-to-vertical

stress ratio k (adapted from Hoek and Brown 1980).

Detournay and Fairhurst (1987) considered the case of a
circular cavity subject to unequal far-field stresses and
excavated in a Mohr-Coulomb material. Figure 12a illus-
trates the problem considered. A circular cavity of radius R
is subject to a uniform internal pressure p, and horizontal
and vertical stresses o, and o, respectively; the figure
considers the case g, >0, (because of the symmetry of the
problem, the case 0, <o, can be obtained by rotating the axes
of the cavity through 90°).

In contrast to the Hoek-Brown failure criterion (A-2)

discussed in Appendix A, the Mohr-Coulomb failure
criterion considered by Detournay and Fairhurst is

6,=K, 0,+0, (22)

where o, is the unconfined compressive strength of the
intact rock and K| is the ‘passive reaction’ coefficient that is
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Oy g (1’%)

= 7]
Ol Lo (K, -1)+1

(24)

Figure 12b can be used to evaluate
the applicability of the Convergence
Confinement method when the far-field
stresses are non-uniform. For tunnels
characterized by coefficients k smaller than the value &,
shownin the figure, the Convergence-Confinement method
provides a reasonable estimation of the shape of the failure
zone and displacements to expect around the cavity. For
tunnels characterized by coefficients £ larger than the
value &,  shown in the figure, the resulting shape and
extent of the failure zone and the convergence around the
tunnel will be too variable to apply the method. For these
cases, numerical analysis should be used for the design.

As mentioned above, Figure 12b applies to Mohr-Cou-
lomb materials characterized by a friction angle ¢ and
unconfined compressive strength o, (and linear failure
envelope). For Hoek-Brown materials considered in this
study, an equivalent diagram to that represented in Figure
12b could be constructed by approximating the Hoek-Brown
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a)

b)

The chart considers p; = 0.
If p; # 0, then use equivalent ratio
Oo/Geileq given by equation (24)

Limiting stress ratio,

G
Scaled mean pressure, —°
ci

Figure 12. a) Circular cavity in a Mohr-Coulomb material subject to uniform internal pressure and unequal far-field stresses.
b) Limiting values of the horizontal-to-vertical stress ratio k,  as a function of the scaled mean stress ¢,/ 6, and friction angle
¢. For k < k,, , the problem is statically determinate, and the mean values of failure extent and wall clostire are comparable
to those obtained for uniform loading o, and k=1 (adapted from Detournay and Fairhurst 1987).

parabolas of Figure A-1 as straight lines with ‘equivalent’
friction angle ¢ and unconfined compressive strength o,
(examples of this type of approximation can be found in
Hoek 1990).

For tunnels driven in Hoek-Brown materials under
unequal far-field stresses, an indication of the expected
shape of the failure zone —and thus an estimate of the
applicability of the Convergence-Confinement method, can
be obtained from elastic analysis. Figure 13a presents the
results from an analysis of this type. The different curves
in the figure represent the extent of the ‘over-stressed’
regions determined by comparing the maximum and mini-
mum elastic stresses at a point as given by the Kirsch
elastic solution, with the Hoek-Brown strength criterion
(A-2), i.e.,
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(o] a
0,2 03+0, (mb o.—;+s) (25)

If the elastic stresses exceed the strength indicated by
equation (25), the rock at that point is over-stressed. The
diagrams in Figure 13a show cases of unequal far-field
stresses characterized by ¢, =7.5 MPa and different values
of horizontal-to-vertical stress ratio %, together with rock-
mass strength parameters ¢, =20 MPa, m,=1.8 and s =1.3
x 103in the yield criterion (25). The curves on therightside
of the diagram correspond to horizontal-to-vertical stress
coefficients & < 1 and the curves on the left side of the
diagram to coefficients & > 1. The equations and a spread-
sheet needed to construct these curves are shown in Ap-
pendix D. It is seen, for example, that for k2 < 0.6, the over-
stressed region has the ‘butterfly’ shape discussed in the
analysis by Detournay and Fairhurst. The Convergence-
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Confinement method should not be used for such cases.
Elastic rock-support interaction analyses such as those
presented by Einstein and Schwartz (1979) and Matsumoto
and Nishioka (1991) are preferable in these cases. Wher-
ever possible, results obtained from these elastic analyses
should be verified against results obtained from elasto-
plastic numerical analyses. The latter consider stress and
displacement changes that occur due to formation of the
plastic zone.

However, although approximate, the shape of the plastic
zone obtained from the elastic over-stressed analysis is
generally comparable to the correct one (note that the extent
of the plastic or failed zone, can be considerably underesti-
mated by this approach). For example, Shen and Barton

(1997) have used the elastically over-stressed zone concept
to identify the shape of regions where shear failure is likely
to occur in heavily jointed rock-masses. They showed that
the shape of the regions of ‘slipping’ joints derived from
elastic analysis was comparable to the shape obtained using
the discrete element numerical model UDEC (Cundall 1971).

Figure 13b shows a FLAC® elasto-plastic model of the
problem shown in Figure 4; the elasto-plastic model con-
siders the far-field stresses to be g,=10.3 MPa and ¢, =4.7
MPa (i.e., 0,= 7.5 MPa and k& = 0.45). It is seen that the
shape of the resulting failure zone in the FLAC?® model is
comparable to the shape given by the curve corresponding
to & = 0.45 in Figure 13a.

The assumption of circular cross-section of the tunnel in
combination with hydrostatic far-field
stresses guarantees that the displace-
ments around the tunnel will be con-
stant all around the periphery. In prac-

tical design of tunnels, the actual cross-
section depends mainly on the purpose
of the tunnel. For example, Figure 14a
shows a ‘horseshoe’ shape chosen for a
motorway tunnelin Germany. The width
and height of the cross section depend on
the number oflanes and maximum height
of vehicles that the tunnel needstoserve.

