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Abstract --This paper discusses the practical application of the Convergence- Confinement Method of tunnel 
design to rock-masses that satis~ the Hoek-Brown failure criterion. The strength of intact rock and jointed 
rock-masses, as defined by the Hoek.Brown criterion, and the basis of the Convergence-Confinement method 
are reviewed. Equations that allow the construction of the three basic components of the Convergence- 
Confinement method, i) t/~e Longitudinal Deformation Profile (LDP), ii) the Ground Reaction Curve (GRC) 
and iii) the Support Characteristic Curve (SCC) are given. A practical case of support design for a circular 
tunnel is discussed and solved using the Convergence Confinement method. A spreadsheet summarizing the 
implementation of the me;~hod is also included. Reference values of typical rock properties and geometrical 
and mechanical properties for typical support systems are presented in tables and charts. © 2000 Published 
by Elsevier Science Ltd. All rights reserved. 

1. Introduction 

E stimation of the support required to stabilize a 
tunnel excavation, especially in the vicinity of the 
face, is essentially a four-dimensional problem. Time- 

dependent weakening of the rock compounds the three- 
dimensional redistribution of forces around the excavation, 
and the nature of the rock is uncertain until it is exposed in 
the face. Labasse (1949) describes the situation as follows: 

First, the types of supports to be used must be 
limited to one or two in order not to disrupt the 
material supply operations underground. This stan- 
dardization makes precise calculation of a support for 
each cross-section useless. 

Further, the need to install the support immedi- 
ately after excavation does not allow time to make 
calculations and fabricate the support. In order to 
arrive at a precise determination it would be neces- 
sary, in fact, to study each cross-section separately 
because it would d~ffer from neighboring cross-sec- 
tions with respect to ~.he rock layers encountered, their 
dip and their deposition. It would be necessary to take 
a test specimen from each layer, determine itsproper- 
ties and the influence of these properties on neighbor- 
ing layers. This wou,!d require a series of experiments 
and mathematical analyses whose solution, assuming 
that a solution is possible, would take up precious time 
during which the excavation would certainly have 
collapsed. 

Given these constraints, it is valuable to have a general 
albeit simplified appreciation of the nature of the interplay 
between the (variable) rock-mass and the installed support, 
and the effect of variation in assumed rock properties on the 
support loads. 

The 'Convergence-Confinement' method is such a tool. 
Although the term was developed in the 1960's and 70s (see, 
for example, AFTES, French Association for Underground 
Works 1978), the method has been known at least since the 
paper by Fenner (1938). Application of the Convergence- 
Confinement method, as is discussed later in detail, re- 
quires a knowledge of the deformation characteristics of the 
ground and of the support. 

Estimation of the mechanical response of a jointed rock- 
mass is one of the fundamental problems in rock mechanics. 
The Hoek-Brown criterion (Hoek and Brown 1980) for rock 
failure is widely used as an attempt to address the problem. 
The presence of joints and associated in situ geological 
effects (e.g., weathering and inhomogeneities) can consider- 
ably reduce the mechanical strength and stiffness of the 
rock-mass compared to the corresponding properties of 
intact specimens taken from the mass. The Hoek-Brown 
criterion 'adjusts' the strength properties of intact rock 
cores measured in triaxial tests in order to estimate the 
reduced strength that the rock-mass will exhibit in the field 
scale. 

The following sections review the practical implementa- 
tion of the Convergence-Confinement method to rock-masses 
that can be described by the Hoek-Brown failure criterion. 
Because of its importance in defining the strength and 
deformability properties of rock-masses, a detailed discus- 
sion of the Hoek-Brown failure criterion is presented as 
Appendix A to this paper. 
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2. The Convergence-Confinement Method of 
Tunnel Design 

As noted in the Introduction, the Convergence-Confine- 
ment method is a procedure that allows the load imposed on 
a support installed behind the face of a tunnel to be esti- 
mated. When a section of support is installed in the imme- 
diate vicinity of the tunnel face, it does not carry the full load 
to which it will be subjected eventually. A part of the load 
that is redistributed around the excavation is carried by the 
face itself. As the tunnel and face advance (i.e., away from 
the installed support), this 'face effect' decreases and the 
support must carry a greater proportion of the load that the 
face had carried earlier. When the face has moved well away 
from the support in question, it carries effectively, the full 
design load. 

The problem is illustrated in Figure la. A cylindrical 
tunnel of radius R is driven (e.g., by the conventional drill- 
and-blast method) through a rock-mass that is assumed to 
be subject initially to a uniform (i.e., hydrostatic) stress 
field. A circular support is installed at a section A - - A '  
located a distance L from the face of the tunnel (the support 
is assumed to be of unit length in the direction of the tunnel 
axis). The objective of the analysis is to determine the load 
that the rock-mass will transmit to the support at section 
A--A' ,  from the time of installation --indicated in Figure 
l a - -  until the time when the face has moved ahead, suffi- 
ciently far that the 'face effect' has disappeared. 

The variables involved in the analysis are shown in 
Figure lb, which is a cross-section of the excavation at the 
position A - - A '  (the support has been 'removed' for clarity 
in this figure). The stress Co represents the hydrostatic far- 
field stress acting on the rock-mass. The radius R t indi- 
cates the extent of the 'failure' (or plastic) zone thatPdevel - 
ops around the tunnel (a discussion of the development of 
this failure region will be presented in Section 3). 

To simplify the problem, it is assumed that all deforma- 
tions occur in a plane perpendicular to the axis of the tunnel 
(i.e., the problem is two-dimensional plane strain) and that 
the radial displacement Ur and the pressure p~--the latter 
representing the reaction of the support on the walls of the 
tunnel--are uniform at the section. Figure lc shows a cross- 

section of a circular annular support of thickness t c and 
external radius R installed at the section A--A' .  The uni- 
form pressure p, represents the load transmitted by the 
rock-mass to the support; the radial displacement u r repre- 
sents the displacement induced by the load p .  For compat- 
ibility of deformations at the rock support interface, the 
radial displacement of the support must equal the radial 
displacement of the rock wall u r indicated in Figure lb. 

The basis of the Convergence-Confinement method is 
illustrated in the sequences (a) through (c) in Figure 2. The 
situation at the initial time to, when the lining is installed 
at sectionA--A', is represented in the upper sketch (Figure 
2a). At this instant, the section is located at a distance L 
from the face and the ground has converged radially by the 
amount u 0. It is assumed that, provided the face does not 
advance, the rock-mass transmits no load to the support - -  
i.e., p o = 0 at this stage. (Time-dependent weakening, with 
associated deformation, is not considered in this analysis.) 

As the tunnel advances to the right, the ground and the 
support (at sectionA A') deform together and the support 
receives part of the load that the face had been carrying 
previously. Figure 2b shows the situation at a time t when 
the section is located at the distance L t from the face; at that 
moment, the groundhas converged the amount u t > u o and 
the rock-mass transmits the pressure p ~ to the support. 

Once the face of the tunnel has moved ahead far enough 
(Fig. 2c), the ground-support system at the sectionA--A' is 
in equilibrium and the support carries the final (or design) 
load p D. At this time tD, the effect of the face has disap- 
peared and the support and ground have converged to- 
gether by the final amount u D 

r • 

As can be seen from Figure 2, determination of the load 
transferred to the support requires an analysis of the 
interaction of the load-deformation characteristics of the 
elements comprising the system, (i) the tunnel as it moves 
forward; (ii) the section of excavation perpendicular to the 
tunnel axis; and (iii) the support installed at that section. 

The three basic components of the Convergence-Confine- 
ment method are, therefore, (i) the Longitudinal Deforma- 
tion Profile (LDP); (ii) the Ground Reaction Curva (GRC); 
and (iii) the Support Characteristic Curve (SCC). 

a) 

support 

face 

b) 

\ 'C~ 

1o 

~ : ;  / /  .~! ao 

elastic Rpl 

c) 

tc / 

Figure 1. a) Cylindrical tunnel o f  radius R driven in the rock-mass, b) Cross-section of  the rock-mass at section A--A'.  
c) Cross-section of  the circular support installed at section A--A'.  
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The LDP is the graphical representa- 
tion of the radial displacement that oc- 
curs along the axis of an unsupported a) 
cylindrical excavation --for sections lo- 
cated ahead of and behind the face. The 
upper diagram in Figure 3 represents 
such a profile. The horizontal axis indi- 
cates the distance x from the section 
analyzed to the tunnel face; the vertical 
axis indicates the corresponding radial 
displacement u r (the right part of the 
diagram is included tbr use later in re- 
lating the LDP to the GRC and the SCC). 
The diagram indicates that at some dis- b) 
tance behind the tunn el face the effect of 
the face is negligibly small, so that be- 
yond this distance the unlined tunnel 
section has converged by the final 
amount u M. Similarly, at some distance 
ahead of the face, the advancing tunnel 
has no influence on the rock-mass and 
the radial displacement is zero. 

Considering now the section of un- 
lined tunnel represented in Figure lb, 
the GRC is defined a~s the relationship ¢) tim© t D 
between the decreasing internal pres- 
sure p, and the increasing radial dis- 
placement of the wal]L u .  The relation- 

r . 

ship depends on the mechamcal proper- 
ties of the rock-mas.,~ and can be ob- 
tained from elasto-plastic solutions of 
rock deformation around an excavation 
(Section 3 discusses the construction of 
the GRC). The GRC is shown as the 
curve O E M  in the lower diagram of Fig- 
ure 3, extending from point O --where 
the internal pressure p~ is equal to the 
initial stress Go, to point M correspond- 
ing to the case where the internal pres- 
sure is equal to zero (i.e., the tunnel is unsupported) and the 
maximum closure (i.e., the radial displacement) u M is the 
maximum possible. Point E defines the internal pressure 
p ~ and corresponding closure at which the elastic limit of 
the rock is reached (at the tunnel wall) - - i f  the internal 
pressure falls below this value, a failed region of extent Rpl 
develops around the tunnel, as shown in Figure lb. 

The SCC is similarly defined as the relationship between 
the increasing pressurep~ on the support (shown in Fig. lc) 
and the increasing radial displacement u of the support. 
This relationship depends on the geometrical and mechani- 
cal characteristics of the support (Section 4 discusses the 
construction of the SCC). The SCC is shown as the curve KR 
in the lower diagram of Figure 3. Point K corresponds to a 
support pressure equa:[ to zero (i.e., when the support is first 
installed) and point R to the pressure p ma~ that produces 
failure of the support. 

Interpretation of the interaction between the LDP, GRC 
and SCC allows us to define the pressurep~ that the ground 
transmits to the support as the face advances. To illustrate 
the procedure, consider again the sequences a) through c) 
illustrated in Figure 2. Installation of the support at section 
A--A'  at time t o in Figure 2a, corresponds in the LDP of 
Figure 3 as point I of coordinates x = L and u =u o. Point J 
on the right side of the diagram has a horizontal coordinate 
u= u o and defines point Kof the  SCC in the diagram below. 
As long as the face does not move, stability is maintained 
solely by the ability of the face to carry the load redistributed 
by excavation. Thus, the vertical segment KN in the lower 
diagram of Figure 3 corresponds to the pressure taken by 
the face at time t o . (Again, note that time dependent weak- 
ening of the rock-mass is not considered here.) 

t imet  o L 

Xl 

. . . . . . . . . .  

Lt time t 

A I 

A'I 
U r 

AI 

Figure 2. Loading of  the support at section A - - A '  due to progressive advance of  
the tunnel face. 

As the face advances in Figure 2, both the support and 
excavation deform by the same amount --with the pressure 
p, on the support increasing and the confining effectp,on the 
periphery of the tunnel decreasing. 

At time t~ in Figure 2c, when the supporting effect of the 
face has disappeared completely, the system reaches equi- 
librium at point D in the lower diagram of Figure 3--i.e. at 
the intersection of the GRC and the SCC. The pressure p 
defined by point D then represents the final pressure (or 
design load) that the rock transmits to the support. 

Inspection of the LDP, GRC and SCC in Figure 3 leads to 
two conclusions of practical interest: 

i) the support will not be subject to a radial pressure 
larger than p L --defined by point L in the lower 
diagram. This pressure would be achieved only in the 
hypothetical case of an infinitely rigid support in- 
stalled at the face itself--i.e., the SCC would be a 
vertical one, starting from point H; and 

ii) a support will take no load if placed beyond point M, 
since the maximum possible convergence has occurred 
already. 

These two cases correspond to the two limiting cases of 
load that the rock-mass can transmit to the support. In 
general, as is seen from the LDP, GRC and SCC in Figure 
3, the further that the support is installed from the tunnel 
face, the lower the final load p D on the support (assuming, 
again, that no time-dependent weakening or disintegration 
of the rock-mass occurs). 

3. Construction of the Ground Reaction Curve 
The Ground Reaction Curve (GRC) shown in Figure 3 

can be constructed from the elasto-plastic solution of a 
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Figure 3. Schematic representation of the Longitudinal Deformation Profile (LDP), Ground Reaction Curve (GRC) and 
Support Characteristic Curve (SCC). 

circular opening subject to uniform (i.e., hydrostatic) far- 
field stresses and uniform internal pressure (see Fig. lb). 
Several solutions of this type, based on the Hoek-Brown 
failure criterion for the rock, have been published in the 
past. Some of these solutions include approximations in the 
equations of deformations to simplify the problem --see for 
example Brown (1983); others resort directly to numerical 
treatment to obtain a relationship between internal pres- 
sure and radial deformation (for example, Wang 1996). 

