
Future Generation Computer Systems () –

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

RT-ROS: A real-time ROS architecture on multi-core processors
Hongxing Wei a,1, Zhenzhou Shao b, Zhen Huang a, Renhai Chen d, Yong Guan b,
Jindong Tan c,1, Zili Shao d,∗,1

a School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, PR China
b College of Information Engineering, Capital Normal University, Beijing, 100048, PR China
c Department of Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee, Knoxville, TN, 37996-2110, USA
d Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China

a r t i c l e i n f o

Article history:
Received 6 February 2015
Received in revised form
20 April 2015
Accepted 12 May 2015
Available online xxxx

Keywords:
Real-time operating systems
Robot Operating Systems
Multi-core processors

a b s t r a c t

ROS, an open-source robot operating system, is widely used and rapidly developed in the robotics
community. However, running on Linux, ROS does not provide real-time guarantees, while real-time tasks
are required inmany robot applications such as robotmotion control. This paper for the first time presents
a real-time ROS architecture called RT-RTOS on multi-core processors. RT-ROS provides an integrated
real-time/non-real-time task execution environment so real-time and non-real-time ROS nodes can be
separately run on a real-time OS and Linux, respectively, with different processor cores. In such a way,
real-time tasks canbe supportedby real-timeROSnodes on a real-timeOS,while non-real-timeROSnodes
on Linux can provide other functions of ROS. Furthermore, high performance is achieved by executing
real-time ROS nodes and non-real-time ROS nodes on different processor cores. We have implemented
RT-ROS on a dual-core processor and conducted various experiments with real robot applications. The
experimental results show that RT-ROS can effectively provide real-time support for the ROS platform
with high performance by exploring the multi-core architecture.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

ROS, an open-source robot operating system, has been being
rapidly developed and widely used in the robotics community [1].
Based on the ROS framework, many researchers have developed
their software for diverse robots such as Barrett WAM [2] and
Raven-II [3]. However, ROS runs on Linux, and cannot provide real-
time guarantees. This limits its usage, as real-time tasks are re-
quired in many robot applications such as robot motion control.
Therefore, it becomes a key issue to make ROS be real-time. On
the other hand, multi-core processors offer a promising platform
for robot applications. Compared to the traditional robot com-
puting platform with separated host and guest systems, a multi-
core processor can providemore powerful computing capacity and
less communication overhead. Thus, it is also vitally important
to effectively run ROS on multi-core processors by exploring the

∗ Corresponding author.
E-mail addresses:weihongxing@buaa.edu.cn (H. Wei), guanyxxxy@263.net

(Y. Guan), tan@utk.edu (J. Tan), cszlshao@comp.polyu.edu.hk (Z. Shao).
1 Member, IEEE.

multi-core architecture for robot applications. This paper focuses
on solving the problem of making ROS be real-time with high per-
formance on multi-core processors.

To make ROS be real-time, a common approach is to run real-
time tasks on guest embedded systems and run non-real-time
tasks on a host system such as in ROS Industrial and ROS Bridge [4].
However, by separating ROS tasks into different computing sys-
tems, it not only introduces big communication overhead but also
increases the manufacturing cost. In fact, a multi-core processor
such as Intel Pentiummulti-core processors is powerful enough to
run both real-time and non-real-time tasks of ROS. Implementing
ROS based on a system with a multi-core processor can help re-
duce communication overhead by replacing inter-system commu-
nication with inter-core communication, decrease the system cost
and simplify the system design. However, it is still an open issue
for how to make ROS be real-time on multi-core processors.

There are challenges to make ROS be real-time on multi-core
processors. First, considering the portability, a real-time OS en-
vironment should be provided to support the execution of real-
time ROS tasks. It is challenging to run both a real-time OS and a
general-purpose OS without interfering each other on multi-core
processors. In particular, it is not trivial to provide a mechanism so
interrupts, devices and other hardware resources can be separated

http://dx.doi.org/10.1016/j.future.2015.05.008
0167-739X/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2015.05.008
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:weihongxing@buaa.edu.cn
mailto:guanyxxxy@263.net
mailto:tan@utk.edu
mailto:cszlshao@comp.polyu.edu.hk
http://dx.doi.org/10.1016/j.future.2015.05.008

2 H. Wei et al. / Future Generation Computer Systems () –

Fig. 1. The software architecture of ROS.

and isolated to support real-time andnon-real-timeROS tasks. Sec-
ond,we also need to provide effective and efficient communication
mechanisms between real-time and non-real-time tasks.

This paper for the first time presents a real-time ROS
architecture called RT-ROS on multi-core processors. RT-ROS
provides an integrated real-time/non-real-time task execution
environment so real-time and non-real-time ROS nodes can be
separately run on a real-time OS and Linux, respectively, with
different processor cores. In such a way, real-time tasks can be
supported by real-time ROS nodes on a real-time OS, while non-
real-time ROS nodes on Linux can provide other functions of ROS.
In RT-ROS, we develop a hybrid OS platform that can support the
execution of real-time and non-real-time OSes. RT-ROS provides a
mechanism in its hybrid OS so processor cores and other hardware
resources such as interrupts and devices are divided and isolated,
by which real-time ROS tasks on a real-time OS and non-real-time
ROS tasks on a general-purpose OS can be run separately without
interfering each other. Furthermore, in RT-ROS, we develop an
efficient communication mechanism between real-time and non-
real-time OSes.