For cases in which the cross-sec-
tional area of the tunnel is not circular,
the Convergence-Confinement method
can still be used to provide a first esti-
mate of the extent of the failure zone
and the resulting convergence of the
walls. Within certain limits, the shape
of the tunnel can be regarded as circu-
lar with a radius equal to the mean
value of the maximum and minimum
dimensions ofthe section. In such cases,

a) 1.4
z -+ = 12
Q 1 a
g d ~—
a E % 1.0
g
& B 08
- :—1
3 g o8
% ]
g g
=
o o 1.0
3 2
3 3
3 9 12
3 i
14
The extent p(k)=t/R of the 'overstressed' region is defined by points where,
C, 8
c 2 °3+°ci (mh c_ci +s)
b)
R=1m
ox=4.65 MPa
c,= 10.34 MPa
6,="7.5MPa
k=045
c6.i=20 MPa
m;=15
GSI=40
m, = 1.8
s=13x10"
G,,=10GPa
v=025
vy =30°

Figure 13. a) Diagrams indicating the extent of the elastically ‘over-stressed’
regions computed from the elastic analysis of a circular cavity subject to non-
hydrostatic loading; the charts are valid for ratiosm, 0, /6,=4.8and s/m =4
x 10", For example, when o,=7.5 MPa, 6,,=20 MPa, m,=1.8ands=1.3x 103 (see
Appendix D). b) FLAC®® elasto-plastic analysis of the problem represented in

Figure 4 for highly unequal far-field principal stresses.
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the mean extent of the failure zone and
the mean convergence at the walls for
the non-circular geometries are compa-
rable to the values one would predict for
the equivalent circular section.

Figure 14 shows the results of a
3DEC (Itasca Consulting Group 1998a)
elasto-plastic analysis of the cross-sec-
tional area shown in Figure 14a for the
stress conditions and rock-mass and
support properties indicated in the fig-
ure. Application of the Convergence-
Confinement method assuming the sec-
tion to be circular of radius R =4 m,
leads to a plastic zone R,,z = 6 m in
extent. It is seen that this extent is
comparable with that obtained from
the 3DEC model in which the actual
geometry of the cross-section is consid-
ered. Results for the loads and the.
convergence in the lining are also com-
parable.

8. Discussion

The Hoek-Brown criterion and its
scaled form discussed in Appendix A is
a convenient and widely used method
for describing the strength of rock-
masses in situ. When applying the cri-
terion toreal cases, the engineer should
bear in mind the limitations, pointed
out by Hoek and Brown in deriving the
criterion. Probably the most important
of these is the assumption of elastic
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perfectly-plastic isotropic behavior for the material. If the
rock-mass contains joints with a preferred orientation, the
mechanical behavior can be expected to be anisotropic and
the Hoek-Brown criterion may give quite misleading re-
sults. In such cases, a treatment with elasto plastic non-
isotropic models (such as the ubiquitous joint model imple-
mented in the continuum code FLAC) or with discontinuum
models (such as UDE(C) would be more appropriate (Itasca
1996, 1998).

In cases where the rock-mass is reasonably well described
as isotropic, such that the Hoek-Brown criterion can be
applied with reasonable confidence, the Convergence-Con-
finement method described in this paper can be used to obtain
auseful estimate of the magnitude ofloads that the rock-mass
will transmit to supports installed behind the face of a tunnel.

As discussed in Section 2, the Convergence-Confine-
ment method relies on several simplifying assumptions,
the most important of which are the
circular geometry of the tunnel and
hydrostatic (or uniform) far-field
stresses. In this case, theloads trans- 2)
mitted by the rock-mass to the sup-
port are uniform within each sec-
tion. If the geometry of the tunnel is
non-circular or the far-field stresses
are non-uniform, the loads will not
be uniform and bending moments
will be induced in the support.

For situations in which the as-
sumptions mentioned above are vio-
lated, the Convergence-Confinement
method is still useful in the early
stages of the design. As discussed in
Section 7, a characteristic tunnel ra-
dius and a characteristic uniform
stress can be computed from the ex-
isting geometry and far-field stresses S
and the engineer can then make quick

6.05m

comparisons of the mechanical re- 1.05
sponse of different support alterna- -°—«>’<»— .

tives—under representative condi-

Bieniawski, Z.T. (1976). Rock mass classification in rock engineering.
In Bieniawski (Ed.), Proc. of the Symp. in Exploration for Rock
Engineering, Cape Town, 97-106. Rotterdam: Balkema.

Brady, B.G.H. and E.T. Brown (1985). Rock Mechanics for
Underground Mining (Second ed.). New York: Chapman & Hall.

Brown, E.T., J.W. Bray, B. Landayi, and E. Hoek (1983). Ground
response curves for rock tunnels. ASCE J. Geotech. Eng. Div.
109 (1), 15-39.

Carranza-Torres, C. and C. Fairhurst (1999). The elasto-plastic
response of underground excavations in rock masses that satisfy
the Hoek-Brown failure criterion. Int. J. Rock Mech. Min. Sci.
36 (6), 777-809.

Chern, J.C., F.Y. Shiao, and C.W. Yu (1998). An empirical safety
criterion for tunnel construction. In Proc. Regional Symposium
on Sedimentary Rock Engineering, Taipei, Taiwan, 222-227.

CONSTRADO. 1983. Steel Designers’ Manual. Granada:
Constructional and Steel Research and Development
Organisation.

blocky -
limestone

0.5m

1.05
0.75

concrete
beam

375m

concrete
leg

tions of rock-mass deformability and
strength. This can helpin deciding on
the most convenient support system b)
in the actual case. The final design of
the support—which would probably

require consideration of the distribu- Stress (;(;n:ﬁ:ons
tion of bending moments and com- z‘f:l o a
pressive loads induced by the non- )
uniform far-field stresses— can be Distance to the front
made later on the basis of more rigor- L=4m
ous numerical analyses of the rock- Rock-Mass
support interaction problem. o= 120 MPa
In summary, the Convergence- m;=9
Confinement method is a useful tool GSI =130
not only for the design of supports in m. =074
tunnels, but also as a simple illustra- s ¢ 42x10%
tive model that allows a better under- G _' 133 GP
standing of the complex problem of m = 2
transference ofloads in the vicinity of v=03
the tunnel face. Concrete lining
t=05m
References Oec =43 MPa
AFTES, French Association for E =36 GPa

Underground Works. (1978). Analysis
of tunnel stability by the Convergence-
Confinement Method. Underground
Space 4 (4), 221—223.

Atkinson, J. (1993). An Introduction to
the Mechanics of Soils and
Foundations. New York: Mc Graw-Hill
Book Company.

Volume 15, Number 2, 2000

blocky
limestone

Figure 14. a) Cross-section of a German motorway tunnel in ‘hydrostatically’ loaded
rock. b) 3DEC elasto-plastic model of the rock-support interaction problem. The
extent of the failure zone predicted numerically is seen to agree with the value
obtained from the Convergence-Confinement method; i.e., in this case, it is = 1.5
times the characteristic radius of the tunnel.

TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY 203



Cundall, P.A. (1971). A computer model for simulating progressive
large movements in blocky rock systems. Proceedings of the
Symposium of the International Society of Rock Mechanics,
Volume 1, Paper No. II-8.

Daemen, J. J. K. (1975). Tunnel support loading caused by rock
failure. Ph. D. thesis, University of Minnesota.

