
Tripp, Steven D. & Bichelmeyer, Barbara. (1990) Rapid Prototyping: An Alternative
Instructional Design Strategy.

Rapid Prototyping: An Alternative Instructional Design
Strategy

Eli Steven D. Tripp and Barbara Bichelmeyer
Steven D. Tripp and Barbara Bichelmeyer are in the Instructional Technology Center, the
University of Kansas, Lawrence, Kansas 66045.

There is a design methodology called rapid prototyping which has been used successfully in
software engineering. Given the similarities between software design and instructional
design, we argue that rapid~ prototyping is a viable model for instructional design,
especially for computer-based instruction. Additionally, we argue that recent theories of
design offer plausible explanations for the apparent success of rapid prototyping in software
design. Such theories also support the notion that rapid prototyping is appropriate for
instructional design. We offer guidelines for the use of rapid prototyping and list possible
tradeoffs in its application.

The standard rationale for the "systems approach" to instructional design has been the
effectiveness of the product rather than the efficiency of the process (Branson & Grow, 1987;
Briggs, 1977; Briggs & Wager, 1981; Gagne, 1987; Gagne & Briggs, 1979). It is rarely
argued that the systems approach is efficient. Indeed it is sometimes admitted that ISD is
costly. For example, Romiszowski (1981) acknowledges this inefficiency by stating that, "...
when one is venturing into instructional design, which is quite expensive, one should justify
the cost" (p. 157). There is always a need for design methodologies which are more efficient,
while maintaining or enhancing effectiveness. A software design methodology called rapid
prototyping has recently been advocated because it solves efficiency problems associated
with traditional software design methods while increasing effectiveness. The purpose of this
paper is to evaluate why this design methodology may be appropriate to instructional
systems design.

THE NATURE OF DESIGN

In 1969, before personal computers became standard equipment in many homes, businesses,
and schools, and before great numbers of college students were planning careers in computer
technology, Herbert Simon addressed an issue that was to become important to software
developers and instructional designers. Simon (1981) spoke to the issue of the nature of
fields like computer science, engineering, and education by pro

posing a difference between the natural sciences and what he called sciences of the artificial.
The disciplines which Simon defined as artificial include (but are not limited to) engineering,
medicine, architecture, and instruction. The four qualities that separate the natural sciences
from the artificial or design sciences are (a) artificial things are synthesized by people; (b)
artificial things imitate appearances of natural things but lack the reality of them; (c) artificial
things can be characterized in terms of functions, goals, and adaptation; and (d) artificial
things are usually discussed in terms of imperatives as well as descriptives.

Page 1 of 17Module 11 Tripp amd Bichelmeyer

2/9/2006http://www.quasar.ualberta.ca/edpy597mappin/readings/m11_Tripp.htm

Simon's theory that there are important differences between the natural and artificial sciences
was empirically substantiated by Lawson (reported in Lawson, 1980), who conducted a study
to discover the differences between natural scientists and architects in design-like problem-
solving. In Lawson's study, the problem was to arrange colored blocks onto a 3-by-4
rectangular pattern with the objective being to show as much red or blue as possible. The
series of problems was conducted within various constraints. The results showed that the two
groups used different strategies, but the differences were consistent within the groups. The
scientists tried out a series of possible combinations to maximize their knowledge of the
problem in hopes of discovering a general rule. The architects attempted a design based upon
cursory knowledge of the problem; if that was not acceptable, the next most likely solution
was tried. In other words, the natural scientists attempted to discover general principles,
while architects focused on desired solutions.

In spite of the agreement that design sciences differ from natural science, there has been
difficulty in finding a common description of the process of design. Two classical theories
are those of Simon (1981) and Alexander (1964). Simon conceived of design as an instance
of problem-solving. A formal description of problem-solving involves representing the
problem as a problem-space with initial, intermediate, and goal states. The solution to the
problem involves searching for operators which will transform the initial state into the goal
state. For ill-structured problems, heuristics rather than algorithms are required to achieve
ends. A standard heuristic for the solving of difficult problems is means-end analysis. Ends
are defined, and means to those ends are specified. If no means are apparent, the problem is
decomposed into a hierarchy of sub-problems. This decomposition continues until means are
discovered to solve the sub-problems. Thus, problem solving, and therefore design, is simply
a matter of finding the best description of the problem. In this case, a theory of design is
equivalent to a formal representation of problem-solving heuristics.

Alexander (1964), an architect, presented a theory of design problem-solving which predated
Simon but also relied on representing the problem as a space. Alexander differed from Simon
in that he advocated "unselfconscious" problem decomposition rather than the "self-
conscious" methods of Simon. Unselfconscious problem solving involves representing
design specifications as points in a problem-space and discovering highly interconnected
clusters of points. These points represent important factors to be considered. As points are
connected into a hierarchy of factors, representations of crucial issues at differing levels of
generality emerge. Again design is represented as a matter of finding the best description of
the problem space.