We have implemented RT-ROS on an Intel dual-core processor.
Nuttx [5], an open source real-time OS, is chosen as the real-time
platform, and Linux is used as the general-purpose OS. We further
implement the RT-ROS system in the industrial controller of a 6-
DOFmodularmanipulator. The experimental results show that RT-
ROS can effectively provide real-time support for the ROS platform
with high performance by exploring the multi-core architecture.

The remainder of this paper is organized as follows. Section 2
introduces the background. Sections 3 and 4 present the design and
implementation of RT-ROS, respectively. Evaluation is presented
is Section 5. Section 6 introduces the related work. Finally, the
conclusions are drawn in Section 7.

2. Background

In this section, we provide the background. We first introduce
ROS and then Nuttx that is used as the real-time OS in the
implementation of RT-ROS.

2.1. ROS

ROS (Robot Operating System) is an open-source and reusable
software platform providing libraries, tools and conventions that
can help to create high-performance robot applications quickly
and easily. It provides standardized interfaces for hardware
control, tools for creating, debugging, distributing and running
procedures, and libraries for developing programs. So far, about
500packages have beenmade available in ROS fromapproximately
30 institutions [6–8].

ROS is amodular software platform installed on the Linux oper-
ating system. It contains a number of software modules encapsu-
lated as nodes, including themaster node and the functional nodes.
Fig. 1 gives the software architecture of ROS, which consists of li-
braries, packages and nodes installed on Linux. Such a modular ar-
chitecture supports distributed network communication. Like the

Fig. 2. The remote control model of ROS.

Fig. 3. The communication model of ROS and its corresponding OSI model.

router in a LAN, the master node administrates and monitors the
running of the functional nodes and their peer-to-peer communi-
cations.

Fig. 2 shows a typical remote control model of ROS. The ROS
nodes in a robot are connected to these in the remote computer
through the WIFI router. The communications among nodes are
realized by XML/RPC (Remote Procedure Call) based on the TCP/IP
protocol.

Fig. 3 illustrates the ROS communication model and its
corresponding OSI model. It can be seen that an application layer
based on the XML-RPC HTTP protocol is constructed on the TCP/IP
architecture. Therefore, messages transmitted among nodes are
not data packages but webpage files based on the http protocol.

2.2. Nuttx

In order to construct the hybrid operating system, we need a
portable real-time operating system architecture. There are many
real-time operating systems such as VxWorks, QNX, eCOS, and
µcOS-II. Considering the portability of ROS,we choose Nuttx as our
real-time OS platform.

Nuttx is an open-source embedded real time operating system
(RTOS) developed by Gregory Nutt [5]. Nuttx supports the Posix
and ANSI standards, and can be applied in microcontrollers from
8-bit to 32-bit. In addition, by adopting the standard APIs from
Unix and other common RTOSes such as VxWorks, Nuttx also
provides some functionalities not available under the Posix and
ANSI standards. Compared with other real-time operating systems
such as VxWorks, Windows CE and µC/OS-II, Nuttx has the
following advantages:

(1) Various system services. Nuttx provides a number of system
supports such as the UIP protocol stack, networking, device
drivers and virtue file system, which are useful for application
development.

(2) Small footprint. Nuttx only requires very little memory. For
example, 4 MB memory is enough to run Nuttx.

(3) Easy extension. It is convenient to extend Nuttx to new
processor architectures such as SoC architectures. This makes it
possible to port real-time ROS nodes among different multi-core
processors.

H. Wei et al. / Future Generation Computer Systems () – 3

Fig. 4. The system architecture of RT-ROS.

Fig. 5. The implementation of RT-ROS on an Intel dual-core processor.

Therefore, in the implementation of RT-ROS, real-time ROS
nodes are run as real-time tasks in Nuttx.

3. RT-ROS

The system architecture of RT-ROS is shown in Fig. 4. At the
application layer, ROS nodes are divided into real-time and non-
real-time nodes. ROS nodes can communicate with each other
via either inner-core or inter-core communications. These cores
do communications via shared memory. At the OS level, GPOS
(General-Purpose Operating System) and RTOS reside on isolated
hardware resources such as processor cores, interrupts, and
devices. At the hardware level, hardware resources are divided so
non-real-time ROS nodes and real-time ROS nodes are separately
run based on GPOS or RTOS, respectively.

4. System implementation

We have implemented RT-ROS on an Intel dual-core processor
with the IA32 SMP architectures [9] as shown in Fig. 5. Intel
dual-core processors are selected because they are with powerful
computing capacity and complete software support. Note that RT-
ROS is a general architecture and other multi-core processors can
be adopted as well.