Derucher, K. and G. Korfiatis (1988). Materials for Civil and
Highway Engineers. New York: Prentice Hall.

Detournay, E. and C. Fairhurst (1987). Two-dimensional elasto-
plasticanalysisofalong, cylindrical cavity under non-hydrostatic
loading. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 24 (4),
197-211.

Detournay, E. and C. St. John (1988). Design charts for a deep
circular tunnel under non-uniform loading. Rock Mechanics
and Rock Engineering 21, 119-137.

Dodge, M., C.Kinata, and C.Stinson (1997). Running Microsoft
Excel 97. Redmond. Washington: Microsoft Press.

Einstein, H.H. and C.W. Schwartz (1979). Simplified analysis for
tunnel supports. ASCE J. Geotech. Eng. Div. 104 (4), 499—518.

Fenner, R. (1938). Untersuchungen zur Erkenntnis des
Gebirgsdruckes. Glickauf 74, 681-695 and 705-715.

Franklin,J. A. and E. Hoek (1970). Developments in triaxial testing
technique. Rock Mechanics 2, 223-228.

Gieck, K. (1977). Technische Formelsammlung. Berlin: Verlag.

Goodman, R. E. (1980). Introduction to Rock Mechanics. New York:
Wiley and Sons.

Hoek, E. (1983). Strength of jointed rock masses. Rankine Lecture.
Geotechnique 33 (3), 187-223.

Hoek, E. (1990). Estimating Mohr-Coulomb friction and cohesion
values from the Hoek-Brown failure criterion. Int. J. Rock Mech.
Min. Sci. & Geomech. Abstr. 27 (3), 227-229.

Hoek, E. (1999). Personal communication.

Hoek, E. and E. T. Brown (1980). Underground Excavations in
Rock. London: The Institute of Mining and Metallurgy.

Hoek, E. and E. T. Brown (1997). Practical estimates of rock mass
strength. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 34 (8),
1165-1186.

Hoek, E., P. K. Kaiser, and W. F. Bawden (1995). Support of
Underground Excavations in Hard Rock. Rotterdam: Balkema.

Hoek, E., P. Marinos, and M. Benissi (1998). Applicability of the
Geological Strength Index (GSI) classification for very weak and
sheared rock masses. The case of the Athens Schist Formation.
Bull. Eng. Geol. Env. 57 (2), 151-160.

Itasca Consulting Group (1996). UDEC. Universal Distinct Element
Code. Version 3.0. User Manual. Minneapolis: Itasca.

Itasca Consulting Group (1997). FLAC®P. Fast Lagrangian Analysis

204 TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY

of Continua in 3 Dimensions. Version 2.0. User Manual.
Minneapolis: Itasca.

Itasca Consulting Group (1998a). 3DEC. 3 Dimensional Distinct
Element Code. Version 2.0. User Manual. Minneapolis: Itasca.

Itasca Consulting Group (1998b). FLAC. Fast Lagrangian Analysis
of Continua. Version 3.4. User Manual. Minneapolis: Itasca.

Jaeger, J.C. and N.G.W. Cook (1979). Fundamentals of rock
mechanics (Third ed.). New York: John Wiley & Sons.

Labasse, H. (1949). Les pressions de terrains dans les mines de
huiles. Revue Universelle des Mines, Liége, Belgium, Series 9,
Vol. 5, No. 3, 78-88.

Lama, R.D. and V.S. Vutukuri (1978). Handbook of Mechanical
Properties of Rocks. Testing Techniques and Results. Volume II.
Trans Tech Publications.

Leonhardt, F.(1973). Vorlesungen iiber Massivbau. Berlin: Springer-
Verlag.

Londe, P. (1988). Discussion on the determination of the shear
stress failure in rock masses. ASCE J. Geotech. Eng. Div. 114(3),
374-376.

Martin, C.D. and G.R. Simmons (1993). The Atomic Energy of
Canada Limited Underground Research Laboratory: An
Overview of Geomechanics Characterization. In J.A. Hudson
(Ed.), Comprehensive Rock Engineering, 915-950. Pergamon:
Oxford.

Matsumoto, Y. and T.Nishioka (1991). Theoretical Tunnel
Mechanics. Tokyo: University of Tokyo Press.

Panet, M. (1995). Calcul des Tunnels parla Méthode de Convergence-
Confinement. Paris: Press de ’école Nationale des Ponts et
Chaussées.

Serafim, J.L. and J.P. Pereira (1983). Consideration of the
geomechanical classification of Bieniawski. In Proc. Int. Symp.
on Engineering Geology and Underground Construction. Lisbon,
Volume 1 (II), 33—44.

Shen, B. and N.Barton (1997). The disturbed zone around tunnels
in jointed rock masses. Int. J. Rock Mech. Min. Sci. & Geomech.
Abstr. 34 (1), 117-125,

Singh, M.M. and S.A. Bortz (1975). Use of special cements in
shotcrete. In Use of Shotcrete for Underground Structural
Support, 200-231. New York: American Society of Civil
Engineers.

Stillborg, B. (1994). Professional Users Handbook for Rock Bolting.
Trans Tech Publications.

Timoshenko, S.P. and J.N. Goodier (1970). Theory of Elasticity
(Third ed.). New York: McGraw Hill.

Wang, Y. (1996). Ground response of a circular tunnel in poorly
consolidated rock. ASCE J. Geotech. Eng. 9, T03-708.

Volume 15, Number 2, 2000



Appendix A. The strength and deformability of
rock-masses according to the Hoek-Brown failure
criterion.

The Hoek-Brown criterion has found wide practical ap-
plication as a method of defining the stress conditions under
which a rock-mass will deform inelastically and, if not
supported adequately, collapse.

The parameters defining the Hoek-Brown criterion can
be estimated from a combination of laboratory tests on
intact rock cores and an empirical ‘adjustment’ to account
for the reduced strength of the rock-mass due to the pres-
ence of weaknesses and jointing.

It must be noted that this criterion assumes continuum-
isotropic behavior for the rock-mass and should not be
applied to cases in which there is a preferred orientation of
jointing, such that the mass would not behave as an isotro-
pic continuum.

Testing of rock specimens under triaxial conditions of
loading allows the combination of stresses that lead to
failure (or collapse) of the specimen to be determined.
According to Hoek and Brown, the failure condition of intact
rock samples is given by the following parabolic law (Hoek
and Brown 1980),

O-1=0-3+o-ci\/ miogs_—"l'l (A-l)
where
o, isthe confining stress applied to the sample (e.g., in
MPa);
0, istheaxialstressthatproduces failure ofthe sample
(e.g., in MPa);
o, istheunconfined compression strength of the intact
rock (in MPa);

m, 1is a dimensionless parameter, the value of which
depends on the type of rock being tested.

