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Abstract— The paper considers the design of a nonlinear
controller for the double inverted pendulum (DIP), a sys-
tem consisting of two inverted pendulums mounted on a
cart. The swingup controller bringing the pendulums from
any initial position to the unstable up-up position is de-
signed based on passivity properties and energy shaping.
While the swingup controller drives the DIP into a region
of attraction around the unstable up-up position, the bal-
ance controller designed on the basis of the linearized model
stabilizes the DIP at the unstable equilibrium. The simula-
tion results show the effectiveness of the proposed nonlinear
design method for the DIP system.

Keywords— Double inverted pendulum (DIP), passivity
based control (PBC), nonlinear systems, energy based con-
trol.

I. Introduction

The classical inverted pendulum (cart and pole system)
has been widely used in control laboratories to demonstrate
the effectiveness of control systems in analogy with the con-
trol of many real systems [1,2]. The double inverted pen-
dulum (DIP) is an extension of the inverted pendulum sys-
tem, it is suitable to investigate and verify different control
methods for dynamic systems with higher-order nonlinear-
ities. It is more difficult than the single inverted pendulum
(SIP) because there are two linked pendulums on a cart and
we should consider to bring both of the pendulums from
the unstable hanging position to the stable upright position
by only moving the cart on the horizontal plane. The DIP
on a cart is also different from the rotating double inverted
pendulum often denoted as double inverted pendulum or
double pendulum.

It is clear that both SIP and DIP are underactuated
mechanical systems that have fewer control inputs than
degrees of freedom. There are many similar systems like
the DIP or other multiple inverted pendulums, such as Ac-
robot, Pendubot, three-link gymnast robot, etc. [3] Dif-
ferent from these systems, controlling of the DIP requires
to consider not only the pendulums, but also the displace-
ment of the cart and this will certainly increase the design
complexity.

For controlling nonlinear underactuated mechanical sys-
tems, Spong [3,4], Spong and Praly [5] separate the prob-
lem into a swingup control and a balance control strat-
egy. For the implementation of the first strategy, they use
the concept of partial feedback linearization and passiv-
ity to design the swingup controller. In order to stabilize

the pendulums at the desired position an optimal linear
quadratic (LQR) or pole placement controller, based upon
a linearized plant model, is frequently used. This method
has been tested on many typical underactuated mechanical
systems such as Acrobot, Pendubot, three-link mechanical
Robot and inertia wheel pendulum [6].

Combining Lyapunov theory with passivity properties
and energy shaping, the nonlinear controllers for some un-
deractuated mechanical systems have been designed by
Fantoni and Lozano applying this idea to SIP [7], Pe-
dubot [8] and to the underactuated hovercraft [9]. In this
method, Lyapunov theory takes an important role in con-
troller design and system convergence analysis. The nonlin-
ear underactuated systems often contain feedforward non-
linearities, unstable zero dynamics, and other structural
properties that often make it difficult to apply some re-
cent design methodologies, such as complete feedback lin-
earization, backstepping or forwarding [10]. Praly has suc-
cessfully applied the forwarding technique to swing up the
SIP[12] and the spherical inverted pendulum [13] resulting
in rather complicated controllers.

Till now, we have not found any application of the above-
mentioned technique to the DIP system. The DIP also
belongs to the class of underactuated mechanical systems
consisting of three interconnected systems (two pendulums,
one cart) with only one actuator to move the cart. It is
different from all the plants we mentioned before as it has
two passive generalized coordinates making it a real chal-
lenge for designing swingup controllers. In this paper, we
accept the viewpoint of using a switching control strategy
and concentrate on the design of a swingup and a balance
controller separately. After analyzing the system dynamics
and passivity properties, the swingup controller for the DIP
system will be developed on the basis of partial feedback
linearization and passivity based control (PBC) together
with energy shaping. To design the balance controller we
apply optimal control theory (LQR) to the linearized sys-
tem without providing the details. The switching condi-
tions from swingup to balance control were drawn from
experiments and are not yet justified by a thorough stabil-
ity analysis. The simulation results show the effectiveness
of the proposed nonlinear controller.
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Fig. 1. Double inverted pendulum system

II. Analysis of system dynamics

The DIP system consists of two linked pendulums on
a wheeled cart that can move linearly along a horizontal
track and a force f to move the cart in order to balance
the two linked inverted pendulums on the cart, i.e. to keep
θ1 and θ2 to be zero, where θ1 is the angle of the first pen-
dulum from the vertical direction; θ2 is the angle of the
second pendulum from the vertical direction. Fig. 1 shows
the illustration of the DIP system. Here, x refers to the
position of the cart; m is the mass of the cart; m1 rep-
resents the mass of the first pendulum; m2 represents the
mass of the second pendulum; l1, l2 denote the distance be-
tween the pivot and the center of mass of respective links.
We assume that the masses of the pendulums and the cart
are homogeneously distributed and concentrated in their
centers of gravity and we neglect frictions. Usually damp-
ing in underactuated mechanical plants helps us to relax
the conditions for stabilization [14]. In this paper we do
not consider internal frictions, so the DIP system with no
internal damping represents the worst case for the imple-
mentation of various control strategies.