In the implementation, Linux is used as the GPOS and Nuttx
as the RTOS. RT-ROS consists of two parts. One part is the non-
real-time ROS system on Linux, and the other part is the real-
time ROS system on Nuttx. Each part has its own CPU, memory,
interrupts and peripheral devices. Accordingly, there are two
kinds of ROS nodes, i.e., the real-time nodes and the non-real-
time ones. The communications among nodes are performed by
XML/RPC under the TCP/IP protocol. Because real-time ROS nodes
and non-real-time ROS nodes run in different CPUs, VNET, that is

a virtual network interface and interacts with the underlying data
by sharing memory, acts as the channel for their communications.

The hardware isolation is implemented based on the APIC
architecture [9] in the IA32 SMP architecture. With the APIC ar-
chitecture, each CPU has a local APIC to receive interrupt message
generated by an I/O APICwhich collects andmanages interrupt sig-
nals sent by I/O devices. Every local APIC has a unique ID so that we
can program an I/O APIC to deliver a specific interrupt to a specific
CPU thus to a specific OS. This is used to implement a hardware
interrupt dispatcher for distributing interrupts to different OSes.

To run two OSes on two cores, we use CPU-hotplug [10]. CPU-
hotplug is a feature in Linux kernel which can be used to dynam-
ically enable or disable a CPU core. This can be done by calling
two kernel API functions, namely, cpu_up() and cpu_down().When
cpu_down() is called with a CPU core number as the parameter,
processes and interrupts of that CPU core will be migrated to other
CPUs and the CPU core will go to sleep until cpu_up() is called.

To boot two OSes, we utilize IPI (Inter-Processor Interrupt) [9]
in the IA32 SMP architecture. An IPI is generated by one CPU’s local
APIC and handled by another CPU as a normal interrupt. There is a
special IPI called INIT IPI. If one CPU has received an INIT IPI, it will
perform a boot process from the address passed by INIT IPI. This
can be used by CPU hotplug for booting another OS. Furthermore,
a general IPI is sentwith an interrupt vector numberwhere the CPU
receiving that IPI will handle it as a normal interrupt. The general
IPI is used to communicate among CPUs and OSes.

We develop a kernel model which can load the Nuttx image
intomemory and boot it. The boot process is as follows. First, Linux
is booted normally. Then, the Nuttx-load kernel module is loaded
into the Linux kernel, and it can start the Nuttx monitor. The Nuttx
monitor loads the Nuttx image into memory, calls cpu_down() to
disable a CPU core and issues an INIT IPI with the entry address
of the Nuttx image to boot the Nuttx on that CPU core. Through
the Nuttx monitor, the Nuttx can also be shut down or restarted
dynamically.

In the implementation, devices are divided into real-time and
non-real-time ones. Non-real-time devices are controlled by Linux
and have normal Linux device drivers. Real-time devices are
controlled by Nuttx and have Nuttx device drivers. Linux drivers
for real-time devices are configured as disabled. Real-time device
drivers set the I/O APIC to route interrupts to Nuttx. When booting
Nuttx, Linux will pass the IRQ (Interrupt ReQuest) table (a table
records each device’s IRQ number) as the parameter. It will be used
by Nuttx device drivers to allocate IRQ numbers so as to avoid
IRQ conflicts. If two different devices happen to share the same
IRQ number, which is common for PCI devices [11], the non-real-
time one has to be disabled. However, if hardware supports MSI
(Message Signaled Interrupts) [11], a device can be programmed
to deliver interrupts directly to the corresponding CPU core by
bypassing the I/O APIC, so the problem can be solved.

We use the shared memory of the SMP architecture to
implement a bidirectional message FIFO (First In First Out). One
of the biggest problems in communications is to synchronize two
tasks between Linux and Nuttx. We have implemented a spinlock
module that can be used to synchronize two tasks in Linux and
Nuttx, respectively.

Several changes have been made to support the development
of real-time ROS nodes on Nuttx. In order to develop real-time
ROS nodes such as the RTroscpp nodes, the C++ support needs to
be added in Nuttx. We add the light-weight library µClibc++ into
Nuttx for the purpose of developing light-weight RTOS tasks. The
floating-point math library in the standard libc has been provided
inNuttx, due to the fact that the floating-point calculation is always
needed in real-time robot control. The http protocol has been
ported in Nuttx, so http webpage files can be transferred among
ROS nodes. The drivers of the real-time PCI, Ethercat and CAN bus
devices are also added to Nuttx, since each real-time bus has a
separate protocol framework.

4 H. Wei et al. / Future Generation Computer Systems () –

Fig. 6. CPU occupancy rates in case 1.

Table 1
The meanings of abbreviations.