In the present work, an analytical solution derived by 
Carranza-Torres and Fairhurst (1999) will be considered. 
The solution is based on the 'general' form of the Hoek- 
Brown criterion proposed by Londe (1988) - - the reader is 
referred to Appendix A for a detailed review of the Hoek- 
Brown failure criterion and the coefficients characterizing 
the strength and deformability of the rock-mass, that will be 
used in the equations presented this section. 

Consider the section of a cylindrical tunnel of radius R 
subject to uniform far-field stress % and internal pressure 
p~ shown in Figure lb. The rock-mass is assumed to satisfy 
the Hoek-Brown failure criterion defined by equation (A-2); 
the variables characterizing the strength of the rock-mass 

are the unconfined compressive strength ~ ,  the intact rock 
parameter m, and the rock-mass parameters m. and s 

. . ~ o 

dxscussed m Appendix A (as mentioned there, the analysis 
assumes the parameter a to be 0.5). 

The uniform internal pressure p, and far-field stress 
can be 'scaled' according to the transformation (A-8), to give 
the scaled internal pressure P, and far-field stress So, 
respectively, 

_ P ~  s 
Pi  mb CrcL +m~ (1) 

So _ Go ÷ s 

m b Crc~ m ~ (2) 

The pressure p cr, defined by point E in the GRC of 
Figure 3, marks the transition from elastic to plastic behav- 
ior of the rock-mass --i.e., for an internal pressurep~ > p ~r, 
the rock remains elastic, and forp, < p ~r, a plastic region of 
radius Rpl develops around the tunnel (see Fig, lb). 

The scaled critical (internal) pressure P ~r for which the 
elastic limit is achieved is given by the following expression: 
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c r = l  P i [1-~/1+16S o ] 2 
(3) 

The actual (i.e., non-scaled) critical pressure is found 
from the inverse of equation (1), 

Pi = i rn 2 m s  ¢a (4) 

Provided p~ > p ~r, the relationship between the radial 
displacements u ~r t and internal pressure p~ in the elastic 
part of the GRC (i.e., segment OE in Fig. 3) is given by the 
equation, 

u ~l _ Go - P  i R (5) 
2G ~ 

where G is the shear modulus of the rock-mass defined by 
equation~A-10). 

For values of internal pressurep, < p ~r, the extent of the 
plastic region R~t that develops around the tunnel is 

(6) 
R = R exp[2  ( 4 e  _ P'/-P-7)] 

To define the plastic part of the Ground Reaction Curve 
(i.e., the curve E M  in the GRC of Figure 3), a flow rule for 
the material is needed. The flow rule defines the relation- 
ship between the strains that produce distortion and those 
that produce volumetric changes, as plastic deformation 
occurs in the materiai[--see, for example, Atkinson (1993). 
In underground excavation practice, the flow rule is usu- 
ally assumed to be linear, with the magnitude of volumet- 
ric change characteri:,.ed by a 'dilation' angle V, such that, 
if ~, = 0 °, the material undergoes no change in volume 
during plastic deformation; if V> 0 °, the volume increases 
during plastic deformation. 

In the solution described here, the flow rule will be 
characterized by a dilation coefficient K ,  that  is computed 

, ~ . 
from the dilation angle, V, according to the expressmn 
K = [ 1  + sinv]/[1 - sin ~]. Note, for example, that  for ~,= 0 °, 
the dilation coefficient is K =1 and for V = 30°, the 
coefficient is K =3. 

With the flo~v rule characterized by the dilation coeffi- 
cient K ,  the plastic part of the GRC --i.e., the segment E M  
in Figure 3--is given by 

/ D  ~K ~ +  1 
U pl 2Grm _ K v , - 1  + 2 ~'"pl| (7) 
R G o - - p  cr Kv,+iL K v , + l [  R J 

1 - 2v In 
+ 4 (s o -------~' 7) 

[ l - u  K¢-1 1 ] 1 - 2v ~/p ~r ÷ _ _  _ _  
- K ~ + i  S o - P ~  r 2 (K¢+1) 2 So-P~" 

[1D "~K V+ 1 ] 

where v is Poisson's ratio for the rock-mass. 
Hoek and Brown (1997) suggest that in some eases the 

assumption of no plastic volume-change for the rock-mass 
may be more appropriate. For the case of non-dilating rock- 
masses, characterized by the coefficient K~ = 1, equation (7) 
becomes 

-R £ - - ~  S o - P ,  (8) 

1 - 2 v  ~) In 
+ 4(s  o - P .  

2 S o - P 7  

To illustrate the construction of Ground Reaction Curves 
using equations (1) through (8), let us consider the case 
shown in Figure 4 of an unsupported section A- -A '  of a 
tunnel, radius R, located at a distance of 10 R behind the 
face of the tunnel (as will be discussed in Section 5), a 
distance of 10 R is large enough that the face has no further 
effect on the section). 

We wish to determine the radial convergence and the 
extent of the plastic region as the internal pressure p~ is 
reduced from the (initial) in-situ stress value Go towards zero. 

In this particular example, the radius of the tunnel is 
R = 1 m, the initial stress field is a o = 7.5 MPa and the 
properties of the intact rock are G=c, 20 MPa and rn, = 15. 
Rock-masses of decreasing quality, characterized by GSI 
values equal to 50, 40 and 30, are considered. The param- 
eters defining the strength and deformability of the rock- 
mass according to the Hoek-Brown criterion are computed 
from equations (A-3) through (A-5) and (A-9) through (A-10) 
are listed in Figure 4a. 

The ground reaction curves constructed using expres- 
sions (1) through (8) for GSIvalues  equal to 50, 40 and 30 are 
shown in Figure 4b. The dashed-line curves represent the 
corresponding extent R t of the failure zone (the values o f R  
are read on the vertical axm on the right rode of the 
diagram). Points A, B and C represent the condition at 
which the elastic limit of the rock-mass is reached. Note that 
these points are associated with a failure region of extent 
R .= R = 1 m (i.e., a failure zone that is about to start to pt 
develop around the tunnel). 

To validate the analytical results presented in Figure 4, 
a numerical analysis was carried out with the finite differ- 
ence code FLAC aD (Itasca Consulting Group 1997). The 
models were set up and solved for values of internal pres- 
sures Pi =0.5, 1.0 and 1.5 MPa. The values of radial 
displacement obtained from these models, represented as 
open squares in Figure 4b, are in good agreement with the 
analytical results. 

4. Construction of Support Characteristic Curves 
The Support Characteristic Curve (SCC) shown in Fig- 

ure 3 can be constructed from the elastic relationship 
between the applied stressp, and the resulting closure u for 
a section of the support of unit length in the direction of the 
tunnel (see Fig. lc). 

If  the elastic stiffness of the support is denoted by K,  the 
elastic part of the SCC --i.e., segment KR in Figure 3, can 
be computed from the expression, 

p, = K u r (9) 

Note that from equation (9), the unit of the stiffness K is 
pressure divided by length (e.g., MPedm if the stresses are 
expressed in MPa and the displacements in meters). 

The plastic part of the SCC in Figure 3--i.e., the horizon- 
tal segment starting at point R, is defined by the maximum 
pressure p ~ that the support can accept before collapse. 

The following subsections present the equations needed 
to compute the maximum pressure p max and the elastic 
stiffness K for three different support systems: 

/) shotcrete or concrete rings, 
i/) blocked steel sets and 
iii) ungrouted bolts and cables. 

These equations have been adapted from Hoek and 
Brown (1980) and Brady and Brown (1985). The reader is 
referred to the original source for a detailed description of 
each of these support systems. 

4.1 Shotcrete or Concrete Rings 

Considering the closed ring of shotcrete or concrete 
represented in Figure 5a, the maximum pressure provided 
by the support is 
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a) 

b) 

R = l m  

Oo = 7.5 MPa 

oci = 20 MPa 

m i = 15 

v = 0.25 

~ = 3 0  ° 

GSI m b s G~m (GPa) 

50 2.5 3 . 9 x 1 0  "3 1.8 

40 1.8 1 . 3 x 1 0  "3 1.0 
30 1.2 0 . 4 x 1 0  "3 0.6 

7.5 

5.0 

2.5 

0.0 

iiiiii I 

Ground Reaction Curve 
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t ~  
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Figure 4. a) Analysis of the convergence and the extent of the plastic zone for a section of tunnel located well behind the tunnel 
face. b) Ground Reaction Curves and extent of failure curves for section A-A' in the model--for GSI values of 50, 40 and 30. 
The points A, B and C represent the elastic limit in each GRC. The open squares in the diagram correspond to results obtained 
with FLAC 30. 

Table 1. Values of (rcc and E for dry and wet shotcrete mixtures after I and 28 days 
(after Singh and Bortz 1975). 

Type  o f  m i x t u r e  crcc [MPa]  Ec [MPa]  

D r y  (1 day)  20.3 13.6 x 103 - 2 3 . 4  x 103 

(28 days)  29.6 17.8 × 1 0 3 - 2 3 . 1  × 103 

We t  (1 day)  1 8 . 9 -  20.3 12.3 × 103 - 2 8 . 0  × 103 

(28 days )  3 3 . 3 -  39.4 23.8 × 103 - 35 .9  × 103 

Cement type Ill. Maximum aggregate size 13 mm. Mix design -expressed 
as a percentage of total bulk weight: i) Dry mixture: 17.9% cement; 29,9% 
coarse aggregate; 52.2% sand. ii) Wet mixture: 16.7% cement; 27.9% coarse 
aggregate; 48.7% sand; 6.7% water. 
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Table2. Values of ~ and E for concrete mixtures used in Table3. Values of Young's modulus E and yield strength ~y~ 
the construction ind~.'stry (after Leonhardt 1973). for different steel types (adapted frorn Gieck 1977). 

Designation acc [MPa] Ec [MPa] 

Bn 150 14.7 25.5 x 103 
Bn 250 24.5 29.4 × 103 
Bn 350 34.3 33.3 x 103 
B n 4 5 0  44.1 36.3 × 103 
Bn 550 53.9 38.2 × 103 

Properties after 28 days, obtained from tests on cubic 
samples of 200 mm side. The strength of concrete at 
the early age of 7 da.ys is approximately 80% of the ace 
values listed above. 

Designation Es [MPa] Crys [MPa] 

St 37-11 210 x 103 80 - 120 
St 50-11 210 x 103 100 - 150 
GS 38 220 x 103 80 - 100 

The ranges of admissible stress ays listed above are for 
static-compressive loads. This assumes a safety coeffi- 
cient of 1.75 with respect to the yield strength. 

The elastic stiffness is 

where 

E 

v 

t 
R 

E¢ R 2-(R - t  ~)2 
K ' - ( 1 - v ~ ) R  ( I_2v~)R2 +(R - t~ )  ~ 

(lO) 

(11) 

is the  unconfined compressive s t reng th  of the 
shotcrete or concrete [MPa]; 
is Young's Modulus for the shotcrete or concrete 
[MPa]; 
is Poisson's ratio for the shotcrete or concrete [di- 
mensionless]; 
is the thickness of the ring [m]; 
is the external radius of the support  [m] (taken to be 
the sanie as t]he radius of the tunnel) 

Typical values for ~ and E for dry and wet shotcrete 
mixtures ~) are given in Table 1. Poisson's ratio for the 
shotcrete is usually assumed to be v = 0.25. The thickness 
t of the shotcrete depends on the roughness of the surface 

The distinction between dry and wet mixtures comes from the 
moment at which water is added to the cement/sand mixture. In 
the former, sand and cement are mixed dry and water is added 
at the nozzle of the shotcrete equipment. In the latter, sand, 
cement and water are mixed at the same time and the mixture 
pumped to the nozzle for application. 

,) : : : :  b) 

Figure 5. Schematic representation of sections of a) shotcrete or concrete rings and 
b) blocked steel sets 5zdapted from Brady and Brown 1983). 

after blasting and scaling. When the shotcrete is applied as 
a temporary support  system, the thickness usually varies 
between 50 and 100 mm. 

For pre-cast or cast-in-place concrete support, the pa- 
rameters  ~c and E depend mainly on the type of cement 
and aggregate used in the mixture. Table 2, adapted from 
Leonhardt  (1973), lists values of ~ and E for typical 
concrete mixtures  used in the construct ion industry.  
Poisson's ratio % for concrete varies between 0.15 and 0.25; 
the value v = 0.2 is normally used in practice (Leonhardt 
1973). The thickness t for pre-cast or cast-in-place support 

c 

is usually larger than  tha t  for shotcrete, partly because 
structural  steel reinforcement is commonly used (struc- 
tural  steel reinforcement requires a sufficient cover of 
concrete to protect the steel from corrosion). 

4.2 Blocked Steel Set 

Considering steel sets spaced a unit  length apar t  in the 
direction of the tunnel  axis and t ightened against  the rock 
by wood blocks that  are equally spaced circumferential ly--  
as shown in Figure 5b - -  the maximum pressure tha t  the 
system can sustain is 

p m ~ _ 3  Cry~ A , I  8 
2 S R 0 3I~ +DA8 [R - ( t  B + 0 . 5 D ) ] ( 1 - c o s 0 )  

(12) 

The elastic stiffness is 

1 _ S R  2 . S R  4 [ .0(0+sin0cos0)  
K~ E ~-A~ t E~ I---~ [ 2 sin s 

1]+ 2S {gt B R 

E B B  ~ 

(13) 

where 
B is the flange width of the steel set 

and the side length of the square 
block [m] 

D is the depth of the steel section [m] 
A s is the cross-sectional area of the 

section [m 2] 
/ is the moment  of inertia of the sec- 

tion [m 4] 
E s is Young's modulus for the steel 

[MPa] 
%s is the yield s trength of the steel 

[MPa] 
S is the steel set spacing along the 

tunnel  axis [m] 
q is ha l f  the angle between blocking 

points [radians] 
t s is the thickness of the block [m] 
E s is Young's modulus for the block 

material  [MPa] 
R is the tunnel  radius [m] 
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Table 4. Values of D, B, A and I for typical steel sections (adapted from CONSTRADO 1988). 