The mathematical model of the DIP can be derived using
the Euler-Lagrange equation or the Newtonian approach.
Following the first approach involves to determine the ki-
netic and potential energies of the system’s components in
terms of generalized coordinates. The form of the Euler-
Lagrangian equation used here is:

d

dt

[
∂L

∂q̇

]
− ∂L

∂q
= Qq (1)

where:

L = T − V
T : kinetic energy
V : potential energy
Qq: generalized forces not taken into account in T ,V
q: generalized coordinates

For the holonomic DIP system, we select q as: q =

[x, θ1, θ2]T . The system kinetic energy, T is:

T = Tcart + Tpendulum1 + Tpendulum2 = T1 + T2 + T3 (2)

where:

T1 =
1
2
mẋ2

T2 =
1
2
m1[(ẋ+ l1θ̇1 cos θ1)2 + (l1θ̇1 sin θ1)2] +

1
2
J1θ̇

2
1

T3 =
1
2
m2[(ẋ+ L1θ̇1 cos θ1 + l2θ̇2 cos θ2)2 +

(L1θ̇1 sin θ1 + l2θ̇2 sin θ2)2] +
1
2
J2θ̇

2
2

J1, J2 are inertias of the first and second link with respect
to the center of mass, L1 is the length of the first pendulum,
here L1 = 2l1. The potential energy V is given by:

V = Vcart + Vpendulum1 + Vpendulum2

= 0 +m1gl1 cos θ1 +m2g(L1 cos θ1 + l2cosθ2)
(3)

The Euler-Lagrangian equations for the DIP system result
in:

h1ẍ+h2θ̈1 cosθ1+h3θ̈2 cosθ2 =h2θ̇
2
1 sinθ1+h3θ̇

2
2 sinθ2+f

h2cosθ1ẍ+h4θ̈1+h5cos(θ1−θ2)θ̈2 =h7 sinθ1−h5θ̇
2
2sin(θ1−θ2)

h3cosθ2ẍ+h5 cos(θ1−θ2)̈θ1+h6θ̈2 =h5θ̇
2
1sin(θ1−θ2)+h8sinθ2

(4)

where we have used the following parameters to simplify
the equations:

h1 = m+m1 +m2 h5 = m2l2L1

h2 = m1l1 +m2L1 h6 = m2l
2
2 + J2

h3 = m2l2 h7 = m1l1g +m2L1g

h4 = m1l
2
1 +m2L

2
1 + J1 h8 = m2l2g

(5)

The Euler-Lagrange equations can be put into a frequently
used compact form [15]:

M(q)q̈ + C(q, q̇)q̇ + g(q) = Qq (6)

where:

M(q) =

 h1 h2 cos θ1 h3 cos θ2

h2 cos θ1 h4 h5 cos(θ1 − θ2)
h3 cos θ2 h5 cos(θ1 − θ2) h6


C(q, q̇) =

0 −h2θ̇1 sin θ1 −h3θ̇2 sin θ2

0 0 h5θ̇2 sin(θ1 − θ2)
0 −h5θ̇1 sin(θ1 − θ2) 0


q =

 xθ1

θ2

 , g(q) =

 0
−h7 sin θ1

−h8 sin θ2

 , Qq =

f0
0


It is clear that M(q) is symmetric with a determinant given
by:

det(M(q)) = h1h4h6 − h1h
2
5 cos2(θ1 − θ2)− h2

2h6 cos2 θ1 +

2h2h3h5 cos θ1 cos θ2 cos(θ1 − θ2)− h2
3h4 cos2 θ2

(7)
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To show that det(M) > 0 we substitute expressions in (5)
for (7) resulting in:

det(M(q))=h1h
2
5sin2(θ1−θ2)+h2

2h6 sin2θ1+h2
3h4 sin2θ2+H︸ ︷︷ ︸

H2>0

+ 2h2h3h5(cos θ1 cos θ2 cos(θ1 − θ2)− 1)︸ ︷︷ ︸
H1

(8)

where H > 0 represents a very complicated constant. It
is easy to see that the first part of det(M), H2, is larger
than zero. Next we only consider the H1 part, which is the
uncertainty part of (8). After some algebra it can be put
into the form