Abbreviation Meaning

DOF Degree of freedom
RVIZ ROS visualization
RPC Remote procedure call

5. Evaluation

AnX86-based industrial robot controller is employed to test the
performance of RT-ROS, including the isolation between GPOS and
RTOS, and the execution efficiency of thewhole system. The testing
platform consists of the following hardware: (1)Mainboard: AIMB-
780; (2) CPU: Intel(R) Pentium (R) Dual CPU E2200 of 2.2 GHz;
(3) Memory: DDR2 of 2 GB; (4) CAN device: Advantech PCI-1680U
CAN; (5) VGA card: HD6670 DDR5 of 1 GB. The software of the
testing platform includes: (1) Ubuntu 11.10 with Linux Kernel 3.2;
(2) ROS; (3) OpenGL v1.4; (4) Our RT-ROS; (5) Nuttx v6.26 with
µClibc++, math lib and real-time device drivers; (6) Matlab 2010a.
OpenGL v1.4 is selected as this is the newest version supported by
our platform. Some abbreviations used are shown in Table 1.

5.1. CPU occupancy testing

Figs. 6 and 7 illustrate the CPU occupancy rates with different
cases. The CPU occupation of the dual-core processor is tested
and compared in two cases. In the first case, we run both non-
real-time and real-time ROS nodes in Linux. The CPU occupation
results obtained by the system resource manager are shown in
Fig. 6. It indicates that the GPOS tasks are shared by both CPUs.
The occupancy rate of CPU1 is 52.9%, and that of CPU2 is 20.4%.
In the second case, we run the non-real-time ROS nodes in Linux
and the real-time ROS nodes in Nuttx at the same time. The system
resource manager in Linux then displays that the occupancy rate
of CPU2 becomes zero as shown in Fig. 7. This indicates that CPU2
is totally occupied by the Nuttx real-time system. Therefore, GPOS
and RTOS can run simultaneously on different processor cores.

5.2. Real-time interrupt response time

An important metric to evaluate the performance of the real-
time system is the interrupt response time. To test it accurately,
we run a single real-time ROS node in Nuttx, which handles the
external timer interrupt. Two different cases are used to show
the effects of the non-real-time nodes on the real-time interrupt
response time. In case A, the real-time ROS node runs in Nuttx
when only the ROS master node is running simultaneously in
Linux. In case B, a 3D RVIZ simulation program is simultaneously
run on both the real-time ROS node and Linux. A Matlab script is
written to show the interrupt response time dynamically.

Fig. 7. CPU occupancy rates in case 2.

Table 2
The average communication time.

Communication types Time

Non-real-time node ↔ Non-real-time node >1 ms
Non-real-time node ↔ Real-time node 0.1–1 ms
Real-time node ↔ Real-time node <100 ns

The experimental results are shown in Fig. 8, in which the
upper straight line denotes the maximum interrupt response time
and the lower one indicates the minimum one. These two figures
illustrate that the interrupt response time does not affected by
the non-real-time system. It can be observed that the interrupt
response times in both cases lie in the same interval from 1250
to 2250 ns, implying that the effect of the non-real-time system on
the real-time one is negligible. This again verifies the isolation of
the two subsystems.

5.3. Communication time

We also measure the communication time between different
ROS nodes. The communication time between non-real-time ROS
nodes can be tested by using the standard ROS tool—rosping,
and that between two real-time ROS nodes is measured by the
system timer. In the experiment, only a single real-time ROS node
is running in Nuttx, and only the rosping and the non-real-time
ROS node for message printing are running in Linux. Because the
communications among ROS nodes are made by themechanism of
the XML-RPC call under the TCP protocol, the communication time
varies a lot.

The average communication times for three different kinds of
node communications are shown in Table 2. It can be seen that the
average communication time between two non-real-time nodes is
longer than 1 ms, that between a non-real-time node and a real-
time one is from 0.1 to 1 ms, and that between two real-time
nodes is less than 100 ns. Therefore, the short communication time
between real-time ROS nodes show that RT-ROS can be utilize for
real-time robot control.

5.4. RT-ROS for controlling a 6-DOF modular manipulator

To conduct real experiments on robots,we apply RT-ROS to con-
trol a 6-DOFmodularmanipulator. Fig. 9 shows the software archi-
tecture. This figure illustrates how different devices communicate
and interactwith eachother under the real-time andnon-real-time
OS environments. For the convenience of communication and con-
trol, an ID number is assigned to each module of the manipulator.
When the controller emits an instruction containing an ID number,
only the module having the same ID number will receive and re-
spond to it. If the ID number of an instruction is 255 (i.e., the hex-
adecimal 0xFF), it is a broadcast instruction that will be received
by all the robotic modules. RT-ROS is installed into both the ma-
nipulator controller and a remote computer, which are connected

H. Wei et al. / Future Generation Computer Systems () – 5

3000

2500

2000

1500

1000

500

0

3000

2500

2000

1500

1000

500

0
0 020 40 60 80 100 20 40 60 80 100

Fig. 8. The real-time interrupt response time (ns).

Fig. 9. The software architecture of the modular.

through Ethernet. The real-time control is realized by the real-time
ROS nodes in Nuttx, while the remote manipulation and online
learning have been performed by the non-real-time ROS nodes in
Linux.