Universal Beams 

Section D [ram] B [ram] As [m 2] Is [m 4] t [mm] T [mm] 

457 × 152 461 153 9.50 x 10 -3 324.35 × 10 -6  9.9 17.0 
406 x 140 402 142 5.90 × 10 -3  156.47 × 10 -6  6.9 11.2 

356 x 127 353 126 4.94 × 10 -3  100.87 × 10 -6  6.5 10.7 
305 x 127 304 124 4.75 x 10 -3  71.62 × 10 -6  7.2 10.7 

254 × 102 260 102 3.62 x 10 -3 40.08 × 10 -6  6.4 10.0 

203 × 133 203 133 3.23 × 10 -3 23.56 × 10 -6  5.8 7.8 

Jo/sts 

Section D [ram] B [ram] As [m:] Is [m 4] t [ram] T [ram] 

203 x 102 203 102 3.23 x 10 -3  22.94 x 10 -6  5.8 10.4 

152 x 89 152 89 2.18 x 10 -3  8.81 x 10 -6  4.9 8.3 

127 x 76 127 76 1.70 x 10 -3 4.76 x 10 -6  4.5 7.6 

102 x 64 102 64 1.23 x 10 -3  2.18 × 10 -6  4.1 6.6 

89 x 89 89 89 2.94 × 10 -3 3.07 × 10 -6  9.5 9.9 
76 × 76 76 76 1.63 × 10 -3 1.59 × 10 -6  5.1 8.4 

Universal beams, in contrast to joists, have flanges of the same 
thickness throughout. The figure on the right shows a typical joist T T .x 
section with non-parallel flanges (the thickness T is measured at B I  [ ~ = = ~ = ~  [ 
the mid-distance on the flange). Note that the values of moment of ± 
inertia Is listed above are with respect to the axis x-x indicated in 
the figure. This considers that the shortest side (the flange of width ~ D 
B) is in contact with the wood block placed between the rock surface 
and the steel section (see Figure 5b). 

nul 

f t~  phtt 

........ ¸ ii(il/ / ,  

R 

Figure 6. Representation of an ungrouted mechanical-anchored bolt (adapted from Stillborg 1994 and Hoek and Brown 1980). 
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For the case of blocked steel 
sets spaced at intervals d other s 
than unity, both the maximum 
stress p ya~ given by equation (12) 
and the stiffness K given by equa- 
tion (13) should be divided by 
(d,/1.0 m). 

Values of Young's modulus E 
• s 

and yaeld strength %, for different 
types of steel are lis£ed in Table 3. 

Values of D, B, A. and / for 
typical sections of steel are given 
in Table 4. 

The angle 0 in equations (12) 
and (13) can be computed as 
0 = )Z/nB, where n B is the total 
number of equally spaced blocks 
installed in the cross-.section. 

Young's Modulus Jbr the wood 
block depends on the ~ype of wood 
used and on the tightness of the 
block at installation. For hard 
woods (e.g., ash, maple, oak) 
Young's Modulus is typically E b = 

~oo ~ ~ auc 

r ¥  .......... c :  .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i . . . . . . . . . . . . . . . . . . . . .  

, / "  

60 1 1 P / Q/ ApSC 

5o 

, o  

2 0  

0 

0 5 I0 15 20 25 30 35 40 45 

Displacement [mm] 

Figure Z Results of a pull-out test performed on a mechanically anchored bolt 
(adapted from Stillborg 1994). 

10 x 103 MPa and for conifers (e.g., pine, cypress, cedar) it is 
E b = 7 x 103 MPa (Derucher and Korfiatis 1988). In order to 
take into account the tightness of the block at installation, 
Hoek and Brown (1980) suggest the values E b = 10 x 103 
MPa for stiff blocking and E b = 500 MPa for soft blocking. 

4.3 Ungrouted Bolts and Cables 

The sketches in Figure 6 represent mechanically an- 
chored bolts installed in the rock-mass surrounding a circu- 
lar tunnel of radius R. Assuming that the bolts are equally 
spaced in the circumferential direction, the maximum sup- 
port pressure provided by this support system is 

T bf (14) p ~ X =  s~ st 

The stiffness is 

4l  

where 
db 
l 

is the bolt or cable diameter [m]; 
is the free length of the bolt or cable [m]; 
is the ultimate load obtained from a pull-out test 
[MN]; 

Q is a deformation-load constant for the anchor and 
head [m/MN]; 
is Young's Modulus for the bolt or cable [MPa]; 
is the circumferential bolt spacing [m]; 
is the longitudinal bolt spacing [m]. 

Equation (15) assttmes that the reaction forces devel- 

E$ 
S c 

S l 

oped by the bolt are concentrated at the ends of the bar; 
therefore the equation should not be applied in the case of 
grouted bolts --for w:hich the load transfer is distributed 
throughout the length of the shank. 

The circumferential bolt spacings c in equations (14) and 
(15) can be computed as s = 2~ R / n b ,  where n b is the total 
number of equally space~t bolts or cables installed in the 
cross-section. 

Typical values of Young's modulus for the steel are listed 
in Table 3. 

To illustrate how the constants Tbf and Q are obtained 
from testing of bolts, consider the diagram in Figure 7. This 
shows the results of a pull-out test performed by Stillborg 
(1994) on a mechanically anchored bolt 16 mm in diameter 

and 3 m long installed in a concrete block of compressive 
strength ( r  = 60 MPa (details of the test can be found in the 
original article). The load applied to the bolt is shown on the 
vertical axis and the bolt deformation on the horizontal axis. 
The line OE corresponds to the elastic deformation of the 
shank (see Fig. 6). The curve OABCF shows the total 
deformation measured at the wall of the concrete block - -  
this includes the deformation of the shank, anchor, plate, 
washer and nut. 

The high rate of displacement over the portion AB of the 
curve is associated with the initial compliance of the plate, 
washer and nut assembly. The steeper portion BC is asso- 
ciated with deformation of the bolt shank and the anchor. At 
point C in the curve, the bolt starts to yield and at point F 
the bolt fails. The constant Tbr in equation (14) is therefore 
defined by point F in Figure 7. 

In practice, the bolt will usually be pre-tensioned during 
installation, in order to avoid the initial 'flat' segment AB 
associated to compliance of the plate and its associated 
components. The level of pre-tension should be sufficient to 
fully 'seat' the plate, washer and nut. For the results 
presented in Figure 7, for example, an appropriate level of 
pre-tensioning would be between 40 and 60 kN. Thus if a 
pre-tension of 50 kN is applied, the effect is to move the 
origin of the (subsequent) load-deformation curve from 
point O to point P. 

The constant Q in equation (15) is the rate of deformation 
for the portion BC in Figure 7--this disregards the elastic 
deformation of the shank that is already accounted by the 
first term within brackets in equation (15). 

Table 5. Values of the ultimate load T b. and the deformation- 
load constant Q for bolts of dLfferent dmmeters d b and 
lengths l (adapted from Hock and Brown 1980). 

db [mm] l [m] Tbf [MN] Q [m/MN] 

16 1.83 0.058 0.241 
19 1.83 0.089 0.024 
22 3.00 0.196 0.042 
25 1.83 0.254 0.143 

Values determined for expansion shell bolts in field tests. The 
rock types are: /) shale for the 16 mm bolt; ii) sandstone for 
the 22 nun bolt; iii) granite for the 25 mm bolt. 
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4.4 Combined Effect of Support 
Systems 

If more t han  one of the support  sys- 
tems described earl ier  is instal led at the 
same location, their  combined effect can 
be determined by adding the stiffnesses 
(i.e., the slope of the load vs. deformation 
curve) for each of the individual, sup- 
ports. This has the effect of increasing 
the slope of the elastic par t  of the SCC--  
the segment  KR in Figure 3. 

Consider, for example, the case in 
which two supports  - -charac ter ized  by 
m a x i m u m  pressures  p ]n~, and p m~ and 
elastic stiffnesses K 1 and Ke, respec- 
tively, are ins ta l led  in a section of tun-  
nel. The stiffness K for the two systems 
act ing together  can be computed as 
K = K 1 + K 2. This value is assumed to 
r ema in  valid un t i l  one of the two sup- 

10 ports achieves its ma x i mum possible 
elastic deformation u maX--computed as 

max max rm~X = _ m a x / K  U r 1 ---- P,  1 /KI  and u v ,  ~ ,e, 
respectively (see equat ion 9). The com- 
bined support  system is assumed to fail 
at tha t  point. The support  with the low- 
est value of u r ~ax determines  the maxi- 
m u m  support  pressure  available for the 
two supports  act ing together. 

Figure 8 shows the SCC for four types 
of support: shotcrete (with two different 
thicknesses), concrete, steel sets and 
ungrouted bolts for a tunne l  of radius 
R = 1 m. The figure also considers the 
combined effect of two supports acting 
together: concrete and bolts; shotcrete 
and bolts; and steel sets and bolts. These 
SCC's were evaluated using the equa- 
tions presented in  Sections 4.1 through 
4.3 (the values considered for the vari- 
ables are listed in the lower part  of the 
figure.) 

For this par t icular  problem, as seen 
in Figure 8, the SCC for steel sets is 
considerably below tha t  for shotcrete and 
concrete l inings. This is due to the domi- 
n a n t  role played by the (compliant) wood 
blocking in  the system. The lowest val- 
ues of stiffness K - - a n d  therefore the 
m a x i m u m  de fo rma t ion  u~ax, corre- 
sponds to the bolts. 

For the combined support  systems, 
the failure is controlled by the stiffer 
shotcrete, concrete or steel set support  
types (compare the values ofu max listed 

in  both tables). There is a slight improvement  in the support 
capacity p ~ax and the stiffness K when two supports are 
considered acting together. 

Individual support systems 

Support type Ps [MPa] Ks [MPa/m] Ur max [m] 

Shotcrete (tc = 30 ram) 0.89 0.984 x 103 0.90 × 10 -3 
Shotcrete (tc = 60 ram) 1.75 2.019 x 103 0.87 x 10 -3 
Concrete (tc = 75 ram) 2.53 2.893 x 103 0.87 x 10 -3 
Steel sets (127 x 76) 0.25 0.261 x 103 0.95 x 10 -3 
Bolts (19 mm diameter) 0.32 0.050 x 103 6.36 x 10 -3 

Combined support systems 

m a x  Support type Ps [MPa] Ks [MPa/m] u r [m] 

Shotcrete (30 nun) + Bolts 0.93 1.034 x 103 0.90 x 10 -3 
Shotcrete (60 nun) + Bolts 1.79 2.069 x 103 0.87 x 10 -3 
Concrete + Bolts 2.57 2.943 x 103 0.87 x 10 -3 
Steel sets + Bolts 0.30 0.311 x 103 0.95 x 10 -3 

Mechanical and geometrical properties considered for the supports: i) Shotcrete, crcc = 
30 MPa, Ec = 30 x 103 MPa, v = 0.25, tc = 30 mm and tc = 60 mm. ii) Concrete, 
ace = 35MPa, Ec = 35 x 103 MPa, v = 0.2, tc = 75mm. iii) Blocked steel 
sets, B = 76 ram, D = 127 mm, As = 1.70 x 10 -3 m 2, Is = 4.76 x 10 -6 m 4, 
Es = 210 x 103 MPa, ays = 150 MPa, S = 1 m, 0 = zr/10 rad (10 blocks), t B = 75 

mm, E b = 10 x 103 MPa. iii)Ungrouted bolts, db = 19mm, l = 2m, Tbf = 0.1 

MN, Q = 0.03 m/MN, Es = 210 x 103 MPa, Sc = 0.63 m (10 bolts), Sl = 0.50 m. 

Figure 8. Suppor t  Characteris t ic  Curves  for various support  sys tems  applied to a 
tunnel  o f  radius  R = 1 m. 

Considering the magni tudes  Ap Be, Au B and du c indicated 
in the diagram, the constant  Q can be computed as 

(16) 
A u  C - A u  B Q= 

A p  Bc 

Ideally the values of Tbf " and  Q should be obtained from 
pull-out tests performed directly on bolts instal led on the 
rock in situ. The values obtained in  this way will depend on 
the type of rock and the mechanical  characteristics of the 
bolt being tested. Hoek and Brown (1980) list reference 
values for Tb: and Q obtained from tests in different rock 
types. Some ~fthese values are presented in  Table 5 (these 
are for bolts of diameter  16, 19, 22 and 25 m m  and lengths 
of 1.83 and 3.0 m). 

5. Construction of the Longitudinal Deformation 
Profile 

The Longitudinal  Deformation Profile (LDP) discussed 
in Section 2 is an impor tant  component of the Convergence- 
Confinement  method. I t  provides insight  into how quickly 
the support  begins to interact  with the rock-mass behind 
the face of the tunne l  (i.e., i t  defines the point K in Fig. 3). 

When the far-field stresses acting on the rock-mass are 
assumed to be uniform, the profile of radial  displacements 
along the axis of the t unne l  can be computed from numerical  
models of the problem shown in  Figure 9a. The figure 

196 TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY Volume 15, Number  2, 2000 

 
 

 



represents a longitudinal cross-section of an unlined tunnel 
of radius R in the vicinity of the face. At a distance x from the 
face the radial displacement is u r. When the distance x is 
large enough, the radial displacement reaches the maxi- 
mum value u M. For negative values ofx (i.e., ahead of the 
face), the radial displacement decreases and the displace- 
ment becomes essentially zero at some finite distance ahead 
of the face. 