H1 = h2h3h5(cos2 θ1 + cos2 θ2 − sin2(θ1 − θ2)− 2)

= h2h3h5(− sin2 θ1 − sin2 θ2 − sin2(θ1 − θ2))
(9)

Comparing the H2 part in (8) with H1, we notice that
h1h

2
5 − h2h3h5 > 0, h2

2h6 − h2h3h5 > 0 and (H +
h2

3h4) − h2h3h5 > 0 so we can draw the conclusion that
det(M(q)) > 0 for all q.

The control objective is to swingup the pendulums from
the stable hanging position to the unstable upright posi-
tion while the cart displacement is brought to zero. There
exist four equilibrium points of the DIP system, i.e., up-
up, down-down, up-down, down-up, with state variables
[θ1, θ̇1, θ2, θ̇2] taking the values of [0, 0, 0, 0], [π, 0, π, 0],
[0, 0, π, 0]and [π, 0, 0, 0]. The total energy is different for
each of the four equilibrium points:

Up-up position: Eup−up = h7 + h8

Down-down position: Edown−down = −h7 − h8

Up-down position: Eup−down = h7 − h8

Down-up position: Edown−up = −h7 + h8

In order to achieve the control objective, i.e. to stabilize
the DIP in the up-up position, the following two conditions
should be satisfied.

1) x = 0; ẋ = 0
2) E = Eup−up = h7 + h8

where the second condition refers to the DIP at the de-
sired up-up position with zero displacement and zero cart
velocity. According to equations (2), (3), (4) and (5) the
explicit energy expression of the DIP, when applying the
above conditions, is:

E =
1
2
h4θ̇

2
1 +

1
2
h6θ̇

2
2 +h5θ̇1θ̇2 cos(θ1−θ2)+h7cos θ1+h8cos θ2

= h7 + h8

(10)

yielding

1
2
h4θ̇

2
1 +

1
2
h6θ̇

2
2 + h5θ̇1θ̇2 cos(θ1 − θ2) =

h7(1− cos θ1) + h8(1− cos θ2)
(11)

Equation (11) defines a particular manifold when we take
the control objective to drive x, ẋ and (E−Eup−up) to zero.
As can be seen from (11), [θ1, θ̇1, θ2, θ̇2] = [0, 0, 0, 0] i.e. the
unstable equilibrium is within the set of all solutions.

III. Energy and passivity based control

A. Collocated partial feedback linearization

As the DIP system belongs to the class of underactu-
ated mechanical systems, which have fewer control inputs
than degrees of freedom, we first consider a general under-
actuated mechanical system with n generalized coordinates
q1, . . . , qn, and m < n actuators. By partitioning the vector
q , we get qT = (qT1 , q

T
2 ) , with q1 corresponding to the pas-

sive and q2 corresponding to the actuated variables. The
Euler-Lagrange equations of the dynamics of an n -degree
of freedom mechanical system with q1 passive coordinates
and q2 actuated coordinates can be written in the following
general form [5]:

M11q̈1 +M12q̈2 + C1(q, q̇) + g1(q) = 0
M21q̈1 +M22q̈2 + C2(q, q̇) + g2(q) = f (12)

where:

M(q) =
[
M11 M12

M21 M22

]
, C(q, q̇)q̇ =

[
C1(q, q̇)
C2(q, q̇)

]
q =

[
q1

q2

]
, g(q) =

[
g1(q)
g2(q)

]
(13)

Here M(q) is the symmetric, positive definite inertia ma-
trix. The vector C includes Coriolis and centrifugal terms,
while g contains the terms derived from the potential en-
ergy, such as gravitational and elastic generalized forces.
The vector f represents the input of the generalized forces
produced by the m actuators at q2. For notational simplic-
ity, we will henceforth not write the explicit dependency
on q for all of these coefficients.