Fig. 10 shows the overall control architecture of the manipu-
lator. The online learning is visualized in the ROS 3D demonstra-
tion platform—RVIZ. The model of the manipulator can be directly
loaded from Solidworks into RVIZ to perform 3D simulation. In
RVIZ, the end module of the 3D simulation model can be dragged
by using the mouse to carry out the online teaching. As shown in
Fig. 11, the path planning can also be realized for the manipulator
in such a 3D simulation way.

The real-time ROS system performs real-time operations on the
manipulator, including the closed-loop motion control, the kine-
matics solution, the status inquiry and the error handling. During
the operation process of the manipulator, any one of the angular
velocity, angular displacement (or position) and electric current

can be used to control the rotation of the joints. Here, the position-
basedmethod is employed, so the corresponding angular displace-
ment information is emitted to every joint to limit itsmotion range.
It is found bymotion control experiments that synchronousmove-
ment among the joints cannot be well guaranteed by the position-
based method directly. Besides the method itself, there are several
other factors affecting the motion synchronism, such as the differ-
ent reduction gear ratios of the joints and the friction. Theoretically
speaking, reducing the friction, adjusting the reduction gear ratios,
or even replacing the position-basedmethod by the angular veloc-
ity or electric current based method, can be helpful to realize the
motion synchronism. However, all these methods are difficult to
implement in practice. Instead, we try a simpler and more feasi-
ble way. In our implementation, a refined kinematics ROS node is
developed to perform high-frequency interpolation calculation to
yield more accurate control information for the angular displace-
ment.

6 H. Wei et al. / Future Generation Computer Systems () –

Fig. 10. The overall control architecture of the manipulator.

Fig. 11. Path planning in RVIZ.

Table 3
The time for the joints to rotate one degree angle.

Joints Time (ms)
The position-based control
method

The refined interpolation
calculation method

1 350 110
2 330 108
3 331 110
4 341 109
5 320 100
6 310 105

As shown in Table 3, the motion synchronism of the six
joints is well guaranteed by our method. The experimental results
in Table 3 show that the times for rotating one degree with
different numbers of joints are relatively stable but still have some
derivations. For example, it is 109mswith 4 joints and 110mswith
3 joints. These deviations are caused by the physical differences of
different joints.

6. Related work

There are twomajor issues for the development of robotics. The
first is about the enhancement of the development efficiency of
the controlling software. Most existing industrial robots are de-
signed to perform special tasks in specific environments [12,13].
Because different robots generally have different controlling soft-
ware, developers always have to spend a lot of timewriting diverse
programs with similar functions to meet new operational require-
ments. Thus, the complexity of programming remains as one of the
major hurdles [14]. The other problem is about the enhancement of
the operational efficiency of robot control. Such efficiency mainly
depends on the execution speed of the controlling software.

An effective way to solve the first problem is to use themodular
software architecture. By dividing an application into a number of
mutually decoupled units, the complexity of the software develop-
ment can be reduced. Moreover, designers only need to update the
corresponding software modules, when changing the functionali-
ties or adding features to the robots. Because most of the modules
are reusable and portable for similar operational tasks, the adap-
tation of the controlling software can be accomplished quickly.
Some modular software frameworks have been successfully ap-
plied in the controlling software of robots such as CARMEN [15],
Player [16], LCM [17], and YARP [18]. Some surveys on robot mid-
dleware and robot development environment are given in [19,20].

As mentioned above, the operational efficiency of industrial
robots is mainly determined by the running speed of the control-
ling software. There are several ways to speed up the software sys-
tem. First, a number of microcontroller modules can be connected
together to form a message-based [21] or event-based [22] dis-
tributed control system, in which the controller nodes communi-
cate with each other through a field bus [22]. Second, the real-time
operating system and the non-real-time one can be combined to-
gether to construct a hybrid one [23], which can handle both real-
time and non-real-time tasks simultaneously by separating the
corresponding interrupts automatically. Third, the multi-core pro-
cessors can be employed [24], and the real-time and non-real-time
software can run in different CPUs of the same processor [25,26].
Conventional systems are generally based on two-level single-core
processors with the low-level processor for the real-time software
and the high-level one for the non-real-time software [27]. Be-
cause a considerable amount of time is consumed by the frequent
communication between different processors, the operational effi-
ciency of the whole system is inevitably degraded. Multi-core pro-
cessors can help solve this problem.

H. Wei et al. / Future Generation Computer Systems () – 7

7. Conclusions and future work

In this paper, we proposed a real-time ROS architecture called
RT-RTOS on multi-core processors. RT-ROS provides an integrated
real-time/non-real-time task execution environment so real-time
and non-real-time ROS nodes can be separately run on a real-
time OS and Linux, respectively, with different processor cores.
We have implemented RT-ROS on a dual-core processor and
conducted various experiments with real robot applications. The
experimental results show that RT-ROS can effectively provide
real-time support for the ROS platform with high performance by
exploring the multi-core architecture.