In order to characterize the intact rock in terms of
equation (A-1), it is necessary to determine the parameters
o, andm, . This is done by statistical analysis of strength
observed for various values of confining stress o, in triaxial
tests (Hoek 1983). Appendix B explains this procedure and
lists the equations needed to perform the analysis.

To illustrate the application of equation (A-1), let us
consider the triaxial test results shown in Figure A-1 ob-
tained by Franklin and Hoek (1970) for samples of different
rock types: i) granite, ii) quartz dolerite and iii) marble
(details of the tests can be found in the original paper;
Appendix B shows a summary only of the results).

The horizontal and vertical axes in the diagram corre-
spond, respectively, to the confining stress o, and the axial
stress at failure g, divided by the unconﬁned compression
strength ¢, for each rock type. The dots represent the pairs
(0,, G) obtained from the triaxial tests (see Appendix B).
The solid lines are the corresponding failure envelopes
defined by equation (A-1) with the parameters o, and m,
computed from equaticns (B-1) and (B-2) in Appendlx B.It
can be seen that, although there is some dispersion in the
results, the general trend is for the scattered points to align
to the parabolas defined by equation (A-1)2.

Triaxial testing of rock samples is an expensive proce-
dure and, in most cases, results of the extensive tests needed
to determine the parameters ¢, and m in the relationship
(A-1) are not available. In this case, when information on
the unconfined compressive strength is available (e.g., from
UCS tests or, indirectly, from Point Load Tests), the param-
eter m may be estimated from empirical charts or tables
(Hoek et al. 1995).

Table A-1 and Figure A-2, adapted from Lama and
Vutukuri (1978), Goodman (1980) and Hoek and Brown
(1997), respectively, show typical values of ¢, and m, for
different rock types that could be taken as a reference for
use in equation (A-1).
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Figure A-1. Failure envelopes obtained from triaxial tests of
samples of different rock types (after Franklin and Hoek
1970). The horizontal and vertical axes represent the confin-
ing stress 0, and the maximum axial stress o, respectively
divided by the unconfined compressive strength o, of the
sample (see Appendix B).

Asnoted earlier, joints and defects in a rock-mass reduce
the strength of the mass below the strength of an intact
specimen of the same rock type. By using the so-called
Geological Strength Index (or GSI) as a scaling parameter,
the failure criterion defined by equation (A-1) can be ad-
justed to provide an estimate of the decreased strength of
the rock-mass in the field.

According to Hoek and Brown (1997), the GSI is an
empirically derived number that varies over a range be-
tween 10 and 100 (the GSI is dimensionless), and can be
estimated by examination of the quality of the rock-mass in
situ—by direct inspection of an outcrop, for example. By
definition, GSI values close to 10 correspond to very poor
quality rock-masses, while GSI values close to 100 corre-
spond to excellent quality rock-masses.

Figure A-3 (adapted from Hoek and Brown 1997, and
Hoek et al. 1998) shows how the GSI can be estimated from
the structure and surface conditions of the rock-mass (for
example, a rock-mass with Blocky / Disturbed structure and
Poor surface condition will have a GSI close to 30).

The value GSI = 25, indicated by a discontinuous line in
Figure A-3,is significant in that it defines the limit between
rock-masses of very poor quality (GSI < 25) and those of good
to reasonable quality (GSI > 25). For rock-masses of good to
reasonable quality (i.e., GSI > 25) the Geological Strength
Index is equivalent to the Rock Mass Rating (RMR) intro-
duced by Bieniawski (1976) when the rating for Groundwa-
ter is assessed as ‘dry’ and the rating for Joint Orientation
as ‘favorable’.
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Table A-1. Reference values for the unconfined compressive strength ¢, Poisson’s ration, Young’s Modulus E, Shear Modulus
G and unit weight yfor intact rock (adapted from Lama and Vutukuri 1978 and Goodman 1980).

Rock type o [MPa] v E [MPa] G [MPa] y [MN/m3]
1) Andesite 130.6 0.16 443x10° 19.1x10° 252x1073
2) Basalt 1480 032 339x10° 128x10° 27.8x1073
3) Conglomerate 303 012 13x10° 06x103 242x1073
4) Diabase 3213 028 958x10° 374x10° 288x103
5) Dolomite 469 029 290x10® 112x100 245x1073
6) Gneiss 1650 027 763x10° 300x10® 26.8x1073
7) Granite 141.1 022 738x10° 303x103 264x1073
8) Limestone 51.0 029 285x10®° 11.1x10° 23.3x1073
9) Quartzite 320.1 0.11 88.4x10® 39.8x10° 257x1073
10) Sandstone 73.8 038 183x10® 66x10° 21.4x1073
11) Siltstone 1227 022 262x10° 107x10° 254x1073
12) Tuff 113 019 37x10® 15x10® 235x1073

Origin of the samples: 1) Palisades Dam, Idaho, USA; 2) Nevada Test Site, USA; 3) Mc Dowell
Dam, Arizona, USA; 4) New York, USA; 5) Minneapolis, Minnesota, USA; 6) Graminha Dam,
Brazil; 7) Nevada Test Site, USA; 8) Bedford, Indiana, USA; 9) Baraboo, Wisconsin, USA; 10)
Ambherst, Ohio, USA; 11) Hackensack, N.Y., USA; 12) Nevada Test Site, USA.

When the scaling factor GSI is introduced, the Hoek-
Brown failure criterion for the rock-mass is given by the

following relationship (Hoek and Brown 1997):

= O3 °
0-1—_0-3+O-CL my W"‘S

The parameter m, in equation (A-2) depends on both the
intact rock parameter m,, of equation (A-1), and the value

of GSI, as defined by the equation

GSI - 100)
28 (A-3)
The parameters s and a also depend

empirically on the value of GSI as fol-
lows, for GSI > 25,

my,=m; exp(

s =exp(GSI - 100)
9 (A-4)
a=05
and for GSI < 25
s =0 (A-5)
_ _[GSI
@ =065 ( 200)

Table A-2 lists the values of m,, s and
a obtained from equations (A-3), (A-4)
and (A-5) for different values of GSI. It
can be seen that when GSI =100 (the
hypothetical casein which the rock-mass
has the same strength as the intact rock
sample), the parametersarem,=m,,s =1
and a =0.5. With these values, the yield
condition for the rock-mass, equation (A-
2), and for the intact rock, equation (A-
1), are the same.

Londe (1988) showed that the Hoek-
Brown failure criterion defined by equa-
tion (A-2) can be transformed into a
‘general’ failure envelope that is inde-
pendent of the parameters ¢, m, and s.