From elastic models of the problem represented in Fig- 
ure 9a, Panet (1995) suggests the following relationship 
between radial displacements and distance to the face: 

u,  =0.25+0.7511-(  0.75 )21 (17) 
Ur M ~0.75+x/R 

This relationship (17), that applies to positive values of 
x, is plotted in Figure 9b. The horizontal axis of the diagram 
represents the ratio x IR and the vertical axis represents the 
ratio u /u M. 

Chern et al. (199811 present measured values of conver- 
gence in the vicinity of the face for a tunnel in the Mingtam 
Power Cavern projecL The measured data are plotted as 
dots in Figure 9b. Based on this data, Hoek (1999) suggests 
the following empirical best-fit relationship between radial 
displacement of the tunnel and distance to the face: 

u r =[1 + ( -x /R ~-i.7] 
uM [ exp( -~-~)  ] (18) 

The relationship (18) is also plotted in Figure 9b. Analysis 
of the curves defined by equations (17) and (18) indicates that 
the maximum radial displacement occurs at approximately 8 
tunnel radii behind the face of the tunnel, and that the radial 
deformation is zero at approximately 4 tunnel radii ahead the 
face. At the face itself, the radial displacement is approxi- 
mately 30% of the maximum value. Figure 9b also suggests 
that the elastic approximation defined by equation (17) over- 
estimates the values of radial displacements when compared 
with the measured data at the Mingtam Power Cavern 
project and with the statistical approximation to this data. As 
seen in Figure 3, this overestimation results in underestima- 
tion of the final load transmitted to the support. 

Ideally, for tunnels designed according to the Conver- 
gence-Confinement method, the LDP should be constructed 
from measured data such as the one presented by Chern et al. 
(1998). Where such information is not available, the LDP can 
be constructed from numerical models considering the same 
elasto-plastic parameters used in construction of the Ground 
Reaction Curve. Alternatively, and as a first approximation, 
the LDP could be evaluated using relationship (18). 

6. Example 
To illustrate the application of the Convergence-Con- 

finement method in the design of tunnel supports we will re- 
examine the case of the circular tunnel of radius R =1 m 
shown in Figure 4a. The uniform far-field stress acting in 

a) 
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Figure 9. a) Profile of radial displacements u r for an unsupported tunnel in the vicinity of the tunnel face. b) Deformation 
profiles derived from elastic models (Panet 1995); measurements in a tunnel (Chern et al. 1998); and best fit to the 
measurements (Hoek 1999). 
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Figure 10. a) Influence of the weight of failed rock in the crown and the floor of a tunnel on the Ground Reaction Curve (points 
C and F, respectively), b) Rock-support interaction analysis for the tunnel shown in Figure 4 and the support systems shown 
in Figure 8. 

the rock-mass is % =7.5 MPa. A Geological Strength Index 
equal to 40 is assumed for the rock. The properties of the 
rock-mass are as indicated in the diagram. 

We wish to assess the mechanical behavior of the differ- 
ent support systems considered in Figure 8, assuming that  
the supports are installed a t a  distance L=I m behind the 
face of the tunnel. 

Solution of this problem requires application of the equa- 
tions presented in Sections 3, 4 and 5, for construction of the 
GRC, SCC and LDP respectively. Appendix C includes the 
outline of a spreadsheet for ease in implementation of the 
equations and construction of the GRC, SCC and LDP. The 
results of the example are summarized in Figure 10. 

For the problem being considered, the GRC is the curve 
identified as GSI = 40 in Figure 4b. In defining the GRC for 
a tunnel, it  is usual to distinguish between the convergence 
of side wall, roof and floor of the tunnel (Daemen 1975), 
since gravitational loading differs for each of these points 
around the tunnel periphery. The GRC shown in Figure 4b 
(the curve corresponding to GSI = 40) is considered to be 
representative of the load-convergence relationship for a 
point on the side-wall of the tunnel - -poin t  S in Figure 10a. 
For the same internal  pressure p, ,  the convergence of the 

roof can be expected to be larger than that  at the side 
because of the weight of the failed material  on top of the 
tunnel (point C in the figure). The GRC for the roof can then 
be obtained by adding the same amount y (R .-R) to the 

. p ~  

internal pressurep, ,  where yls the unit  weight of the rock- 
mass and R .  is the extent of the plastic region - -va lues  ofy 

, P~  . • for different rock types are hsted in Table A- 1. Similarly, the 
GRC for the floor of the tunnel can be obtained by subtract- 
ing the amount y ( R c R )  from the internal  pressure p, (see 
point F in Figure 16a). 

Figure 10b shows an enlargement of the diagram of 
Figure 4b, representing the GRC curve for GSI = 40. The 
solid curve that  extends from point T to point M represents 
the radial  displacement of point S in Figure 10a. The dotted 
curves above and below this curve are the GRC's for the 
crown (point C) and floor (point F) for an assumed rock-mass 
unit weight y =24 x 10 -s MN/m 3. Note that  the pressure 
t ransmit ted at  the crown of the tunnel is slightly higher 
than the pressure at  the floor. 

The LDP computed from equation (18) is also shown in 
Figure 10b. This curve is an enlargement of the solid curve in 
Figure 9b (note that, in Figure 10b, the distance to the face is 
shown on the vertical axis on the right side, and the associated 
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radial displacement on the horizontal axis). For the distance 
L = 1 m between the f~,ce and the support at installation, the 
LDP allows to define the point K (horizontal coordinate u r = 10 
mm), from which the SCC starts (see also point K, Fig. 3). In 
Figure 10, the face of the tunnel is identified by the vertical 
line passing through ]point F, that is defined by the coordi- 
nate L = 0 m in the w.~rtical axis on the right. 

The SCC for the support systems shown in Figure 8 are 
also represented in Figure 10b. Note that only shotcrete (30 
mm thick), steel sets and bolts are considered as support 
alternatives in this problem. The SCC for the combination 
of two support systems (shotcrete and bolts and steel sets 
and bolts) are also shown in the figure. 

Following the notation in Figure 3, the maximum stress 
p max for each of the different support systems is indicated 
as points R and R' (fbr the individual and the combined 
systems, respectively). For example, the maximum support 
pressure for steel sets is -- 0.25 MPa, for steel sets and bolts 
= 0.30 MPa, for bolts =~ 0.35 MPa, for shotcrete --- 0.88 MPa, 
and for shotcrete and bolts = 0.94 MPa. 

As mentioned abow. ~, the point Kis defined by the LDP for 
a distance to the face of L = 1 m. It is evident from this 
diagram, that the poi~nt K cannot lie to the left of point H, 
which represents the face of the tunnel. Therefore, the 
maximum possible pressure that the rock-mass can trans- 
mit to any given support in this problem will be less than the 
pressure defined by the vertical coordinate of point L in the 
figure -- this  is = 0.84 MPa (see Section 2). 

Points D , D and D. in Figure 10 represent the final 
support pressure that t~e rock-mass will transmit to the 
different support sysl~ms, once the tunnel face has moved 
well away from the support; for example, the final pressure 
transmitted by the rock-mass is -- 0.12 MPa for bolts (D b ); 
= 0.20 MPa for steel sets (D)  and --- 0.23 MPa for shotcrete 
(D). 

Analysis of the location of points D in the diagram 
indicates that all the supports considered in this problem 
are capable of sustaining the final load transmitted by the 
rock-mass (note that points D lie below the corresponding 
'support-capacity' points R). The relative merits of one or 
other of the support s:~rstems will depend on the allowable 
amount of convergence and]or the value of safety margin 
against failure desired for the support. 

The final convergence for each support system is given by 
the horizontal coordinate of the various points D; for ex- 
ample, for shotcrete the convergence is = 10.1 mm, for steel 
sets -- 10.6 mm and for bolts ~ 12.4 mm. 

The safety coefficients for the different supports can be 
obtained as the ratio between the vertical coordinates of 
points R and D in the figure; for example, for bolts the ratio 
is 0.30/0.12 [MPa/MPa], indicating a safety coefficient o f -  
2.5. If minimizing the wall closure is a primary concern, the 
steel sets and shotcrete are the best alternative (note that 
the horizontal coordinate of point D b is significantly larger 
than the horizontal coordinates of points D or D ). On the 
other hand, if a large safety coefficient is desired, shotcrete 
and bolts are superior to steel sets (note that the ratio of 
vertical coordinates of:points R and D is significantlylower 
than those for points R and D and R b and Db). If  steel sets 
are required to be usedL to line the tunnel anyway, it may be 
worth considering installation of bolts in combination with 
the sets. This is justified by the significant improvement of 
the 'safety' margin--i.e.,  the ratio of vertical coordinates of 
points R and D, (= 0.25/0.20 = 1.25) compared to R;  and D 
(= 0.30/0.20 = 1.5). 

7. Limits of Application of the Convergence- 
Confinement Method 

The Convergence-Confinement method is based on two 
important assumptions: 

/) the far-field principal stresses normal to the long 
axis of the tunnel are of constant magnitude Go, 
independent of the radial orientation (such a state of 
stress is often referred to as uniform or hydrostatic); 

and 
ii) the tunnel cross-section is circular, of radius R. 

This section discusses the validity of the method for cases 
in which the far-field (principal) stresses are unequal and 
the tunnel cross-section is non-circular. 

The principal stresses that exist at the site prior to 
excavation of a tunnel depend on the geological history of 
the site and in general are unequal. Figure l la ,  adapted 
from Hoek and Brown (1980), shows measured values of 
vertical stresses a, as a function of depth z for different 
regions of the world. The linear function that best fits the 
measured data is given by the relationship, 

a, = 0.027 z (19) 

where a, is expressed in MPa andz in meters. If  the vertical 
stress at a depth z is assumed to be associated with the 
weight of overburden material (i.e., the lithostatic pressure 
at the depth z), equation (19) suggests that the mean unit 
weight of the rock where the measurements were made is 
about 0.027 MN/m 3. This value corresponds to the unit 
weight of silicates, a major component of many rocks (see 
Table A-l). 

The mean horizontal stress a at a depth z is usually 
expressed in terms of the corresponding vertical stress a .  
The horizontal-to-vertical stress ratio k (also referred to in 
soil mechanics as the 'at-rest' coefficient of earth pressure) 
is defined as 

k = ax (2O) az 

Figure 1 lb, adapted from Hoek and Brown (1980), shows 
the values of the coefficient k corresponding to the vertical 
stresses in Figure l la .  The diagram indicates that the 
horizontal stresses a are bounded by the two curves shown. 
The minimum value of mean horizontal.stress is -~ 0.5 times 
the value of vertical stress and the maximum value of 
horizontal stress is = 3.5 times the mean value of vertical 
stress. Even higher ratios than those indicated in Figure 
l lb  have been recorded. At the Underground Research 
Laboratory (URL) in Pinawa (Canada), for example, the 
mean horizontal stress in the Lac du Bonnet granite is 52 
MPa, at a depth of 420 m --with a vertical stress of 
approximately 11 MPa, i.e., k = 4.6 (see Martin and Simmons 
1993). 

The diagrams in Figure 11 suggest that the principal 
stresses at the site are often unequal. They also indicate 
that the vertical stress will probably vary with depth ac- 
cording to a lithostatic gradient. 

If  the dimensions of the cross section of the tunnel are 
small compared to the depth z of the tunnel, the far-field 
stresses a and a, can be assumed to be constant over the 
proposed tunnel section (e.g., the vertical in-situ stress at 
the depth of the crown and invert of the proposed tunnel can 
be considered to be the same - -and  similarly for the horizon- 
tal in-situ stresses). 

Two quantities can be used to characterize a given non- 
uniform plane stress state (a ,  a ): the dimensionless coef- 
ficient k---defined by equation (2"0), and the mean stress a ° 
defined as 

ax + az (21) (~o- 2 

The uniform state of stress assumed by the Convergence- 
Confinement method can be expressed as a o = a = ~ and 
k = a / a =1 (see Fig. lb). 

The elasto-plastic problem of excavating a circular tun- 
nel in a non-uniform stress field has been studied analyti- 
cally by a few investigators. 
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Figure 11. a) Measured values of vertical stress ~ as a function of depth z in 
different regions of the world, b) Corresponding values of horizontal-to-vertical 
stress ratio k (adapted from Hock and Brown 1980). 

Detournay and Fairhurst (1987) considered the case of a 
circular cavity subject to unequal far-field stresses and 
excavated in a Mohr-Coulomb material. Figure 12a illus- 
trates the problem considered. A circular cavity of radius R 
is subject to a uniform internal pressure p~ and horizontal 
and vertical stresses ~ and ~, respectively; the figure 
considers the case ~ >~  (because of the symmetry of the 
problem, the case ~ <~  can be obtained by rotating the axes 
of the cavity through 90°). 

In contrast to the Hock-Brown failure criterion (A-2) 
discussed in Appendix A, the Mohr-Coulomb failure 

criterion considered by Detournay and Fairhurst is 

a, = K (~3 + ~i (22) 

where ~ is the unconfined compressive strength of the 
intact rock and Kp is the 'passive reaction' coefficient that is 

computed from the friction angle ¢ of the 
intact rock as 

1 + sin ~ (23) 
Kp - 1 -  sin 

It was found that, when the stress 
state represented in Figure 12a is ex- 
pressed in terms of the parameters 
and k defined by equations (21) and (20), 
respectively, cavities with horizontal- 
to-vertical stress coefficients k smaller 
than a limiting value k~ m are statically 
determinate. The authors also made the 
interesting observation that the mean 
radius of the plastic region around the 
tunnel and the mean convergence at the 
crown and sidewall of the tunnel are the 
same as the corresponding values for a 
cavity subject to hydrostatic far-field 
stresses % --i.e., comparing Figures lb 
and 12a, R 1=0.5(R 11 +R t2) and ur -- 0.5 
(url+ ur,). ~avities ~ith a%orizontal-to- 
vertica~ stress coefficient k larger than a 
limiting value kl~, are statically inde- 
terminate and develop a 'butterfly- 
shaped'failure zone (see Figure 12a); for 
these cases, the extent of the failure 
zone and the displacements around the 
periphery of the tunnel are decidedly 
non-uniform - -and  have no apparent 
relationship to the case of uniform load- 
ing % represented in Figure lb. 