The problems with the two theories are summarized by Carroll and Rosson (1985). Both
theories combine prescription with description. Both fail to illustrate their theories with
anything more than idealized examples. Both reduce design to a problem of finding the
correct description of the problem-space. Carroll and Rosson examined empirical studies of
designers in action and based on these studies they argue that, contrary to Simon and
Alexander, the process is:

Non-hierarchical

Neither strictly bottom-up nor top-down.

Radically transformational, involving the development of partial and interim solutions
which may ultimately play no role in the final design.

Page 2 of 17Module 11 Tripp amd Bichelmeyer

2/9/2006http://www.quasar.ualberta.ca/edpy597mappin/readings/m11_Tripp.htm

Intrinsically the discovery of new goals.

Carroll and Rosson's formulation, while accepting Simon's distinction between science and
design, does not accept his characterization of the design process and emphasizes its
complexity and unpredictability. This complexity and unpredictability presents a dilemma
from a pedagogical perspective. If design is too complicated to be represented, how can it be
communicated? One solution is to use idealized process models.

There have been many attempts to model the design process, the earliest dating back over 20
years (Asimow, 1962; Jones, 1963). Although these models came out of engineering and
architecture, which may seem more predictable than instructional design, these authors
emphasize the complexity and uncertainty of design. Indeed, Asimow asserts that philosophy
and ethics are part of engineering so there can be no relying on purely empirical principles.
In spite of these complexities, Asimow, Jones, and others constructed design models. These
models typically represent design as a phased-state development process with or without
"feedback loops. All traditional phased- state models of the design process reduce to three
stages-analysis, synthesis, and evaluation as first presented by Jones (1963). More complex
models, such as ISD models, either elaborate the three main stages or add pre- and post-
design processes (cf., Andrews and Goodson, 1980). For the most part, these models have
not been tested empirically, nor have their originators felt obliged to do so. The justification
of such models is primarily pragmatic rather than theoretical. It is to reduce error and delay
and to allow more imaginative and advanced designs (Jones, 1963). As Broadbent (1973) has
pointed out, however, these models do not really define a design process as much as a
decision sequence. They simply assert that it is more useful to make certain decisions before
others are potentially testable hypothesis.

In spite of Simon's clarification of the distinction between the natural and artificial sciences
and the lack of empirical or theoretical underpinning to most design models, many current
models of design claim to emulate a scientific approach, the systems approach. As Kemp
asserted, "The systems approach is based on the method of scientific inquiry. ." (quoted in
Nunan, 1983, p. 51). This justification suffers from several defects. First, it confuses science
and design. Asimow (1962) noted that, " The end of [scientific] research is a finding which
will be true in many situations; of design, a piece of hardware" (p. 48). In the field of
education, Ausubel (1959) also pointed out the distinction between scientific research and
design research and warned of the problems associated with confounding the two.

In addition to the confusion of design and science, the pragmatic justification presupposes a
naive theory of scientific activity based upon "the scientific method. Nunan (1983) notes that
this account of the scientific method is a textbook version of scientific activity which Kuhn
(cited in Nunan, 1983) criticized:

Inevitably, however, the aim of such books is persuasive and pedagogic; a
concept drawn from them is no more likely to fit the enterprise that produced
them than an image of a national culture drawn from a tourist brochure or a
language text (p. 84).

Even those who argue that scientific reasoning can be formally modeled (e.g., Langley,
Simon, Bradshaw, & Zytkow, 1987) admit that there may be no one scientific method. Given
the distinctions between science and design, the general state of uncertainty of what science
is (Bechtel, 1988), and the empirical evidence of actual design processes, the argument that a
systems approach to instructional design is desirable because it is "scientific seems
unpromising at best.

Page 3 of 17Module 11 Tripp amd Bichelmeyer

2/9/2006http://www.quasar.ualberta.ca/edpy597mappin/readings/m11_Tripp.htm

Still, most instructional design models attempt to apply general systematic and analytic
procedures to instructional situations. But, if instructional design is a process within the
realm of the artificial, it would seem more appropriate for designers to focus on solving
problems and achieving goals by synthesizing materials in a manner similar to the one the
architects used in Lawson's study. As Rowe (1987) pointed out, since problem solvers are
rarely in a position to identify all possible solutions, they must deal with bounded
rationalities. Bounded rationality refers to the need to make decisions without complete
information~. Decision making without adequate information is typical of design. Indeed,
Schön (1988) has argued that defining characteristics of design activities are uncertainty,
uniqueness, and conflict. In this light, design becomes a process of reflection- in-action; and
designers take on the task of turning indeterminate situations into determinate ones (Schön,
1987).