The transformation suggested by
Londe applies to the particular case a =
0.5 and involves dividing the stress mag-
nitudes by m, g, and adding the term

s/m 2. Considering the parameters introduced in equation
(A-2), the scaled stresses S, and S, can be defined as,

S, =21 5
(A-2) ™ O m} (A-6)
O3 s
3= -t
my Oy m E ( A-T)
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Figure A-2. Reference values for the coefficient m for different rock types (adapted
from Hoek and Brown 1997). The value of m,is shown in parentheses below the

name of the rock.
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With the stresses o, and o, replaced by the scaled
stresses S,and S, from equations (A-6) and (A-7), the failure
criterion for therock-mass, equation (A-2), can be written in
the form (Londe 1988)

S:l=S3+\/Sa (A'8)

Note that in this ‘re-scaled’ form of the failure criterion
the parameters g, m, and s are ‘hidden’ within the scaled
stresses S, and S,; the relationship applies then to any type
of rock that is assumed to obey the Hoek-Brown criterion?.

To illustrate the use of Londe’s transformation, we will
re-examine the triaxial test results for the samples of
granite, quartz dolerite and marble presented in Figure A-
1. Note that the results for intact rock samples can be
equally approximated by equation (A-2), taking GSI = 100,
s =1, m = m and a = 0.5. Figure A-4 represents the
scattered pairs (g,, 6,) of Figure A-1 together with the
Hoek-Brown failure criterion—equation (A-2) or (A-1)—
plotted in terms of scaled principal stresses (i.e., with the

axes representing- the transformed stresses S ,and S,
defined by equations A-6 and A-7). It is seen that the
stresses at failure for all three types of rocks align now to
the ‘general’ form of the Hoek-Brown criterion defined by
equation (A-8).

The use of equation (A-8) rather than equation (A-2) can
lead to important simplifications in mechanical analyses
involving the Hoek-Brown criterion. Carranza-Torres and
Fairhurst (1999) have applied the transformation (A-8) in
solving the problem of excavating cylindrical and spherical
openings in rock-masses that satisfy the Hoek-Brown fail-
ure criterion. This solution is the basis for construction of
Ground Reaction Curves in the Convergence-Confinement
method, discussed in Section 3.

Just as the strength of the rock-mass is usually lower
than the strength of the intact rock, the (elastic) deforma-
tion modulus of the rock-mass is also usually lower than
that of the intact rock. Serafim and Pereira (1983) have
proposed an empirical relationship to compute the deforma-

GEOLOGICAL STRENGTH INDEX (GSI)

From the description of structure and surface
conditiors of the rock mass, pick an appropriate box in
this chart. Estimate the average value of the Geological
Strength Index (GSI) from the contours. Do not attempt
to be too precise. Quoting a range of GSI from 36 to 42
is more realistic than stating that GSI = 38. It is also
important to recognize that the Hoek-Brown criterion
should orly be applied to rock masses where the size of
the individual blocks or pieces is small compared with
the size of the excavation under consideration. When
individual block sizes are more than approximately one
quarter than the excavation dimension, failure will
generally be structurally controlled and the Hoek-
Brown criterion should not be used.

SURFACE CONDITIONS
Decreasing surface quality >

weathered, iron stained surfaces.
or fillings of angular fragments.

weathered surfaces with coatings
highly weathered surfaces with
soft clay coatings or fillings

GOOD - Rough, slightly
weathered and altered surfaces.
POOR - Slickensided, highly

FAIR - Smooth, moderately
VERY POOR - Slickensided,

INTACT OR MASSIVE - Intact rock
\ specimens or massive in situ rock with
very few widely spaced discontinuities.

N/A N/A N/A

N\

{ BLOCKY - Very well interlocked
] undisturbed rock mass consisting of
‘4 cubical blocks formed by three
orthogonal discontinuity sets.

BN
N

VERY BLOCKY - Interlocked,
partially disturbed rock mass with
multifaceted angular blocks formed by
four or more discontinuity sets.

BLOCKY / DISTURBED - Folded
and/or faulted with angular blocks
formed by many intersecting
discontinuity sets.

Increasing interlocking of rock pieces —>

AN
NN
\g N
o
D
z \\\

AN
\

DISINTEGRATED - Poorly
interlocked, heavily broken rock mass
with a mixture of angular and rounded
rock pieces.

\ N \ \\\\Q\ VERY GOOD - Very rough, fresh
\ \ NG \ N % . unweathered surfaces.
N
™.
N
N
N

FOLIATED / LAMINATED - Folded
77 and tectonically sheared foliated rocks.
”\\él Schistocity prevails over any other
discontinuity set, resulting in complete
lack of blockiness.

STRUCTURE

/
NA | NA I/ /10 /
5

/

Figure A-3. Empirical chart for the estimation of the Geological Strength Index (GSI) based on the characteristics of the rock-
mass (adapted from Eoek and Brown 1997 and Hoek et al. 1998).
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Table A-2. Values of coefficients m,, s and a as a function of
the Geological Strength Index (GSI), computed from
equations (A-3), (A-4) and (A-5), respectively. (Note that the
second column represents ratio m,/m; values of m, for
different rock types are given in Figure A-2).

GSI my/m; s a

100 1.00 1.00 0.5
75 4095 x 102 621.77 x 10~* 0.50
50 16.77 x 1072 38.66 x 10~* 0.50
25+ 687 x 1072 240 x10~* 0.50
25~ 6.87 x 1072 0.00 0.53
10 4.02 x 1072 0.00 0.60

tion modulus of the rock-mass from the unconfined com-
pressive strength of the intact rock sample and the value of
the Rock Mass Rating (RMR) by Bienawski (1976). Based on
the original equation by Serafim and Pereira, Hoek and
Brown (1997) propose the following relationship between
the rock-mass modulus E__ and the Geological Strength
Index GSI:

GSI -10

E ., =1000C(c,)10 * (A-9)

where
C(s) =1
- o.ci
vV 100

In equation (A-9), both the unconfined compressive
strength g and the rock-mass modulus E__ are expressed in
MPa.

In elasto-plastic analyses of deformations—such as the
one presented later in Section 3, the rock-mass shear modu-
lus G, is used rather than the deformation modulus E,_
given by equation (A-9). The shear modulus of the rock-

mass can be estimated from the deformation modulus using
the classic relationship from isotropic elasticity,

E rm
Grm"2(1+v) (A].O)

In equation (A-10), v is Poisson’s ratio for the rock-mass,
and is usually considered to vary between 0.1 and 0.3 (Hoek
and Brown 1980).