The limiting coefficient kt~ m can be 
determined from the values of scaled 
mean pressure ~o / ~ and friction angle 

in Figure 12b. Note that the diagram 
in Figure 12b assumes that the cavity is 
unsupported. Because of the self-simi- 
lar nature of the problem, the diagram 
also applies to cases in which there is a 
uniform internal pressure acting inside 
the cavity. In such cases, the value ofkt~ m 
is read from Figure 12b by taking an 
equivalent ratio of mean pressure and 
compressive strength ~ / ~ ,  I e-' as given 
by the expression in equation i~24), (after 
Detournay and St. John 1988), 

~° (i P~ 
°'~i (24) 

Pi ~o ( K p - 1 ) + l  

Figure 12b can be used to evaluate 
the applicability of the Convergence 
Confinement method when the far-field 
stresses are non-uniform. For tunnels 

characterized by coefficients k smaller than the value kt, m 
shown in the figure, the Convergence-Confinement method 
provides a reasonable estimation of the shape of the failure 
zone and displacements to expect around the cavity. For 
tunnels characterized by coefficients k larger than the 
value ku~ shown in the figure, the resulting shape and 
extent of the failure zone and the convergence around the 
tunnel will be too variable to apply the method. For these 
cases, numerical analysis should be used for the design. 

As mentioned above, Figure 12b applies to Mohr-Cou- 
lomb materials characterized by a friction angle ¢ and 
unconfined compressive strength % (and linear failure 
envelope). For Hoek-Brown materials considered in this 
study, an equivalent diagram to that represented in Figure 
12b could be constructed by approximating the Hoek-Brown 
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parabolas  of  F igure  A-1 aS s t r a igh t  l ines  wi th  'equivalent '  
friction angle  @ and unconfined compressive s t reng th  ~ 
(examples of this  type  of approx imat ion  can be found in 
Hoek 1990). 

For  tunne l s  d r iven  in Hoek-Brown ma te r i a l s  under  
unequa l  far-f ield s t resses ,  an  ind ica t ion  of the  expected 
shape  of the  fa i lure  7one - - a n d  thus  an  e s t ima te  of the  
appl icab i l i ty  of the  Convergence-Conf inement  method,  can 
be obta ined  from elasl;ic ana lys i s .  F igure  13a p resen t s  the  
resu l t s  from an  ana lys i s  of th i s  type.  The dif ferent  curves 
in the  f igure r e p r e s e n t  the  ex ten t  of the  'over-s t ressed '  
regions de t e rmined  by  compar ing  the  m a x i m u m  and mini-  
mum elas t ic  s t resses  a t  a poin t  as  given by the  Kirsch 
elast ic  solution,  wi th  the  Hoek-Brown s t r eng th  cr i te r ion  
(A-2), i.e., 

( 
a l  > era + aci /m b + S (25) 

Oci ] 

I f  the  e las t ic  s t resses  exceed the  s t r eng th  indica ted  by 
equat ion  (25), the  rock a t  t h a t  poin t  is over-stressed. The 
d i a g r a m s  in F igure  13a show cases  of unequal  far-field 
s t resses  charac te r i zed  by ~ =7.5 MPa  and different  values  
of hor izonta l - to-ver t ica l  s t ress  ra t io  k, toge ther  wi th  rock- 
mass  s t r eng th  p a r a m e t e r s  ~ =20 MPa,  mb=l.8 and s =1.3 
x 10 a in the  yield cr i te r ion  (25i. The curves on the r igh t  side 
of the  d i a g ra m correspond to hor izonta l - to-ver t ica l  s t ress  
coefficients k < 1 and  the curves on the  left  side of the  
d i a g ra m to coefficients k > 1. The equat ions  and a spread-  
shee t  needed to const ruct  these  curves a re  shown in Ap- 
pendix  D. I t  is seen, for example ,  t ha t  for k < 0.6, the  over- 
stressed region has  the  'bu t te r f ly '  shape  discussed in the  
ana lys i s  by De tournay  and Fa i rhu r s t .  The Convergence- 
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Confinement  method  should  not  be used  for such cases. 
Elas t ic  rock-suppor t  in t e rac t ion  ana lyses  such as those  
presented  by Eins te in  and Schwar tz  (1979) and  Matsumoto  
and Nish ioka  (1991) a re  p re fe rab le  in  these  cases. Wher-  
ever  possible,  r esu l t s  ob ta ined  from these  e las t ic  ana lyses  
should be verif ied aga ins t  r esu l t s  ob ta ined  from elasto-  
plast ic  numer ica l  ana lyses .  The l a t t e r  consider  s t ress  and  
d i sp lacement  changes  t ha t  occur due to format ion  of the  
plas t ic  zone. 

However,  a l though approx imate ,  the  shape  of the  plas t ic  
zone obtained from the  elast ic  over-stressed analys is  is 
general ly  comparable  to the  correct  one (note t ha t  the  extent 
of the  plast ic  or fai led zone, can be considerably  underes t i -  
mated  by this approach).  For  example ,  Shen and Bar ton 
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(1997) have used the  e las t ica l ly  over-stressed zone concept 
to ident i fy the  shape  of regions where  shea r  fai lure is l ikely 
to occur in heavi ly  jo in ted rock-masses.  They showed tha t  
the  shape  of the  regions of ' s l ipping '  jo in ts  derived from 
elast ic  analys is  was comparable  to the  shape  obtained using 
the discrete e lement  numerica l  model UDEC (Cundal11971). 

F igure  13b shows a FLAC 3D e las to-p las t ic  model  of the  
problem shown in F igure  4; the  e las to-p las t ic  model  con- 
s iders  the  far-f ield s t resses  to be ~ =10.3 MPa and ~ =4.7 
MPa (i.e., ~o = 7.5 MPa  and k = 0.45). I t  is seen t ha t  the  
shape  of the  r e su l t ing  fa i lure  zone in the  F I A C  3D model is 
comparable  to the  shape  given by the  curve corresponding 
to k = 0.45 in F igure  13a. 

The assumption of circular  cross-section of the tunnel  in 
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The extent p(k)=dR of the 'overstmssed' region is defined by points where, 

c r l > a 3 + G c i ( m b  t~3 + s / a  % / 

R = I m  

t~x = 4.65 MPa 

a z  = 10.34 MPa 

ao  = 7.5 MPa 

k = 0.45 

~ci = 20 MPa 

m i =  15 
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Figure 13. a) Diagrams indicating the extent o f  the elastically 'over-stressed" 
regions computed from the elastic analysis  o f  a circular cavity subject to non- 
hydrostatic loading; the charts are valid for ratios m b %i / ~ = 4.8 and s / m ~ = 4 
× 10 +. For example, when ~ =7. 5 MPa, ~i =20 MPa, m b =1.8 and s =1.3 × 103 (see 
Appendix D). b) FLAC 3D elasto-plastic analysis  o f  the problem represented in 
Figure 4 for highly unequal far-field principal  stresses. 

combination with hydrostat ic  far-field 
stresses guarantees  tha t  the displace- 
ments  around the tunnel  will be con- 
s tan t  all a round the periphery. In prac- 
tical design of tunnels,  the actual  cross- 
section depends mainly  on the purpose 
of the  tunnel .  For  example, Figure 14a 
shows a q~orseshoe' shape chosen for a 
motorway tunnel  in Germany.  The width 
and height  of the  cross section depend on 
the number  of lanes and maximum height 
of vehicles tha t  the  tunnel  needs to serve. 

For  cases in which the cross-sec- 
t ional  a rea  of the  tunnel  is not circular,  
the  Convergence-Confinement  method 
can sti l l  be used to provide a first  esti- 
ma te  of the  extent  of the  fai lure zone 
and the resu l t ing  convergence of the  
wails.  Wi th in  cer ta in  l imits ,  the  shape 
of the  tunne l  can be regarded  as circu- 
la r  wi th  a r ad ius  equal  to the  mean 
value of the  ma x imum and min imum 
dimensions  of the  section. In such cases, 
the  mean  extent  of the  fai lure zone and 
the mean  convergence a t  the  walls  for 
the  non-circular  geometr ies  are  compa- 
rable  to the  values  one would predict  for 
the  equiva lent  c i rcular  section. 

F igure  14 shows the  resu l t s  of a 
3DEC (I tasca Consul t ing  Group 1998a) 
e las to-p las t ic  ana lys i s  of the  cross-sec- 
t ional  a rea  shown in F igure  14a for the  
s t ress  condit ions and  rock-mass  and 
suppor t  p roper t ies  ind ica ted  in the  fig- 
ure. Appl ica t ion  of the  Convergence- 
Confinement  method assuming  the sec- 
t ion to be c i rcular  of r ad ius  R = 4 m, 
leads  to a p las t ic  z o n e R .  = 6 m in 
extent .  I t  is seen  t h a t  th~'s ex ten t  is 
comparab le  wi th  t h a t  ob ta ined  from 
the  3DEC model  in which the ac tua l  
geomet ry  of the  cross-sect ion is consid- 
ered. Resul t s  for the  loads and the. 
convergence in the  l in ing are  also com- 
parable .  

8. D i s c u s s i o n  

The Hoek-Brown cri terion and its 
scaled form discussed in Appendix A is 
a convenient  and  widely used method 
for descr ib ing  the  s t r eng th  of rock- 
masses  in si tu.  When  apply ing  the cri- 
ter ion to rea l  cases, the  engineer  should 
bea r  in mind  the  l imi ta t ions ,  pointed 
out by Hoek and Brown in der iving the 
cri terion.  Probably  the  most  impor tan t  
of these  is the  assumpt ion  of elast ic  

202 TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY Volume 15, Number  2, 2000 

 
 

 



perfectly-plastic isotropic behavior for the material.  If the 
rock-mass contains joints with a preferred orientation, the 
mechanical behavior can be expected to be anisotropic and 
the Hoek-Brown criterion may give quite misleading re- 
sults. In such cases, a t rea tment  with elaste plastic non- 
isotropic models (such as the ubiquitous joint model imple- 
mented in the continuum code FLAC) or with discontinuum 
models (such as UDEC) would be more appropriate (Itasca 
1996, 1998). 

In cases where the rock-mass is reasonably well described 
as isotropic, such that  the Hoek-Brown criterion can be 
applied with reasonable confidence, the Convergence-Con- 
finement method described in this paper can be used to obtain 
a useful estimate of the magnitude of loads that  the rock-mass 
will transmit to supports installed behind the face of a tunnel. 

As discussed in Section 2, the Convergence-Confine- 
ment method relies on several simplifying assumptions, 
the most important  of which are the 
circular geometry of the tunnel  and 
hydrosta t ic  (or uniform) far-field 
stresses. In this case, the loads trans- a) 
mitted by the rock-mass to the sup- 
port are uniform within each sec- 
tion. If the geometry of the tunnel is 
non-circular or the far-field stresses 
are non-uniform, the loads will not 
be uniform and bending moments 
will be induced in the support. 

For situations in which the as- 
sumptions mentioned above are vio- 
lated, the Convergence-Confinement 
method is still useful in the early 
stages of the design. As discussed i n  
Section 7, a characteristic tunnel ra- 
dius and a characte~ristic uniform 
stress can be computed from the ex- 
isting geometry and far-field stresses 
and the engineer can then make quick 
comparisons of the mechanical re- 
sponse of different support  al terna- 
t i v e s - u n d e r  representat ive condi- 
tions of rock-mass deformability and 
strength. This can help in deciding on 
the most convenient support system b) 
in the actual case. The final design of 
the support--which would probably 
require consideration of the distribu- 
tion of bending moments and com- 
pressive loads induced by the non- 
uniform far-field s t re~ses--  can be 
made la ter  on the basis of more rigor- 
ous numerical analyses of the rock- 
support interaction problem. 

In summary,  the Convergence- 
Confinement method is a useful tool 
not only for the design of supports in 
tunnels, but also as a simple il lustra- 
tive model that  allows a bet ter  under- 
standing of the complex problem of 
transference of loads in the vicinity of 
the tunnel face. 
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Appendix A. The strength and deformability of 
rock-masses according to the Hoek-Brown failure 
criterion. 

The Hock-Brown criterion has found wide practical ap- 
plication as a method of defining the stress conditions under 
which a rock-mass will deform inelastically and, if not 
supported adequately, collapse. 

The parameters defining the Hock-Brown criterion can 
be estimated from a combination of laboratory tests on 
intact rock cores and an empirical 'adjustment' to account 
for the reduced strength of the rock-mass due to the pres- 
ence of weaknesses and jointing. 

It must be noted that this criterion assumes continuum- 
isotropic behavior for the rock-mass and should not be 
applied to cases in which there is a preferred orientation of 
jointing, such that the mass would not behave as an isotro- 
pic continuum. 