As a consequence of the positive definitness of the iner-
tia matrix, an important property that holds for the entire
class of underactuated mechanical systems is the so-called
collocated partial feedback linearization property [3, 4, 5].
The collocated linearization refers to a control that lin-
earizes the equations associated with the actuated degree
of freedom q2. Consider the first formula in (12),

M11q̈1 +M12q̈2 + C1 + g1 = 0 (14)

As a consequence of the uniform positive definitness of the
Matrix M(q), the l × l matrix M11 with l = n − m is
invertible. Solving for q̈1 yields

q̈1 = −M−1
11 (M12q̈2 + C1 + g1) (15)

When substituting (15) for the second formula in equation
(12) we obtain

M22q̈2 + C2 + g2 = f (16)

where:

M22 = M22 −M21M
−1
11 M12

C2 = C2 −M21M
−1
11 C1

g2 = g2 −M21M
−1
11 g1 (17)
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A very simple test shows that the m × m matrix M22 is
itself symmetric and positive definite. So a partial feedback
linearizing controller can be defined according to equation
(16) and (17) yielding

f = M22 · u+ C2 + g2 (18)

where u was selected as a new control input. So the com-
plete system can be rewritten as

M11q̈1 + C1 + g1 = −M12u

q̈2 = u (19)

Using the collocated linearization method, the original sys-
tem (12) is feedback equivalent to the system (19). In a
first design step, we apply feedback control u to the q2 -
subsystem in (19)

u = −k1q2 − k2q̇2 + k3ū (20)

rendering the subsystem asymptotically stable for ū ≡ 0 .
The remaining design problem is to choose the additional
control ū .

B. Energy and passivity based control

The collocated linearization approach transfers the orig-
inal system (12) into a simpler one (19) both in concept
and in structure. For the reason of convenience, we rewrite
system (19) with control (20) in a more general form

ẋ = Ax+Bu

ξ̇ = f(ξ) + g(x, ξ) · u (21)

and we refer to the linear subsystem as x -subsystem. Ac-
cordingly the nonlinear subsystem in (21) is denoted as
ξ -subsystem, where

ξ̇ = f(ξ) (22)

represents the zero dynamics. Denoting the total energy of
the ξ -subsystem as Eξ, the time derivative yields:

Ėξ =
∂Eξ
∂ξ

ξ̇ =
∂Eξ
∂ξ

(f(ξ) + g(x, ξ) · u) = LfEξ + LgEξ · u

(23)

As the zero dynamics (22) of the ξ -subsystem is conserva-
tive [15], i.e. the total energy Eξ is constant, we have

LfEξ = 0 (24)

Considering equation (23), we get

Ėξ = LgEξ · u (25)

which implies that (25) defines a passive subsystem with
respect to the input u and output yξ with

yξ = LgEξ (26)

If selecting u = −Kx ·x for the x-subsystem, we know that
if the transfer function Kx(sI −A)−1B of the x-subsystem

x-subsystem

ξ-subsystem

u yxv

yξ

LgEξ

Fig. 2. Rendering the system (21) passive from v to yx

is strictly positive real, the x-subsystem is passive with
respect to the output yx = Kx · x . From the theorem of
feedback passivation design in [11], we know, that the whole
system from the new control input v to the output yx can
be rendered passive with the control v = −yx. Hence global
stability will be achieved by

u = −LgEξ + v = −LgEξ −Kx · x (27)

Fig. 2 shows the illustration of the passivation design ren-
dering the system passive from the control input v to the
control output yx.

According to equation (19), we rearrange the system
equations (6) of the DIP. The actuated variables are given
by [x, ẋ]T while the pendulum angels and angle velocities
[θ1, θ2, θ̇1, θ̇2]T represent the passive or unactuated vari-
ables. In matrix form, the DIP equations read:

M11q̈1 +N1 = −M12u

q̈2 = u (28)

where:

q̈1 =
[
θ̈1

θ̈2

]
, q̈2 = ẍ

M11 =
[

h4 h5 cos(θ1 − θ2)
h5 cos(θ1 − θ2) h6

]
N1 = C1 + g1 =

[
h5θ̇

2
2 sin(θ1 − θ2)− h7 sin θ1

−h5θ̇
2
1 sin(θ1 − θ2)− h8 sin θ2

]
M12 = MT

21 =
[
h2 cos θ1

h3 cos θ2

]
, M22 = h1

In equation (28) the first subsystem is represented by the
pendulums, while the second subsystem refers to the cart.
According to equations (16) and (17), we can define the
partial feedback linearizing controller u as:

f = M22 · u+N2 (29)

where:

M22 = M22 −M21M
−1
11 M12

N2 = N2 −M21M
−1
11 N1

N2 = C2 + g2 =
[
−h2θ̇

2
1 sin θ1 − h3θ̇

2
2 sin θ2

]
Introducing

u = −k1x2 − k2ẋ2 + k3ū (30)
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with