To illustrate the application of equations (A-9) and (A-
10), let us consider the properties of the granite sample
listed in Table A-1. The unconfined compressive strength of
the intact rock is approximately o, = 141 MPa; if the
Geological Strength Index of the rock-mass is GSI =50, then
the deformation modulus of the rock-mass is, from equation
(A-9), E = 1187 MPa. If Poisson’s ratio for the intact rock
and rock-mass are both assumed to be equal to 0.22 then,
from equation (A10), the shear modulus of the rock-mass is

if g, >100 MPa
if g, <100 MPa
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Figure A-4. Results from triaxial tests shown in Figure A-1
with the principal stress axes o, and o, normalized accord-
ing to transformations (A-6) and (A-%). Note that in this
reference system results for all three rock types fall on the
‘Iggggal’ failure envelope given by equation (A-8) (Londe

G,,=486 MPa. TheelasticconstantsE_and G _ for therock-
mass are seen to be significantly lower than the correspond-
ing constants E and G for the intact rock sample listed in
Table A-1.

Notes for Appendix A

® The observed dispersion appears to be proportional to the
number of specimens tested, with the highest dispersion for the
48 samples of granite and the lowest for the 14 samples of
marble (see Appendix B).

® It should be emphasized though that the equation (A-8) is
strictly valid only when the parameter a in equation (A-2) is
equal to 0.5. According to equations (A-4) and (A-5), a = 0.5 for
the broad range of situations in which GSI = 25.
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Appendix B. Determination of the parameters g,
and m, from results of triaxial tests on intact rock
samples.

The parameters o, and m, in equation (A-1) can be
obtained from statistical analysis of the (g,, 0,) results
obtained from triaxial tests on intact rock specimens —o, is
the constant confining stress applied to the sample and o, is
the axial stress that produces collapse of the sample. Hoek
(1983) describes the basis of the statistical analysis and the
needed equations. A brief summary of the equations is
presented below.

If n rock cores have been tested and n pairs (0,, ¢,) have
been obtained from the tests, the parameters ¢, and m, can
be found from the following expressions (Hoek 1983):

2(o1-0y)° _Yog|n Zog(oy— 0’ —203 %0, - 03)

2 —
O =

n n n 20'32‘ (20'3)2
(B-1)
2 2
m, ___% n Xog(o, 0'3)2 20'322(0'1 o3 (B-2)
o n 20'3“(20'3)

A regression coefficient r can be evaluated to estimate
the ‘goodness of fit’ of the parabolic approximation. The
coefficient is computed as,

2_ [n 203 (01~ 0'3)2-20'32(0'1—0'3)2]2
[n 202~ (2 o5f] [n 2o, - 05)* (20, - a5 (B-3)

For example, Table B-1 lists the pairs (g, o,) obtained
by Franklin and Hoek (1970) from triaxial tests on samples
of granite, quartz dolerite and marble —these results have
been discussed in Appendix A (see Fig. A-1).

The parameters ¢, , m, and r* computed using the
equations B-1, B-2 and B-3 are indicated below the values
of g, and o, for each rock type.

Volume 15, Number £, 2000

Table B-1. Stress pairs (0, 6 ) obtained from triaxial tests on
different rock samples (after Franklin and Hoek 1970). The
parameters 0, m, and r’, obtrained with equations (B-1)
through (B-3§ are indicated below the tabulated ( o, o)
values.

Granite (48 samples from Blackingstone quarry, Devon, UK)

o3 [MPa] oy [MPa] | o3 [MPa] oy [MPa] | o3 [MPa] o) [MPa]
9.3 309.3 43.5 541.0 294 485.8
432 539.8 0.0 179.3 12.8 269.9
55.8 569.5 0.0 111.3 493 488.4
2.8 249.0 1.6 2343 18.0 410.7
0.0 197.3 19.7 406.5 0.0 195.9
214 407.6 0.0 201.5 28.8 458.0
10.7 316.0 258 431.1 0.0 196.1
34.8 512.7 0.0 193.4 53 270.5
0.0 171.5 38.1 5437 21.7 415.9
6.5 2733 229 409.9 33.0 440.1
0.0 1359 27.1 392.8 16.4 340.4
5.0 293.1 13.2 359.0 8.7 3185
7.8 276.8 28.5 486.8 9.9 312.1
339 453.9 7.8 283.0 45.5 566.0
0.0 213.6 39.2 480.8 74 284.4
51.7 523.9 15.1 330.1 17.7 362.3

ogi = 210 MPa; m; = 21;r2 = 0.91

Quartz Dolerite (38 samples from Northumberland, UK)

o3 [MPa] oy [MPa] | o3 [MPa] o) [MPa] | o3 [MPa] o1 [MPa]
5.0 333.8 4.1 561.2 0.0 331.8
0.0 315.0 347 498.9 74 344.6

23.9 453.6 20.2 4109 35 284.7
0.0 3114 0.0 305.1 0.0 267.5
0.0 3144 10.3 3419 0.0 299.7
6.9 390.5 345 497.8 27.6 489.0

20.7 457.1 0.0 2729 24 341.0
13 3283 429 514.8 37.0 512.7
0.0 315.7 13.7 380.7 0.0 2144

28.3 474.6 0.0 210.7 13.9 364.0

31.0 496.4 0.0 275.8 0.0 2737

17.2 422.6 0.0 312.0 0.0 2789

42.1 552.2 21.7 461.2

Oci =294 MPa; m; = 13;r% =092

Carrara Marble (14 samples from Italy)

o3 [MPa] oy [MPa] | o3 [MPa] o [MPa] | o3 [MPa] oy [MPa]
309 205.9 0.0 90.3 352 217.2
39 119.1 39.1 2344 51.7 262.2
0.0 93.1 21.8 179.2 25.2 188.1
16.2 156.4 10.5 131.1 0.0 93.8
2.2 111.6 475 263.1

0ci = 94 MPa; m; = 8;r%2 = 0.9
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Appendix C. Spreadsheet
implementation of the Convergence-
Confinement method.

Figures C-1 through C-3 present a com-
puter spreadsheet for implementation of
equations in Sections 3, 4 and 5, in order to
construct the GRC, SCC and LDP curves,
respectively.

The spreadsheet is divided in two main
parts: a) Input of data and b) Output of
results.

In part @) (Fig. C-1), the geometry, rock-
mass properties, loading conditions, distance
to the face and properties of the three support
systems discussed in Section 4 are entered.

In part b) (Figs. C-2 and C-3), the elastic
and plastic parts of the GRC, the LDP (from
equation 18) and the SCC for individual and
combined supports are defined.

Linking of the cells in the spreadsheet is
accomplished by giving a name to each cell
and range of cells, and expressing formulae
within the spreadsheet in terms ofthe named
cells (see for example, Dodge et al. 1997).