Testing of rock specimens under triaxial conditions of 
loading allows the combination of stresses that lead to 
failure (or collapse) of the specimen to be determined. 
According to Hoek and Brown, the failure condition of intact 
rock samples is given by the following parabolic law (Hock 
and Brown 1980), 

/ aa 
1 (A-l) or1 = if3 + crci ~: m i ~ + 

where 
a s is the confining stress applied to the sample (e.g., in 

MPa); 
a 1 is the axial stre,'3s that produces failure of the sample 

(e.g., in MPa); 
~, is the unconfined compression strength of the intact 

rock (in MPa); 
m~ is a dimensionless parameter, the value of which 

depends on the type of rock being tested. 

In order to characterize the intact rock in terms of 
equation (A-l), it is necessary to determine the parameters 
a,  and m~. This is done by statistical analysis of strength ¢ri 
observed for various values of confining stress ¢r 3 in triaxial 
tests (Hock 1983). Appendix B explains this procedure and 
lists the equations needed to perform the analysis. 

To illustrate the application of equation (A-l), let us 
consider the triaxial test results shown in Figure A-1 ob- 
tained by Franklin and Hock (1970) for samples of different 
rock types: /) granite, ii) quartz dolerite and iii) marble 
(details of the tests can be found in the original paper; 
Appendix B shows a summary only of the results). 

The horizontal and vertical axes in the diagram corre- 
spond, respectively, to Lhe confining stress ¢r 3 and the axial 
stress at failure a~ divided by the unconfined compression 
strength ~, for each rock type. The dots represent the pairs 
(G3, cry) obtained from the triaxial tests (see Appendix B). 
The solid lines are the corresponding failure envelopes 
defined by equation (A-l) with the parameters G, and m, 
computed from equaticns (B-l) and (B-2) in Appendix B. It 
can be seen that, although there is some dispersion in the 
results, the general trend is for the scattered points to align 
to the parabolas defined by equation (A-l)~). 

Triaxial testing of rock samples is an expensive proce- 
dure and, in most cases, results of the extensive tests needed 
to determine the parameters ~ and m. in the relationship 

. 
(A-l) are not available. In this case, when mformatmn on 
the unconfined compre,,;sive strength is available (e.g., from 
UCS tests or, indirectly, from Point Load Tests), the param- 
eter m, may be estimated from empirical charts or tables 
(Hoek et al. 1995). 

Table A-1 and Fig-are A-2, adapted from Lama and 
Vutukuri (1978), Goodman (1980) and Hoek and Brown 
(1997), respectively, show typical values of ~, and m~ for 
different rock types that could be taken as a reference for 
use in equation (A-l). 

" 6  C ~  

4.0 

3.5 

3.0 

;~ ~ 2.5 ,~.~ 

2.o 

1.5 

1.0 
0.0 0.I 0.2 0.3 0.4 0.5 

Ratio of confining stress and a 3 
unconfined compressive strength 

~ci 

Figure A-1. Failure envelopes obtained from triaxial tests of 
samples of different rock types (after Franklin and Hock 
1970). The horizontal and vertical axes represent the confin- 
ing stress a 3 and the maximum axial stress G 1 respectively 
divided by the unconfined compressive strength ~, of the 
sample (see Appendix B). 

As noted earlier, joints and defects in a rock-mass reduce 
the strength of the mass below the strength of an intact 
specimen of the same rock type. By using the so-called 
Geological Strength Index (or GSI) as a scaling parameter, 
the failure criterion defined by equation (A-l) can be ad- 
justed to provide an estimate of the decreased strength of 
the rock-mass in the field. 

According to Hoek and Brown (1997), the GSI is an 
empirically derived number that varies over a range be- 
tween 10 and 100 (the GSI is dimensionless), and can be 
estimated by examination of the quality of the rock-mass in 
situ--by direct inspection of an outcrop, for example. By 
definition, GSI values close to 10 correspond to very poor 
quality rock-masses, while GSI values close to 100 corre- 
spond to excellent quality rock-masses. 

Figure A-3 (adapted from Hock and Brown 1997, and 
Hock et al. 1998) shows how the GSI can be estimated from 
the structure and surface conditions of the rock-mass (for 
example, a rock-mass with Blocky/Disturbed structure and 
Poor surface condition will have a GSI close to 30). 

The value GSI = 25, indicated by a discontinuous line in 
Figure A-3, is significant in that it defines the limit between 
rock-masses of very poor quality (GSI < 25) and those of good 
to reasonable quality (GSI > 25). For rock-masses of good to 
reasonable quality (i.e., GSI > 25) the Geological Strength 
Index is equivalent to the Rock Mass Rating (RMR) intro- 
duced by Bieniawski (1976) when the rating for Groundwa- 
ter is assessed as 'dry' and the rating for Joint Orientation 
as 'favorable'. 
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Table A- 1. Reference values for the unconfined compresswe strength ~e Porsson s ratw n, Young s Modulus , Shear Modulus 
G and unit weight y for intact rock (adapted from Lama and Vutukuri 1978 and Goodman 1980). 

Rock type 0"ci [MPa] v E [MPa] G [MPa] y [MN/m 3] 

1) Andesite 130.6 0.16 44.3 x 103 19.1 x 103 25.2 x 10 -3 
2) Basalt  148.0 0.32 33.9 x 103 12.8 x 103 27.8 x 10 -3 

3) Conglomerate 30.3 0.12 1.3 × 103 0.6 × 103 24.2 × 10 -3 
4) Diabase 321.3 0.28 95.8 × 103 37.4 × 103 28.8 x 10 -3 
5) Dolomite 46.9 0.29 29.0 x 103 11.2 x 103 24.5 x 10 -3 

6) Gneiss 165.0 0.27 76.3 x 103 30.0 x 103 26.8 x 10 -3 
7) Granite 141.1 0.22 73.8 x 103 30.3 x 103 26.4 x 10 -3 

8) Limestone 51.0 0.29 28.5 x 103 11.1 x 103 23.3 x 10 -3 

9) Quartzite 320.1 0.11 88.4 x 103 39.8 x 103 25.7 x 10 -3 

10) Sandstone 73.8 0.38 18.3 x 103 6.6 x 103 21.4 x 10 -3 

11) Siltstone 122.7 0.22 26.2 x 103 10.7 x 103 25.4 × 10 -3 
12) Tuff 11.3 0.19 3.7 x 103 1.5 x 103 23.5 x 10 -3 

Origin of the samples: 1) Palisades Dam, Idaho, USA; 2) Nevada Test Site, USA; 3) Me Dowell 
Dam, Arizona, USA; 4) New York, USA; 5) Minneapolis, Minnesota, USA; 6) Graminha Dam, 
Brazil; 7) Nevada Test Site, USA; 8) Bedford, Indiana, USA; 9) Baraboo, Wisconsin, USA; 10) 
Amherst, Ohio, USA; 11) Hackensack, N.Y., USA; 12) Nevada Test Site, USA. 

When the scal ing factor GSI is introduced,  the  Hoek- 
Brown fai lure cr i ter ion for the  rock-mass is given by the 
following re la t ionship  (Hoek and  Brown 1997): 

0"1=0"3+0"c~(m ber  3 )a + s (A-2) 

The pa ramete r  m b in equation (A-2) depends on both the  
intact rock pa ramete r  m~, of equation (A-l), and the value 
of GSI, as defined by the equation 

The pa r ame te r s  s and  a also depend  type 
empir ical ly  on the va lue  of GSI as fol- 
lows, for GSI > 25, >~ 

s ! 
(A-4) 

a =0 .5  

and for GSI < 25 o~ 

s = 0 (A-5) 

a = 0 6 5 - ( G S I  ~ 
• ~ 2 0 0  J 

Table A-2 l is ts  the  va lues  ofmb, s and  © 
a obtained from equat ions  (A-3), (A-4) ~. 
and (A-5) for different  values  of GSI. I t  
can be seen t ha t  when GSI =100 (the m 
hypothet ical  case in which the rock-mass  
has the same s t reng th  as the  in tac t  rock 
sample),  the  pa r ame te r s  a re  mb=m a s =1 
and a =0.5. Wi th  these  values ,  the  yield 
condition for the  rock-mass,  equat ion (A- r~ 
2), and  for the  in tac t  rock, equat ion (A- 
1), are  the  same. 

Londe (1988) showed t h a t  the  Hoek- e 
Brown fai lure cr i ter ion defined by  equa- 
tion (A-2) can be t r ans formed  into a 
'general '  fa i lure envelope t ha t  is inde- 
pendent  of the  pa r ame te r s  ~,, m b and s. 

The t r a n s f o r m a t i o n  s u g g e s t e d  by  
Londe applies  to the  pa r t i cu l a r  case a = 
0.5 and involves dividing the  s t ress  mag-  
ni tudes  by m b ~ and adding  the t e rm 

s/m 3. Consider ing the pa r a me te r s  in t roduced in equat ion 
(A-2), the  scaled s t resses  S 1 and S 3 can be defined as, 

0"1 S S 1 - - - + - -  
m b er~, m 2 (A-6) 

0"3 S 
8 3 - - - - + - -  mb ~ei m 2 

(A-7) 

Class Group 
Texture 

Coarse Medium Fine 

Conglomerate Sandstone Siltstone 
(22) (19) (9) 

Clastic 

Coal 
Organic (8-21) 

Non-elastic 
Carbonate Breccia Limestone 

(20) (8-10) 

Non-foliated Marble Homfels Quartzite 
(9) (19) (24) 

Slightly foliated Migmatite Amphibolite Mylonites 
(30) (25-31) (6) 

Foliated Gneiss Schists Phyllites 
(33) (4-8) (10) 

Light 
Granite Rhyolite 

(33) (16) 

Granodiorite Dacite 
(30) (17) 

Gabbro Dolerite Basalt 
(27) (19) (17) 

Dark 

Agglomerate Breccia Tuff 
Extrusive pyroclastic (20) (18) (15) 

Figure A-2. Reference values for the coefficient m for different rock types (adapted 
from Hock and Brown 1997). The value of m i is shown in parentheses below the 
name of the rock. 
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With the s t resses  cr~ and cr~ replaced by the  scaled 
s t resses  Ss and $I from equat ions  (A-6) and (A-7), the  fa i lure  
cri ter ion for the  rock-mass,  equat ion (A-2), can be wr i t t en  in 
the  form (Londe 1988) 

S :t = S ~ + ~ (A-S) 

Note t h a t  in this  Ye-scaled'  form of the  fa i lure  cr i ter ion 
the p a r a m e t e r s  ~ ,  m~ and s a re  'h idden '  wi th in  the  scaled 
s t resses  S~ and S~; the  re la t ionsh ip  apphes" then  to any.type~) 
of rock t ha t  is a s sumed  to obey the  Hoek-Brown er i termn . 

To i l l u s t r a t e  the  use  of  Londe 's  t r ans fo rmat ion ,  we will  
r e -examine  the  t r iox ia l  t e s t  r esu l t s  for the  samples  of 
grani te ,  quar tz  doler i te  and  marb l e  p re sen ted  in F igure  A- 
1. Note t h a t  the  re ,mlts  for in tac t  rock samples  can be 
equal ly  app rox ima ted  by equa t ion  (A-2), t a k i n g  GSI = 100, 
s = 1, m~ = re, and  a = 0.5. F igu re  A-4 r ep resen t s  the  
sca t te red  pa i r s  (era, cry) of F igu re  A-1 toge the r  wi th  the  
Hoek-Brown fa i lure  c r i t e r i o n - - e q u a t i o n  (A-2) or (A-1)- -  
p lo t ted  in t e rms  of sca led  p r inc ipa l  s t resses  (i.e., wi th  the  

axes r e p r e s e n t i n g  the  t r ans fo rmed  s t resses  S 1 and S 3 
defined by  equat ions  A-6 and A-7). I t  is seen t h a t  the  
s t resses  a t  fa i lure  for al l  t h ree  types  of rocks al ign now to 
the  'genera l '  form of the  Hoek-Brown cr i ter ion  defined by 
equat ion (A-8). 

The use of equat ion (A-8) r a t h e r  than  equat ion (A-2) can 
lead to impor t an t  s implif icat ions in mechanical  analyses  
involving the Hoek-Brown cri terion.  Car ranza-Tor res  and 
F a i r h u r s t  (1999) have appl ied  the  t r ans format ion  (A-8) in 
solving the  problem of excavat ing  cyl indrical  and spherical  
openings in rock-masses  t h a t  sa t i s fy  the  Hoek-Brown fail- 
ure  criterion. This solut ion is the  basis  for construct ion of 
Ground Reaction Curves in the  Convergence-Confinement  
method,  discussed in Section 3. 

Ju s t  as  the  s t r eng th  of the  rock-mass  is usual ly  lower 
than  the  s t reng th  of the  in tac t  rock, the  (elastic) deforma- 
tion modulus  of the  rock-mass  is also usual ly  lower than  
tha t  of the  in tac t  rock. Seraf im and Pere i ra  (1983) have 
proposed an empir ica l  re la t ionsh ip  to compute the  deforma- 

O 

GEOLOGICAL STRENGTH INDEX (GSI) 

From the description of structure and surface 
conditions of the rock mass, pick an appropriate box in 
this chart. Estimate the average value of the Geological 
Strength Index (GSI) from the contours. Do not attempt 
to be too :precise. Quoting a range of GSI from 36 to 42 
is more realistic than stating that GSI = 38. It is also 
importunt to reeoguize that the Hock-Brown criterion 
should ordy be applied to rock masses where the size of 
the individual blocks or pieces is small compared with 
the size of the excavation under consideration. When 
individualbloek sizes are more than approximately one 
quarter than the excavation dimension, failure will 
generally be structurally controlled and the Hock- 
Brown criterion should not be used. 

INTACT OR MASSIVE - Intact rock 
specimens or massive in situ rock with 
very few widely spaced discontinuities. 