There are several directions for the futurework. First,more test-
ing and improvement will be conducted to enhance the perfor-
mance of the software system. For example, the angular velocity or
electric current based method can be adopted to get a more accu-
rate synchronousmotion control.Moreover,many emergingmem-
ory and storage techniques have been proposed [28–47]. We will
study how to utilize them to further optimize the performance of
RT-ROS. Finally, the proposed architecture is general and can sup-
port different types of general-purpose and real-time OSes. In the
future, we will port other real-time kernels on the proposed archi-
tecture.

Acknowledgments

This work was supported by the National High Technology
Research and Development Program of China (‘‘863’’ Program)
(2012AA041402 and 2012AA041405), National Natural Science
Foundation of China (Grant No. 61175079 and No. 51105012),
and National Key Technology Support Program (Grant No.
2013BAH45F01). A preliminary version of this work appears in the
Proceedings of the 2011 International Conference on Robotics and
Biomimetics [48].

References

[1] ROS, 2015. http://www.ros.org/.
[2] J.M. Romano, J.P. Brindza, K.J. Kuchenbecker, ROS open-source audio recog-

nizer: ROAR environmental sound detection tools for robot programming, Au-
ton. Robots 34 (3) (2013) 207–215.

[3] B. Hannaford, J. Rosen, D.W. Friedman, et al., Raven-II: an open platform for
surgical robotics research, IEEE Trans. Biomed. Eng. 60 (4) (2013) 954–959.

[4] P. Bouchier, Embedded ROS, IEEE Robot. Autom. Mag. 18 (3) (2013) 17–19.
[5] NuttX, 2015 http://www.nuttx.org/.
[6] S. Cousins, Exponential growth of ROS, IEEE Robot. Autom. Mag. 18 (1) (2011)

19–20.
[7] S. Cousins, B. Gerkey, K. Conley, W. Garage, Sharing software with ROS, IEEE

Robot. Autom. Mag. 17 (2) (2010) 12–14.
[8] S. Cousins, ROS on the PR2, IEEE Robot. Autom. Mag. 13 (3) (2010) 23–25.
[9] Intel Corporation. Intel 64 and IA-32 architectures software developers

manual, 2009.
[10] Z. Mwaikambo, A. Raj, Linux kernel hotplug CPU support, in: Proceedings of

the Linux Symposium, 2004.
[11] PCI-SIG, PCI local bus specification revision 3.0, 2002.
[12] L. Zheng, et al., Architecture-based design and optimization of genetic

algorithms on multi-and many-core systems, Future Gener. Comput. Syst.
(2014) 75–91.

[13] K.M. Chao, et al., Cloud E-learning for Mechatronics: CLEM, Future Gener.
Comput. Syst. (2014) 1–14.

[14] Z.X. Pan, J. Polden, N. Larkin, S.V. Duin, J. Norrish, Recent progress on
programmingmethods for industrial robots, Robot. Comput.-Integr.Manuf. 28
(2) (2012) 87–94.

[15] M. Montemerlo, N. Roy, S. Thrun, Perspectives on standardization in mobile
robot programming: The carnegie mellon navigation (CARMEN) toolkit, in:
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003,
pp. 2436–2441.

[16] B.P. Gerkey, R.T. Vaughan, A. Howard, The player/stage project: tools formulti-
robot and distributed sensor systems, in: Proceedings of the 11th International
Conference on Advanced Robotics, 2003, pp. 317–323.

[17] A. Huang, E. Olson, D. Moore, LCM: Lightweight communications and
marshalling, in: IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2010, pp. 4057–4062.

[18] G. Metta, P. Fitzpatrick, L. Natale, YARP: Yet another robot platform, Int. J. Adv.
Robot. Syst. (2006) 43–48.

[19] A. Elkady, T.M. Sobh, Roboticsmiddleware: A comprehensive literature survey
and attribute-based bibliography, J. Robot. (2012) 1–15.

[20] J. Kramer, M. Scheutz, Development environments for autonomous mobile
robots: A survey, Auton. Robots 22 (2) (2007) 101–132.

[21] C. Lee, Y.S. Xu, Message-based evaluation in scheme for high-level robot
control, J. Intell. Robot. Syst. 25 (2) (1999) 109–119.

[22] X.M. Li, C.J. Yang, Y. Chen, X.D. Hu, Hybrid event based control architecture for
tele-robotic systems controlled through Internet, J. Zhejiang Univ. Sci. 5 (3)
(2004) 296–302.

[23] V.M.F. Santos, F.M.T. Silva, Design and low-level control of a humanoid robot
using a distributed architecture approach, J. Vib. Control 12 (12) (2006)
1431–1456.

[24] S.S. Srinivasa, D. Ferguson, C.J. Helfrich, et al., HERB: a home exploring robotic
butler, Auton. Robots 28 (1) (2010) 5–20.

[25] Y. Wang, et al., Overhead-aware energy optimization for real-time streaming
applications on multiprocessor system-on-chip, ACM Trans. Des. Autom.
Electron. Syst. (2011).

[26] Y. Wang, et al., Loop scheduling with memory access reduction subject to
register constraints for DSP applications, Softw. - Pract. Exp. 44 (8) (2014)
999–1026.