The names given to individual cells are
indicated within parentheses at the side of
the cells in Figures C-1 through C-3.

For ranges of cells, defined by a box out-
lined by dashed lines, the name is indicated
at the bottom of the box.

The values in the shaded cells in the
spreadsheet are computed with formulas.

Tables C-1and C-2 define the formulas for
Figures C-2 and C-3—expressed in terms of
cell/range names—that need to be entered in
these cells.

Note that the values shown in the spread-
sheet are those for the practical example
discussed in Section 6. To construct the dif-
ferent curves shown in the diagram of Figure
10, the following ranges must be plotted:

¢ for the GRC, the ranges ure_grc and
urp_grc in the horizontal axis and the
ranges pip_grc, pip_grc, pip_r_grc and
pip_f_grc in the vertical axis; the last
two ranges correspond to the internal
pressure at the crown and floor of the
tunnel—see points C and F in Figure
10a.

¢ for the LDP, the range ur_Idp in the
horizontal axis and the range If in the
vertical axis.

¢ for the SCC of individual supports, the
ranges ur_sc, ur_ss and ur_sb in the
horizontal axis and the ranges pi_sc,
pi_ss and pi_sb in the vertical axis.

» for the SCC of combined supports, the
rangesur_sc_b,andur_ss_binthehori-
zontal axis and the ranges pi_sc_b and
pi_ss_b in the vertical axis.

Figure C-2 (at left). Second page of the
spreadsheet. Computation of the GRC and
LDP.
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(1) Geometry ) (s2) Rock-Mass =
Rim .. . 100N : OaMPa) 200 (sigc)
T S i " 18(m.)
(3) Loading - Voo 025 (nu)
SMPa) . T8600 y [deg] 30 (pe)

. . asi  40(G8)

YMN/m®]  2.40E-02:(gamma)
(a4) Face Effect )
L [m] 10(L9
(a8) Support
(a8-1) Blocked Steel _ {(a5-2) Shotcrete or Concrete
8 {mm) 76 (B_s) e (MPa] 30.0 (sig_oc)
D [mm] 127 (D.9) . EGPa) 900 (E_c)

LAY VTER A Ve 025 (ug)
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Figure C-1. First page of the spreadsheet. Data input.

" (b oUTPUT

m™

Ep(GPa)

{Gyy [GPa)

(pip_gre) L (pip_r_grc): L (pip_{ gre) | - (pipe_grc)

point LR U [mm]
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T Y e e
bt B e o v
8300, 1388 m.mm;tm.,?;.
T (pi_ss_b) 1L (ur_ss_b) . m_w_b) (ur_sc_b)

Figure C-3. Third page of the spreadsheet. Computation of
the SCC.

Table C-1. Formulas to be entered in the shaded cells in
Figure 2.

m_b =m_i*EXP((GSi-100)/28)

s_coeff =IF(GSI>=25,EXP((GSI-100)/9),0)

E_rm =SQRT(sig_ci/100)*10°((GSI-10)/40)

G_rm =E_rm/2/(1+nu)

K_psi =(1+SIN(psi*PI()/180))/(1-SIN(psi*P!()/180))

$_0 =sig_0/(m_b*sig_ci)+s_coeff/m_b"2

Pi_cr_s =1/16*(1-SQRT(1+16*S_0))"2

pi_cr =(Pi_cr_s-s_coeff/(m_b"2))*m_b"sig_ci

pie_grc =sig_0 (first row), =pi_cr (second row)

ure_gre =(sig_0-pie_grc)/2/(G_rm*1000)*R_t*1000

pip_grc =pi_cr*(12-pt_grc)/11

pip_r_grc =pip_grc+gamma*(xi_grc*R_t-R_t)

pip_f_grc =pip_grc-garnma*(xi_grc*R_t-R_t)

pips_grc =pip_grc/(m_b"sig_ci)+s_coeff/m_b"2

xi_gre =EXP(2*(SQRT(Pi_cr_s)-SQRT(pips_grc)))

urp_gre =((K_psi-1)/(K_psi+1)+2/(K_psi+1)*xi_grc
“(K_psi+1)+(1-2*nu)/4/(S_0-Pi_cr_s)*LN(xi_grc)"2
-((1-2*nu)/(K_psi+1)*(SQRT(Pi_cr_s))/(S_0-Pi_cr_s)
+(1-nu)/2*(K_psi-1)/(K_psi+1)"2/(S_0-Pi_cr_s))
*((K_psi+1)*LN(xi_grc)-(xi_gre) (K_psi+1)+1))
*R_t*(sig_0-pi_cr)/2/(G_rm*1000)*1000

If r =-4+(pt_idp-1)*12/11

If =If_rR_t

ur_ldp =ur_max*(1+EXP(-i/1.1/R_t))™-1.7

Lf2=L_f

ur_0 =ur_max*(1+EXP(-L_{/1.1/R_t))"-1.7
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Table C-2. Formulas to be entered in the shaded cells in
Figure C-3.

theta.s =180/n_B

pmax_s =(3*A_s*|_s"sig_ys)/(2*S_s"R_t*theta_s*PI()/180
*(3*I_s+D_s/1000*A_s*(R_t-t_B/1000-0.5*D_s/1000)
*(1-COS(theta_s*PI()/180))))

K_s =1/(((S_s*R_t"2)/(E_s*1000*A_s))+(S_s*R_t"4/(E_s*1000*I_s)
*((theta_s*PI()/180*(theta_s*PI()/180+SIN(theta_s*PI()
/180)*COS(theta_s*PI()/180)))/(2*(SIN(theta_s*PI()/180)
“2))-1)+(2*S_s*theta_s*PI()/180*t_B/1000*R_t)/(E_B*1000
*(B_s/1000)"2))

urmax._s =pmax_s/K_s*1000

pi_ss =0 (first row), =pmax_s (second and third rows)

ur_ss =ur_0 (first row), =ur_0+urmax_s (second row)

=ur_0+urmax_s*4 (third row)

pmax_c¢ =sig_cc/2*(1-(R_t-t_c/1000)"2/R_t"2)

K_c =E_c*1000/(1+nu_c)*(R_t"2-(R_t-t_c/1000)"2)/((1-2*nu_c})*

R_t"2+(R_t-(t_c/1000))2)/R_t

urmax.c =pmax_c/K_c*1000

pi_sc =0 (first row), =pmax_c (second and third rows)

ur_sc¢ =ur_0 (first row), =ur_0+urmax_c (second row)