BLOCKY - Very well interlocked 
undisturbed rock mass consisting of 
cubical blocks formed by three 
orthogonal discontinuity sets. 

VERY BLOCKY - Interlocked, 
partially disturbed rock mass with 
multifaceted angular blocks formed by 
four or more discontinuity sets. 

BLOCKY / DISTURBED - Folded 
and/or faulted with angular blocks 
formed by many intersecting 
discontinuity sets. 

DISINTEGRATED - Poorly 
interlocked, heavily broken rock mass 
with a mixture of angular and rounded 
rock pieces. 

FOLIATED / LAMINATED - Folded 
and tectonically sheared foliated rocks. 
Schistocity prevails over any other 
discontinuity set, resulting in complete 
lack of blockiness. 

SURFACE CONDITIONS 
Decreasing surface quality ~ >  

• 

~q N ~  09o 

/ '° / i / ' / ,  J i 

60 

I / / , /  
Figure A-3. .Empirical chart for the estimation of the Geological Strength Index (GSI) based on the characteristics of the rock- 
mass (adapted from Hock and Brown 1997 and Hock et al. 1998). 
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Table A-2. Values of coefficients mr: s and a as a function of 
the Geological Strength Index (GSI), computed from 
equations (A-3), (A-4) and (A-5), respectively. (Note that the 
second column represents ratio m / m j  values of m~ for 

. b i 

different rock types are given ~n Figure A-2). 

GSI mb/mi s a 

100 1.00 1.00 0.5 
75 40.95 x 10 -2 621.77 x 10 -4 0.50 
50 16.77 × 10 -2 38.66 × 10 -4 0.50 

25 + 6.87 x 10 -2 2.40 x 10 -4 0.50 
25- 6.87 x 10 -2 0.00 0.53 
10 4.02 x 10 -2 0.00 0.60 

tion modulus  of the  rock-mass  from the unconfined com- 
pressive s t reng th  of the  in tac t  rock sample  and  the  value  of 
the Rock Mass  Rat ing  (RMR) by  Bienawski  (1976). Based on 
the original  equat ion by  Seraf im and  Pere i ra ,  Hoek and 
Brown (1997) propose the  following re la t ionsh ip  be tween 
the rock-mass modulus  E and  the  Geological S t reng th  
Index GSI: 

G S 1 - 1 0  

4 O  

E r,n = 1000 C (Gc~) 10 (A-9) 

where 

C(~:~ = 1  i f ~ ,  _>IOOMPa 

- V "/Gci i f  ~ < 100 MPa 
100 

In equat ion (A-9), both  the  unconfined compressive 
s t rength  ~ and the rock-mass  modulus  E m are  expressed in 
MPa. 

In e las to-plas t ic  ana lyses  of de fo rma t ions - - such  as the  
one presented  la te r  in Section 3, the  rock-mass  shea r  modu- 
lus G m is used r a the r  t han  the  deformat ion modulus  E 
given by equat ion (A-9). The shea r  modulus  of the  rocl¢ ~- 
mass  can be es t ima ted  from the  deformat ion modulus  using 
the classic re la t ionsh ip  from isotropic elast ic i ty ,  

G E rm (A-10) 
r"~ - 2 ( l + v )  

In equat ion (A-10), v is Poisson's  ra t io  for the  rock-mass,  
and is usua l ly  considered to va ry  be tween  0.1 and 0.3 (Hoek 
and Brown 1980). 

To i l lus t ra te  the  appl ica t ion  of equat ions  (A-9) and (A- 
10), let  us consider the  proper t ies  of the  gran i te  sample  
l is ted in Table A-1. The unconfined compressive s t r eng th  of 
the in tac t  rock is approx ima te ly  a a = 141 MPa, i f  the  
Geological S t reng th  Index of the  rock-mass  is GSI = 50, then  
the deformat ion modulus  of the  rock-mass  is, from equat ion 
(A-9), E = 1187 MPa. I fPo i sson ' s  ra t io  for the  in tac t  rock 
and rock~-mass are  both a s sumed  to be equal  to 0.22 then,  
from equat ion (A10), the  shea r  modulus  of the  rock-mass  is 

0.4 I 

I 
i 

Granite 
Dolerite o 
Marble A 

0.3 . . . . . .  

0.00 0.025 0.05 0,075 O. I 0 

,, 1 
g l 

0.0 

¢~3 s 
- -  J r -  _ _  Scaled confining stress, S 3 -  mb ~ci mb 2 

Figure A-4. Results from triaxial tests shown in Figure A-1 
with the principal stress axes G 1 and G3 normalized accord- 
ing to transformations (A-6) and (A-7). Note that in this 
reference system results for all three rock types fall on the 
'general" failure envelope given by equation (A-8) (Londe 
1988). 

Grin =486 MPa. The elast ic  c ons t a n t sE  and G for the  rock- . . r m  r m  

mass  are  seen to be mgmficant ly  lower t h a n  the  correspond- 
ing constants  E and G for the  in tac t  rock sample  l is ted in 
Table A-1. 

Notes for Appendix A 
") The observed dispersion appears to be proportional to the 

number of specimens tested, with the highest dispersion for the 
48 samples of granite and the lowest for the 14 samples of 
marble (see Appendix B). 

b~ It should be emphasized though that the equation (A-8) is 
strictly valid only when the parameter a in equation (A-2) is 
equal to 0.5. According to equations (A-4) and (A-5), a = 0.5 for 
the broad range of situations in which GSI = 25. 
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Appendix B. Determination of the parameters G~ 
and rnj from results of triaxial tests on intact rock 
samples. 

The parameters ~ and m~ in equation (A-l) can be 
obtained from statistical analysis of the (~3, az) results 
obtained from triaxial tests on intact rock specimens - - a  s is 
the constant confining stress applied to the sample and a~ is 
the axial stress that  produces collapse of the sample. Hoek 
(1983) describes the basis of the statistical analysis and the 
needed equations. A brief summary of the equations is 
presented below. 

Ifn rock cores have been tested and n pairs (a~, a 1) have 
been obtained from the tests, the parameters ~ and m, can 
be found from the following expressions (Hoek 1983): 

- z In Zo3 Cain 2 - r_(a  - ] 

1 In  Z o 3 ( a l - o ' 3 ) 2 - Z o ' 3 ~ , ( O ' l - O ' 3 )  2 ] 

( B - l )  

(B-2) 

A regression coefficient r can be evaluated to estimate 
the 'goodness of fit' of the parabolic approximation. The 
coefficient is computed as, 

r2  _ In Err 3 ( i f 1 -  tr3) 2 - Err3 Z (trl - ffa)2] 2 

In Z(732- (X aa) 2] [n Z(a I - ira) 4 -(Z(trl - aa)2) 2] (B-3) 

For example, Table B-1 lists the pairs (a3, a 1) obtained 
by Franklin and Hoek (1970) from triaxial tests on samples 
of granite, quartz dolerite and marble -- these results have 
been discussed in Appendix A (see Fig. A-l). 

The parameters (ra, m~ and r 2 computed using the 
equations B-l, B-2 and B-3 are indicated below the values 
of a 3 and trl for each rock type. 

Table B- I. Stress pairs (tr 3, (r 1) obtained from triaxial tests on 
different rock samples (after Frankl in  and Hoek 1970). The 
parameters  ~e m~ and r 2, obtrained with equations (B-l) 
through (B-3) are indicated below the tabulated (a 3, tr 1) 
values. 

Granite (48 samples from Blackingstone quarry, Devon, UK) 

a3 IMPa] al [MPa] a3 [MPa] tr I [MPa] tr 3 [MPa] al [MPa] 

9.3 309.3 
43.2 539.8 
55.8 569.5 

2.8 249.0 
0.0 197.3 

21.4 407.6 
10.7 316.0 
34.8 512.7 
0.0 171.5 
6.5 273.3 
0.0 135.9 
5.0 293.1 
7.8 276.8 

33.9 453.9 
0.0 213.6 

51.7 523.9 

43.5 541.0 
0.0 179.3 
0.0 111.3 
1.6 234.3 

19.7 406.5 
0.0 201.5 

25.8 431.1 
0.0 193.4 

38.1 543.7 
22.9 409.9 
27.1 392.8 
13.2 359.0 
28.5 486.8 

7.8 283.0 
39.2 480.8 
15.1 330.1 

29.4 485.8 
12.8 269.9 
49.3 488.4 
18.0 410.7 
0.0 195.9 

28.8 458.0 
0.0 196.1 
5.3 270.5 

21.7 415.9 
33.0 440.1 
16.4 340.4 
8.7 318.5 
9.9 312.1 

45.5 566.0 
7.4 284.4 

17.7 362.3 

trci = 210 MPa; m i = 21; r 2 = 0.91 

Quartz Dolerite (38 samples from Northumberland, UK) 

a 3 [MPa] a I [MPa] a 3 [MPa] a 1 [MPa] tr 3 [MPa] a 1 [MPa] 

5.0 333.8 
0.0 315.0 

23.9 453.6 
0.0 311.4 
0.0 314.4 
6.9 390.5 

20.7 457.1 
1.3 328.3 
0.0 315.7 

28.3 474.6 
31.0 496.4 
17.2 422.6 
42.1 552.2 

44.1 561.2 
34.7 498.9 
20.2 410.9 
0.0 305.1 

10.3 341.9 
34.5 497.8 
0.0 272.9 

42.9 514.8 
13.7 380.7 
0.0 210.7 
0.0 275.8 
0.0 312.0 

21.7 461.2 

0.0 331.8 
7.4 344.6 
3.5 284.7 
0.0 267.5 
0.0 299.7 

27.6 489.0 
2.4 341.0 

37.0 512.7 
0.0 214.4 

13.9 364.0 
0.0 273.7 
0.0 278.9 

¢7ci = 294 MPa; rn i = 13; r 2 = 0.92 

Carrara Marble (14 samples from Italy) 

a 3 [MPa] a I [MPa] a 3 [MPa] a I [MPa] a 3 ['MPa] al [MPa] 

30.9 205.9 0.0 90.3 35.2 217.2 
3.9 119.1 39.1 234.4 51.7 262.2 
0.0 93.1 21.8 179.2 25.2 188.1 

16.2 156.4 10.5 131.1 0.0 93.8 
2.2 111.6 47.5 263.1 

a c i  = 94 MPa; m i = 8; r 2 = 0.99 
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Appendix C. Spreadsheet 
implementation of the Convergence- 
C o n f i n e m e n t  m e t h o d .  

Figures C-1 through C-3 present a com- 
puter spreadsheet for implementation of 
equations in Sections 3, 4 and 5, in order to 
construct the GRC, SCC and LDP curves, 
respectively. 

The spreadsheet is divided in two main 
parts: a) Input of data and b) Output of 
results. 

In part a) (Fig. C-l), the geometry, rock- 
mass properties, loading conditions, distance 
to the face and properties of the three support 
systems discussed in Section 4 are entered. 

In part b) (Figs. C-2 and C-3), the elastic 
and plastic parts of the GRC, the LDP (from 
equation 18) and the SCC for individual and 
combined supports are defined. 

Linking of the cells in the spreadsheet is 
accomplished by giving a name to each cell 
and range of cells, and expressing formulae 
within the spreadsheet in terms of the named 
cells (see for example, Dodge et al. 1997). 

The names given to individual cells a r e  
indicated within parentheses at the side of 
the cells in Figures C-1 through C-3. 

For ranges of cells, defined by a box out- 
lined by dashed lines, the name is indicated 
at the bottom of the box. 

The values in the shaded cells in the 
spreadsheet are computed with formulas. 

Tables C- 1 and C-2 define the formulas for 
Figures C-2 and C-3---expressed in terms of 
cell/range names-- that  need to be entered in 
these cells. 

Note that the values shown in the spread- 
sheet are those for the practical example 
discussed in Section 6. To construct the dif- 
ferent curves shown in the diagram of Figure 
10, the following ranges must be plotted: 

• for the GRC, the ranges ure_gm and 
urp_grc in the horizontal axis and the 
ranges pip_grc, pip_grc, pip_r_grc a n d  
pip_f_grc in the vert ical  axis; the l a s t  
two ranges correspond to the in terna l  
pressure at the crown and floor of the 
tunnel--see points C and F in Figure 
10a. 

• for the LDP, the range ur_.ldp in the 
horizontal axis and the range If in the 
vertical axis. 

• for the SCC of individual supports, the 
ranges ur__sc, ur__ss and ur_sb in the 
horizontal axis and the ranges pi_sc, 
pi_ss and pi_sb in the vertical axis. 