[27] M. Liu, D. Liu, Y. Wang, M. Wang, Z.L. Shao, On improving real-time interrupt
latencies of hybrid operating systems with two-level hardware interrupts,
IEEE Trans. Comput. 60 (7) (2011) 978–991.

[28] J.T. Hu, et al. Software enabled wear-leveling for hybrid PCMmainmemory on
embedded systems, in: IEEE Design, Automation & Test in Europe Conference
& Exhibition, 2013.

[29] J.T. Hu, et al. Towards energy efficient hybrid on-chip scratch pad memory
with non-volatile memory, in: IEEE Design, Automation & Test in Europe
Conference & Exhibition, 2011.

[30] J.T. Hu, et al., Minimizing accumulative memory load cost on multi-core DSPs
with multi-level memory, J. Syst. Archit. (2013) 389–399.

[31] J.T. Hu, et al., Scheduling to optimize cache utilization for non-volatile main
memories, IEEE Trans. Comput. 55 (1) (2013).

[32] J.T. Hu, et al., Data allocation optimization for hybrid scratch padmemorywith
SRAMand nonvolatilememory, IEEE Trans. Very Large Scale Integr. Syst. 21 (6)
(2013) 1094–1102.

[33] M.Y. Zhao, et al. SLC-enabled wear leveling for MLC PCM considering process
variation, in: Proceedings of the 51st Annual Design Automation Conference
on Design Automation Conference, 2014, pp. 1–6.

[34] L. Shi, et al. Retention trimming for wear reduction of flash memory storage
systems, in: Proceedings of the 51st Annual Design Automation Conference
on Design Automation Conference, 2014, pp. 1–6.

[35] G.Dip, et al.Multirate controller design for resource-and schedule-constrained
automotive ECUs, in: IEEE Design, Automation & Test in Europe Conference &
Exhibition, 2013, pp. 1123–1126.

[36] D. Liu, et al., Application-specific wear leveling for extending lifetime of phase
changememory in embedded systems, IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst. 33 (10) (2014) 1450–1462.

[37] Y. Wang, et al., A reliability-aware address mapping strategy for NAND flash
memory storage systems, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
33 (11) (2014) 1623–1631.

[38] Y. Wang, et al., A reliability enhanced address mapping strategy for three-
dimensional (3-D) NAND flash memory, IEEE Trans. Very Large Scale Integr.
Syst. 22 (11) (2014) 2402–2410.

[39] R.H. Chen, et al. DHeating: Dispersed heating repair for self-healing nand flash
memory, in: Proceedings of the 9th IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis, 2013, pp. 1–10.

[40] R.H. Chen, et al., On-demand block-level addressmapping in large-scale NAND
flash storage systems, IEEE Trans. Comput. (2014).

[41] Y. Wang, et al. Meta-Cure: a reliability enhancement strategy for metadata
in NAND flash memory storage systems, in: Proceedings of the 49st Annual
Design Automation Conference on Design Automation Conference, 2012,
pp. 214–219.

[42] M. Liu, Z.L. Shao, M. Wang, H.X. Wei, T.M. Wang, Implementing hybrid
operating systems with two-level hardware interrupts, in: 28th IEEE
International Real-Time Systems Symposium, 2007, pp. 244–253.

[43] R.H. Chen, et al. Unified non-volatile memory and NAND fash memory
architecture in smartphones, in: Proceedings of 20th Asia and South Pacific
Design Automation Conference, 2015, pp. 340–345.

[44] C. Zhang, et al. Deterministic crash recovery for NAND flash based storage
systems, in: Proceedings of the 51st Annual Design Automation Conference
on Design Automation Conference, 2014, pp. 148:1–148:6.

[45] L. Shi, et al., Exploiting process variation for write performance improvement
on NAND flash memory storage systems, IEEE Trans. Very Large Scale Integr.
(VLSI) Syst. PP (99) (2015) 1. 1.

[46] C.M. Gao, et al. Exploit asymmetric error rates of cell states to improve the
performance of flash memory storage systems. in: 32nd IEEE International
Conference on Computer Design, 2014, pp. 202–207.