=ur_0+urmax_c*4 (third row)

sc_b =2*PI()*R_t/n_bolit

pmax_b =T_bf/sc_b/s_Ib

K_b =1/(sc_b*s_Ib)*(PI()*(d_b/1000)"2*E_bolt*1000)/(4*| _b+
Q_b*PI()*(d_b/1000)"2*E_bolit*1000)

urmax_b =pmax_b/K_b*1000

pi_sb =0 (first row), =pmax_b (second and third rows)

ur_sb =ur_0 (first row), =ur_0+urmax_b (second row)

=ur_0+urmax_b*4 (third row)

K.s.b=K_s+K_ b

urmax_s_b =IF(urmax_s<urmax_b,urmax_s,urmax_b)

pmax._s_b =K_s_b*urmax_s_b/1000

pi_ss_b =0 (first row), =pmax_s_b (second and third rows)

ur_ss_b =ur_0 (first row), =ur_0+urmax_s_b (second row)

=ur_0+urmax_s_b*4 (third row)

Kc. b=K_c+K_b

urmax_c_b =IF(urmax_c<urmax_b,urmax_c,urmax_b)

pmax_c.b =K_c_b*urmax_c_b/1000

pi_sc.b =0 (first row), =pmax_c_b (second and third rows)

ur_sc_b =ur_0 (first row), =ur_0+urmax_c_b (second row)

=ur_0+urmax_c_b*4 (third row)
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Appendix D. Elastic analysis of circular tunnels in
non-uniform stress conditions.

The elasticsolution of a circular cavity of radius R subject
to non-uniform horizontal and vertical far-field stresses g,
and o,, respectively, and internal pressure p, is given by the
classical Kirsch solution (see, for example, Timoshenko and
Goodier 1970).

Considering the mean stress ¢, and the horizontal-to-
vertical stress coefficient 2 defined by equations (21) and
(20), respectively, the scaled radial stress /0, at a distance
r from the center of the cavity is given by,

o Bk B s(R ) eosom)+ 2L (R (D-D)

T r kR +1 r

The scaled ‘hoop’ stress g,/0, is

oe(r)=1+(i)2_ k—_—1[1+3(%)4]cos(2e)—%—£(5—)2

O, r B +1 r
(D-2)
and the scaled shear stress g/, is
Grolr) k-1 R 2 RV .
’O.n == 711 [1+2(7—) —3(7,—) ]sm(29) (D-3)

The maximum and minimum principal stresses —o, and
o, , respectively, corresponding to the stresses ¢, ,and o,
defined above—are computed using the classic relation-
ships (see, for example, Jaeger and Cook 1979):

2
R e GO R,

(D-4)

The extent r of the ‘over-stressed’ region discussed in
Section 7 can be found from the condition that the strength
of the material —defined by the Hoek-Brown failure crite-
rion (A-2)— is exceeded. Considering the parameter a to
have the value 0.5 in equation (A-2), the condition is
written as,

o,r)zoyr)+o0, (mb 036(” +s) (D-5)

The maximum value of r, can be obtained from the

condition that the left and right sides of expression (D-5) are

equal. Thus, dividing both sides by m, o, and multiplying

and dividing each term by ¢, the inequality (D-5) trans-
forms into

(D-6)

0,(r)/o,  o3(r)lo, +\/ o, r)/o, LS

m, o,le, m, o,loc, my 0,/6, m?}

The non-linear equation (D-6) must be solved for the
unknown r. Because of the method of scaling used in
equation (D-6), the values obtained for the extent r are valid
for constantratiosofm, 0,/0 ands / m,?(see examplein Fig.
13).

(A) INPUT
(A1) Geometry (A2) Rock mass properties
R [m] 1.0 (R_Y) 6,4 [MPa] 20.0:(sig_c)
m 18i(m_i)
(A3) Loading Gsl 40 (GS)
o, [MPa] ~ 4.65(sx) v 0.25 (nu)
o, [MPa] ~10.34 (s2)
;i [MPa) 0.00; (pi)
(8) OUTPUT
Sy [MPs) my
k s uuuuuuuu
/o, Eqm [GPa]
Gy [GP8)

Figure D-1. Spreadsheet for evaluation of the extent of the ‘over-stressed’ region around a circular cavity subject to uniform

internal pressure and unequal far-field principal stresses.
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The solution of the non-linear equation (D-6) can be found
with a spreadsheet such as shown in Figure D-1. Linkage
between cells in the spreadsheet is accomplished using the
formulae listed in Table D-1. Note that, as in the spreadsheet
presented in Appendix C, cell and range-of-cell names are
indicated within parentheses in Figure D-1.

The equation solver implemented in most spreadsheet
packages has to be used to evaluate the cells in the range
r_R. In the commercial spreadsheet program Excel (see for
example, Dodge et al. 1997) the ‘Goal seek’ tool has to be
applied specifying ‘Set cell.” to point to cells in the range
yield, ‘To value:’ to be equal to 0.0 and By changing cell:’ to
point to the cells in the range r_R. Note that in this
spreadsheet program, the ‘Goal seek’ tool applies to indi-
vidual cells, so that a macro should be recorded in order to
find the solution in all cells of the range r_R simultaneously.

Diagrams such as those presented in Figure 13a canthen
be constructed by plotting the ranges theta and r_Rin radial
coordinates.
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Table D-1. Formulae to be entered in the shaded cells of the
spreadsheet shown in Figure D-1.

80 =0.5%(sx+sz)

k =sx/sz

pi_s0 =pi/sO

sci_s0 =sig_ci/sO

m_b =m_i*EXP((GS!-100)/28)

8_coeff =IF(GSI>=25,EXP((GSI-100)/9),0)
E_rm =SQRT(sig_ci/100)*10"((GSI-10)/40)
G_rm =E_rm/2/(1+nu)

theta =-90+180*(point-1)/16

8r_s0 =1-1/r_R"2+(k-1)/(k+1)*(1-4*1/r_R2+3*1/r_R"4)
*COS(2 theta*P1()/180)+pi_s0*1/r_R"2

st_s0 =1+1/r_R"2-(k-1)/(k+1)*(1+3*1/r_R"4)
*COS(2*theta*PI()/180)-pi_s0*1/r_R"2

srt_s0 =-(k-1)/(k+1)*(1+2*1/r_R"2-3*1/r_R"4)
*SIN(2*theta*P1()/180)

8_1 =(sr_s0+st_s0)/2+SQRT((sr_s0-st_s0)"2/4+srt_s0"2)

8_3 =(sr_sO+st_s0)/2-SQRT((sr_s0-st_s0)"2/4+srt_s0"2)

yield =s_1/(m_b"sci_s0)-s_3/(m_b*sci_s0)
-SQRT(s_3/(m_b*sci_s0)+s_coeff/m_b"2)

r_R (see main text)
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