ū = −LgEp (31)

where

Ep =
1
2
h4θ̇

2
1 +

1
2
h6θ̇

2
2 +h5θ̇1θ̇2 cos(θ1−θ2)+h7cos θ1+h8cos θ2

(32)

denotes the total energy of the pendulums, finally results
in a feedback controller

u = −k1x− k2ẋ− k3LgEp (33)

To evaluate the formulas we rearrange the equations of the
pendulum subsystem and form the ξ-subsystem by intro-
ducing

ξ =
[
θ1, θ2, θ̇1, θ̇2

]T
Using eq. (28)[

θ̈1

θ̈2

]
= −M−1

11 N1 −M−1
11 M12 · u (34)

we finally get

f(ξ) =

 θ̇1

θ̇2

−M−1
11 N1

 , g(ξ) =

 0
0

−M−1
11 M12

 (35)

and we derive

ū = −LgEp = −
[
∂Ep
∂θ1

∂Ep
∂θ2

∂Ep
∂θ̇1

∂Ep
∂θ̇2

]
· g(ξ)

= h2θ̇1 cos θ1 + h3θ̇2 cos θ2

(36)

Combing passivity design with energy shaping applied to
the pendulum subsystem, we introduce

k3 · ū = k̃3 · Ẽ · ū

where Ẽ = Ep−Eup−up. For Ẽ = 0 the total energy of the
pendulum subsystem is shaped to the energy of the up-up
position. Now the swingup controller for the DIP system
reads

u = −k1x− k2ẋ+ k̃3 · Ẽ · (h2θ̇1 cos θ1 + h3θ̇2 cos θ2)︸ ︷︷ ︸
ū

(37)

From the discussion in section II we conclude that the first
two terms in (37) ensure the cart position and velocity to
converge to zero, whereas the third term forces the total en-
ergy Ep of the pendulum subsystem to converge to Eup−up
while [θ1, θ2, θ̇1, θ̇2] converges to the manifold defined in
(11).
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Fig. 3. Responses of cart displacement, total energy and the control
force

IV. Simulation results

In order to test the control strategy, we carried out sim-
ulations using MATLAB and SIMULINK. By using the
controller (37) based on passivity together with energy
shaping, the DIP system can achieve closed loop stabil-
ity. However, the achieved stability is not asymptotic to a
fixed point, but only to a manifold, which has been shown
in (11). For this reason, the control strategy has to switch
from swingup control to balance control, with a LQR bal-
ance controller achieving local asymptotic stability at the
desired equilibrium. Since the DIP system is linearly con-
trollable in a neighborhood of the up-up position, we can
only design a nonlinear swingup controller intersecting the
trajectory in the neighborhood of the desired equilibrium.

The difficulties in applying such a control strategy are
mainly at the supervisory level, i.e. to set up conditions
when to switch the controllers. After doing many experi-
ments, we determined the following conditions to be met
before switching from swingup to balance control.

0 ≤ |θ1| ≤ 0.2 [rad]
0 ≤ |θ2| ≤ 0.2 [rad]

0 ≤ |θ̇1| ≤ 0.5 [rad/sec]

0 ≤ |θ̇2| ≤ 0.5 [rad/sec] (38)

Fig. 3 shows the responses of cart displacement, to-
tal energy (32) and control force f (6). The pendulum
angles and velocities are depicted in Fig. 4. We can
see that the switching point is at about t = 21s . Note
that before switching to balance control the energy is in-
creasing from Edown−down to Eup−up. Fig. 3 and 4 only
show the transient responses for bringing the pendulums
from the down-down position to the desired up-up po-
sition. In order to test the switching strategy, we have
done lots of experiments using different initial conditions,
i.e. the initial condition for the angular values [θ1, θ2]
were varied from [0.1, 0.1] up to [π, π] in steps given by
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Fig. 4. Simulations of pendulum angles and pendulum velocities
(a) cos θ1; (b) θ̇1 ; (c) cos θ2; (d) θ̇2

[4θ1,4θ2] = [0.2, 0.2]. By properly adjusting the pa-
rameters {k1, k2, k̃3}, satisfying control responses can be
achieved for all of the initial conditions mentioned above.

V. Conclusions

On the basis of a switching control strategy, a swingup
controller based on passivity and energy shaping was de-
signed. The simulations show that this swingup controller
can bring the pendulums to the basin defined by (38) from
any initial position, i.e. the initial angels of the pendulums
can be chosen arbitrarily. As the balance controller can
stabilize the pendulums at the up-up position inside the
basin, we achieve global stabilization of the DIP system.
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