http://www.ros.org/
http://refhub.elsevier.com/S0167-739X(15)00183-1/sbref2
http://refhub.elsevier.com/S0167-739X(15)00183-1/sbref3
http://refhub.elsevier.com/S0167-739X(15)00183-1/sbref4
http://www.nuttx.org/
http://refhub.elsevier.com/S0167-739X(15)00183-1/sbref6
http://refhub.elsevier.com/S0167-739X(15)00183-1/sbref7
http://refhub.elsevier.com/S0167-739X(15)00183-1/sbref8
http://refhub.elsevier.com/S0167-739X(15)00183-1/sbref12
http://refhub.elsevier.com/S0167-739X(15)00183-1/sbref13
http://refhub.elsevier.com/S0167-739X(15)00183-1/sbref14
http://refhub.elsevier.com/S0167-739X(15)00183-1/sbref18
http://refhub.elsevier.com/S0167-739X(15)00183-1/sbref19
http://refhub.elsevier.com/S0167-739X(15)00183-1/sbref20
http://refhub.elsevier.com/S0167-739X(15)00183-1/sbref21
http://refhub.elsevier.com/S0167-739X(15)00183-1/sbref22
http://refhub.elsevier.com/S0167-739X(15)00183-1/sbref23
http://refhub.elsevier.com/S0167-739X(15)00183-1/sbref24
http://refhub.elsevier.com/S0167-739X(15)00183-1/sbref25
http://refhub.elsevier.com/S0167-739X(15)00183-1/sbref26
http://refhub.elsevier.com/S0167-739X(15)00183-1/sbref27
http://refhub.elsevier.com/S0167-739X(15)00183-1/sbref30
http://refhub.elsevier.com/S0167-739X(15)00183-1/sbref31
http://refhub.elsevier.com/S0167-739X(15)00183-1/sbref32
http://refhub.elsevier.com/S0167-739X(15)00183-1/sbref36
http://refhub.elsevier.com/S0167-739X(15)00183-1/sbref37
http://refhub.elsevier.com/S0167-739X(15)00183-1/sbref38
http://refhub.elsevier.com/S0167-739X(15)00183-1/sbref40
http://refhub.elsevier.com/S0167-739X(15)00183-1/sbref45

8 H. Wei et al. / Future Generation Computer Systems () –

[47] M. Huang, et al. A garbage collection aware stripping method for solid-state
drives, in: 20th Asia and South Pacific Design Automation Conference, 2015,
pp. 334–339.

[48] Q. Yu, H. Wei, M. Liu, et al. A novel multi-OS architecture for robot application,
in: IEEE International Conference on Robotics and Biomimetics, 2011,
pp. 2301–2306.

Hongxing Wei was born in the Inner Mongolia Au-
tonomous Region, China, in 1974. He received a Ph.D. from
the College of Automation, Harbin Engineering University,
Harbin, China, in 2001. Since 2004, he has been an Asso-
ciate Professor in the School of Mechanical Engineering
and Automation, Beihang University (formerly Beijing
University of Aeronautics and Astronautics), Beijing,
China. His current research interests include self-assembly
swarm robots, modular robotics architecture, mobile sen-
sor networks, and embedded systems.

Zhenzhou Shao received the B.E. degree and M.E.
degree in the Department of Information Engineering
at Northeastern University, China, in 2007 and 2009,
respectively, and the Ph.D. degree in The Department
of Mechanical, Aerospace, and Biomedical Engineering
at University of Tennessee, US, in 2013. He is currently
working in the College of Information Engineering at
Capital Normal University, China. His research interests
include computer vision, machine learning and human-
robot interaction.

Zhen Huang graduated from Beijing University of Aero-
nautics andAstronautics in 2010. He is a software engineer
at Smokie Robotics, Inc., China.

Renhai Chen received the B.E. degree and M.E. degree
in the Department of Computer Science and Technology,
Shandong University, China, in 2009 and 2012, respec-
tively. He is currently working toward the Ph.D. degree
in the Department of Computing at the Hong Kong Poly-
technic University. His research interests include embed-
ded systems,mobile virtualization and hardware/software
codesign, especially for secondary storage.

Yong Guan received the Ph.D. degree in College of
Mechanical Electronic and Information Engineering from
ChinaUniversity ofMining andTechnology, China, in 2004.
Currently, he is a Professor of Capital Normal University.
His research interests include formal verification, PHM
for power and embedded system design. Dr. Guan is a
member of Chinese Institute of Electronics Embedded
Expert Committee. He is also a member of Beijing
Institute of Electronics Professional Education Committee
and Standing Council Member of Beijing Society for
Information Technology in Agriculture.

Jindong Tan received the PhD degree fromMichigan State
University, East Lansing,MI, in 2002, in Electrical andCom-
puter Engineering. He is currently an associate professor in
the Department of Electrical and Computer Engineering,
Michigan Technological University. His research interests
include distributed robotics,wireless sensor networks, hu-
man robot interaction, biosensing and signal processing,
and surgical robots and navigation. Dr. Tan is a member of
the IEEE, ACM and Sigma Xi.

Zili Shao received the B.E. degree in electronic mechan-
ics from the University of Electronic Science and Tech-
nology of China, Sichuan, China, in 1995, and the M.S.
and Ph.D. degrees from the Department of Computer Sci-
ence, University of Texas at Dallas, in 2003 and 2005, re-
spectively. He has been an Associate Professor with the
Department of Computing, the Hong Kong Polytechnic
University, since 2010. His research interests include em-
bedded systems, real-time systems, compiler optimization
and hardware/software co-design.

	RT-ROS: A real-time ROS architecture on multi-core processors
	Introduction
	Background
	ROS
	Nuttx

	RT-ROS
	System implementation
	Evaluation
	CPU occupancy testing
	Real-time interrupt response time
	Communication time
	RT-ROS for controlling a 6-DOF modular manipulator

	Related work
	Conclusions and future work
	Acknowledgments
	References