• for the SCC of combined supports, the 
rangesur sc .b, andur ss binthehori- 
zontal axis and the ranges pi_sc_b and 
pi_ss_b in the vertical axis. 

i. + 

+(al) ~ (-,,) I " ' * . . m , N  
+R:(~] ................... + ................ :i.0+{R_t) . . . . . . .  o,, IMPII] 20.0 + (lllg..¢i) 

rq IS+(m_l) 
(,,$) Lmdlng v 025 (nu) 

~oo ~,~#a] - 7.5 (sILO) ¥ [deg] 30+(J~) 
+ G$1 40.(G81) 

. . ~ F ~ e  Elliot i:O!(L_f) 

(mS-l) BIo41d Smg (d-:~) l lhotmm or Conmm 
B[mm] 7e (B_s) o . p ~ a ]  3o.o {a~l_oc) 
D [ram] 127 (D_s) F., [GPa] 80.0 (E_c) 
A,+[m'] . . . .  ! : ~  (A j )  v, 0.=5 (nu_©) 
l=[m 4] 4.7eE-O6i(l_s) to[rnm] 30 It_c) 
E,[GPa] ~ =IO.O (E_J) 

Cm { 'S~m]  ................ } 1.0 ~(8_s) i 1~  [rnm] 19; (d..b) 

:+.+:@p~. :+: ....... 10:o~!+.) ..+: :~ii.i+:: + ¢ t m m . ]  o.= co j)) 

+ . . . . . . . . . . . . . .  +nw 10 (n_bolt) 
{ ~[m] O.S (el)) 

Figure C-1. First page of the spreadsheet. Data input. 

i(~) OUlmtrr 

point LCR I~[m] u, Imm] 

Figure C-2 (at left). Second page of the 
spreadsheet. Computation of the GRC and 
LDP. 
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/nd/vfd~ S u ~  

(I~.I} Bkxlud 
e[d,~ tl/0tmuL=) 
pu"=iMP=] :US. ~(.om=x_s) 
K,,, [MPWm] .......... :'~(K_==',p 
u~'~c[mm] (umvm_s) 

p, tx~,,] .,tram] : : 

[b.~=] Boa= 
a,, [m] O,e~(ac._b) 
Pb paP,,] OJ~i(pmev,_b) 
K,,(MPWm] eLOIE,~I (K_b] 
u='[mm] ~ (urmeo~,_b) 

(b,11.4) ~ 81ael + Bell= 

( b ~  Slmtcr~ or Cecuurut= 
I ~ I P = ]  0.U (pn.=_c) 
Ko[MPa/m] U,l/e~= (K_c) 
u=~[ml i" .......... ~:~(urmx_c) 

~ , ]  i,~[mJ . . . . . . . . . . . . . . . . . . .  

(ha-S) m=~-n= or Co.==U + 

! . . . . . . . . .  
0[~Pa] : ~ [ m ]  ............ . . . . . . .  ~ ~ P a ]  U r [rnrn] 

Figure C-3. Third page of the spreadsheet. Computation of 
the SCC. 

Table C-1. Formulas to be entered in the shaded cells in 
Figure 2. 

m_b =m_i*EXP((GSI-100)/28) 
s_coeff = IF (GSI>=25 , t -XP( (GSI -100 ) /9 ) ,0 )  
E_rm =SQRT(sig_ci/100)*10"((GSI-10)/40) 
G_rm =E_rm/2/(l+nu) 
K_psl =( 1 +SI N (psi*PI0 /180)) / (  1 -SIN (psi* PI0 /180) )  
S_0 =sig_0/(m_b*sig_ci)+s_coeff/m_b'2 
Pi_cr_s =1/16*(1-SQR'F(1+16*S_0))^2 
pi_cr =(Pi_cr_s-s_coeff/(m_b'2)) *m_b*sig_ci 
pie_grc =sig_0 (first row), =pi_cr (second row) 
ure_grc =(sig_0-pie_grc)/2/(G_rm*1000)*R_t*1000 
pip_grc =pi_cr*(12-pt_grc)/11 
pip_r_grc =pip_grc+gamma*(xi_grc*R_t-R_t) 
pip_f_gr¢ =pip_grc-garnma*(xi_grc*R t-R_t) 
pips_grc =pip_grc/(m_ b*sig_ci)+s_coeff/m_b'2 
xi_grc =EXP(2*(SQRT(Pi_cr_s)-SQRT(pips_grc))) 
urp_gr¢ =((K_psi-1)/(K_psi+l)+2/(K_psi+l)*xi_grc 

"(K_psi+ 1 )+( 1-2*nu)/4/(S_0-Pi cr_s)*LN (xi grc)'2 
-((1-2*nu)/(K_psi+l )*(SQRT(Pi_cr_s))/(S_0-Pi_cr__s) 
+(1-nu)/2*(K_psi-1)/(K_psi+l)A2/(S_0-Pi_cr._s)) 
*((K_psi+l )*LN(xi .grc)-(xi_grc)'(K_psi+l )+1 )) 
*R_t*(sig_0-pi_cr)/~(G_rm*1000)*1000 

If_r =-4+(pt_ldp- 1 )'12/~11 
If =If r*R t 
ur_ldp =ur_max*(1 +EXP(-If/I. 1/R_t))'-1.7 
Lf_2 =L_f 
ur_0 =ur_max*(l+EXP~I-L_f/1.1/R_t))A'l .7 

Table C-2. Formulas to be entered in the shaded cells in 
Figure C-3. 

theta_s = 180/n_B 
pmax_s =(3*A_s*l_s*sig_ys)/(2*S_s*R_t*theta_s*PI0/180 

*(3*l_s+D_s/1000*A_s*(R_t-t_B/1000-0.5*D_s/1000) 
*(1-COS(theta_s*PI0/180))))  

K_s =l/(((S_s*R_t'2)/(E_s* 1000*A_s))+(S_s*R_t'4/(E_s*1000*l_s) 
*((theta_s*PI0/180*(theta_s*PI0/180+SIN(theta_s*PI0 
/180)*COS(theta_s*PI0/180)))/(2*(SIN(theta_s*PI0/180) 
"2))-l)+(2*S_s*theta_s*PI0/180*t_B/1000*R_t)/(E_B*1000 
*(B_s/1000)'2)) 

urmax_s =pmax_s/K_s*1000 
pi_ss =0 (first row), =pmax_s (second and third rows) 
ur_ss =ur_O (first row), =ur_O+urmax_s (second row) 

=ur O+urmax_s*4 (third row) 
pmax_c =sig_cc/2*(1 -(R_t-t_c/1000)'2/R_t'2) 
K_c =E_c'1000/(1 +nu c)*-(R_t'2-( R_t-t_c/1000)^2)/((1-2*nu c)* 

R_t"2+(R_t-(t_c/1000))'2)/R_t 
urmaxoc =pmax_c/K_c*1000 
pi_$c =0 (first row), =pmax_c (second and third rows) 
ur_sc =ur_0 (first row), =ur_0+urmax c (second row) 

=ur 0+urmax_c*4 (third row) 
sc_b =2*PI0*R_t/n_bolt 
pmax_b = T _ b f / s c _ b / s _ l b  
K_b =l/(sc_b*s_lb)*(PI 0*(d_b/1000)^2*E_bolt*1000)/(4*l_b+ 

Q_b*PI0*(d b/1000)^2*E bolt*1000) 
urmax_b =pmax_b/K_b*1000 
pi_sb =0 (first row), =pmax_b (second and third rows) 
ur_sb =ur_0 (first row), =ur_0+urmax_b (second row) 

=ur_0+urmax_b*4 (third row) 
K_s_b =K s+K b 
urmax_$_b =lF(urmax_s<u rmax_b,urmax_s,urmax_b) 
pmax_$_b =K_s_b*urmax_s_b/1000 
pi_ss_b =0 (first row), =pmax_s_b (second and third rows) 
ur_$s_b =ur_0 (first row), =ur_0+urmax_s_b (second row) 

=ur 0+urmax_s_b*4 (third row) 
K_c_b =K_c+K_b 
urmax_c_b =lF(urmax_c<urmax_b,urmax_c,urmax_b) 
pmax_c_b =K c b*urmax c b/1000 
pLec.b =0 (first row), =pmax c b (second and third rows) 
ur_sc_b =ur_0 (first row), =ur_0+urmax c b (second row) 

=ur_0+urmax c b*4 (third row) 
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A p p e n d i x  D, E last ic  a n a l y s i s  of  c i rcu lar  tunne ls  in 
n o n - u n i f o r m  s t ress  cond i t ions ,  

The elastic solution of a circular cavity of radius R subject 
to non-uniform horizontal and vertical far-field stresses a x 
and ~ ,  respectively, and internal pressurep~ is given by the 
classical Kirsch solution (see, for example, Timoshenko and 
Goodier 1970). 

Considering the mean stress (r and the horizontal-to- o 
vertical stress coefficient k defined by equations (21) and 
(20), respectively, the scaled radial stress ~/ffo at a distance 
r from the center of the cavity is given by, 

R 2 k - 1  ~rr (r ' = 1-(7-)  + ff~-~ {1-4 (R-~12 + 3 (R~14] cos(20)+ ~-o (R12 (D- l )  
G o 

The scaled 'hoop' stress ~ / ~  is 

oo(r) R 2 ] k 
(D-2) 

and the scaled shear stress ~ / ~  is 

R 4 . (Yro(r)- k - l [ l + 2 ( R ~ - ) 2 - 3 ( - f i - )  ]sin(20) 
~o k +1 (D-3) 

The maximum and minimum principal stresses --(r~ and 
(r~, respectively, corresponding to the stresses ~ ,  (r~ and ~ 
defined above--are computed using the classic relation- 
ships (see, for example, Jaeger and Cook 1979): 

G~ (r )/G° - aJ(r° + --q- ~/ (GO/(T°2 (Tr/(T° )2--( (TrtrI(T°)2 

(D-4) 
The extent r of the 'over-stressed' region discussed in 

Section 7 can be found from the condition that  the strength 
of the material  --defined by the Hoek-Brown failure crite- 
rion (A-2)-- is exceeded. Considering the parameter  a to 
have the value 0.5 in equation (A-2), the condition is 
written as, 

Gl(r)>cr3(r)+cr~ (mb (Y3(r) s)  ~ + (D-5) 

The maximum value of r, can be obtained from the 
condition that  the left and right sides of expression (D-5) are 
equal. Thus, dividing both sides by m~ G~ and multiplying 
and dividing each term by Go, the inequality (D-5) trans- 
forms into 

(D-6) 
cr~ (r)/Go _ or3 (r)/(r o / a3 (r)/Go s 

m b a~zlO'o m b O'c~/O'o "l" V q" m~ ~./~o m~ 
The non-linear equation (D-6) must  be solved for the 

unknown r. Because of the method of scaling used in 
equation (D-6), the values obtained for the extent r are valid 
for constant ratios ofm~ ~ / G  and s m~ (see examplein Fig. 
13). 

(A) INPUT 

(A1) Goomltry 
R [m] 1.0 (R_t) 

(A3) Loldln9 

O z ~Pa ]  . . . . . . .  1 O ~ ~ l(~) 
!~ [MP~] o.ooi~) 

(A2) Rock mmm properUel 
o¢ [MPa] 20.0 (lllg..ci) 
m, 15 (re_l) 
GSI 40 (GSI) 
v 0.25~(nu) 

~) ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

oo [MPa] ~ : ( ~ )  . . . . . . . . .  :i " m~- :i:::;i~I(m_b) 

~ - - -  ~ , t  . . _ _ ~ ]  

ili!iiiiiiiii~iii?i!iio~'~ i: 

-11.$ 05 

i 

: 

....... ~ 1 ~ ) .  'i.Q...,.r...." 

,::::::i:, 

• !.! 

2 

t~ 
............ i i  

Condlt. r/R 

............... :~ ~ ........... ~:~:::: ~ .... i :  .... 

0, ~®,~ 1 .~  

• °'~ ~ i  

. . . .  ,~ . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . .  

Figure D-1. Spreadsheet for evaluation of  the extent of the 'over-stressed" region around a circular cavity subject to uniform 
internal pressure and unequal far-field principal stresses. 
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The solution of the non-linear equation (D-6) can be found 
with a spreadsheet such as shown in Figure D-1. Linkage 
between cells in the spreadsheet is accomplished using the 
formulae listed in Table D-1. Note that, as in the spreadsheet 
presented in Appendix C, cell and range-of-cell names are 
indicated within parentheses in Figure D-1. 

The equation solver implemented in most spreadsheet 
packages has to be used to evaluate the cells in the range 
r_R. In the commercial spreadsheet program Excel (see for 
example, Dodge et al. 1997) the 'Goal seek' tool has to be 
applied specifying ',Set cell:' to point to cells in the range 
yield, 'To value:' to be equal to 0.0 and 'By changing cell:' to 
point to the cells :in the range r_R. Note that  in this 
spreadsheet program, the 'Goal seek' tool applies to indi- 
vidual cells, so that  a macro should be recorded in order to 
find the solution in all cells of the range r__R simultaneously. 

Diagrams such as those presented in Figure 13a can then 
be constructed by plotting the ranges lheta and r_R in radial 
coordinates. 

Table D-1. Formulae to be entered in the shaded cells of the 
spreadsheet shown in Figure D-1. 

sO =0.5*(sx+sz) 
k =sx/sz 
pi_s0 =pi/s0 
scl_s0 =sig_ci/s0 
m_b :m_i*EXP((GSI-100)/28) 
s_coeff =IF(GSI>=25,EXP((GSI-100)/9),0) 
E_rm =SQRT(sig_ci/100)*10"((GSI-10)/40) 
G_rm =E_rrn/2/(l+nu) 

theta :-90+180*(point-1 )/16 
st_sO =1-1/r_R'2+(k-1 )/(k+l )*(1-4*l/r_R'2+3* 1/r_R'4) 

*COS(2*theta*PI0/180)+pi_s0*1/r_R'2 
see0 =1 +l/r_R'2-(k-1 )/(k+1)*(1 +3*l/r__R'4) 

*COS(2*theta*PI0/180)-pi_s0*l/r_R'2 
srt_e0 =-(k-1 )/(k+l )*(1 +2*1/r_R'2-3*1/r_R'4) 

*SIN(2*theta*PI0/180) 
s_l =(sr_s0+st_s0)/2+SQRT((sr_s0-sLs0)'2/4+srt_s0"2) 
s_3 =(sr_s0+st_s0)/2-SQRT((sr_s0-st_s0)'2/4+srt_s0"2) 
yield =s_l/(m_b*sci_s0)-s_3/(m_b*sci_s0) 

-SQRT(s_3/(rn_b*sci_sO)+s_coeff/m_b'2) 
r_R (see main text) 
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