The nature of design, Lawson (1980) argued, is that problems cannot be comprehensively
stated, and that any statement of a problem requires subjective interpretation on the part of
the designer. Solutions are uncountably large in number and there is never one that is
optimal. The design process is endless, with no infallibly correct methodology. In fact,
Alexander (1964) argued that if there were an algorithmic methodology, the process could no
longer be called design. Design is a prescriptive activity which involves value judgments on
the part of the designer, who works in the context of a need for action. In sum, the limits of
analysis are determined by the fact that complex problems are subjective and cannot be
exhaustively analyzed. Therefore, design begins by being a conjecture, and after utilization, a
modification job which involves finding as well as solving problems (Lawson, 1980). Given
this conceptualization of the design process, it follows that any design methodology which
acknowledges the complexity of the situation may be more efficient because it anticipates
and short-circuits the kinds of problems designers typically encounter.

SIMILARITIES BETWEEN SOFTWARE DESIGN AND INSTRUCTIONAL DESIGN

Engineering and education are both disciplines which fit Simon's definition of artificial
sciences. Software design and instructional design are fields that have similar methodologies
and purposes. The waterfall model (Maher & Ingram, 1989) of software design and the
interservices ISD model (Branson, 1975) represent two well-known models from the
respective fields. Both models consist of five steps. The waterfall model includes Analyze,
Design, Implement, Test, and Maintain. The interservices ISD model specifies Analyze,
Design, Develop, Implement, and Control. The superficial similarities are obvious. At a
deeper level, Maher and Ingram (1989) note that in both fields, designers attempt to be
systematic in approaching large, complex problems. Designers in both fields attempt to bring
orderly and replicable practices to disciplines which are dominated by individual
practitioners. Both have typically advocated the use of formative evaluation procedures in
the development of systems. Additionally, the two often deal with similar constraints in
planning, budgeting, scheduling, and tracking the development of materials.

The most fundamental difference between the two fields is the degree of rigor that can be
expected in each. Software designers deal with systems that are based on mathematical logic.
Instructional designers deal in part with computer software, but primarily with systems based
on human cognition, which entail more uncertainty and accept more ambiguity.

Based on the large number of similarities and the minor differences that exist, practitioners in
the two fields have often used similar models in their efforts to create effective materials.
Indeed, Maher and Ingram (1989) have asserted that instructional designers could benefit
from studying the methods of software designers. One method of software design which has

Page 4 of 17Module 11 Tripp amd Bichelmeyer

2/9/2006http://www.quasar.ualberta.ca/edpy597mappin/readings/m11_Tripp.htm

been widely endorsed recently (Jordan, Keller, Tucker, & Vogel, 1989; Luqi, 1989;
Schneiderman, 1987; Tanik & Yeh, 1989; Whitten, Bentley, & Barlow, 1989) is called rapid
prototyping.

RAPID PROTOTYPING

Recently, capitalizing on the increased capabilities of software development tools, software
designers have begun to use the design methodology called rapid prototyping ping. Figure 1
shows a model of rapid software prototyping based upon Lantz (no date). Rapid soft ware
prototyping has been defined by Lantz (no date) as a ". . . system development methodology
based on building and using a model of a system for designing, implementing, testing and
installing the system (p. 1). In this methodology, after a succinct statement of needs and
objectives, research and development are conducted as parallel processes that create
prototypes, which are then tested and which may or may not evolve into a final product. The
rapid prototype should include any required database, the major program modules, screen
displays, and inputs and outputs for interfacing systems. To perform the prototyping process,
it is necessary to have physical and logical definitions of the system, an opportunity to
exercise the prototype, and software which allows the rapid building and modification of the
prototype. In Lantz's terminology the physical and logical definitions correspond
approximately to an instructional strategy and instructional objectives. It should be noted,
however, that the definitions are a product of the prototyping process, as can be seen in
Figure 1. The initial definitions serve only to construct the model of the system. It is through
the rapid prototyping process that initial definitions evolve into final definitions.

Figure 1. Prototyping Approach to Software Design

Although the term rapid prototyping is new, the underlying methodology is not. In hardware
engineering, the use of prototypes as a way of testing ideas has a long and successful history.
The image of model airplanes in wind tunnels is familiar to all. Dreyfuss (1974)
recommended the use of mock-ups and user-testing as essential to the design process.
Asimow's (1962) Introduction to Design specifically mentions the use of prototypes as an
empirical methodology. Wilson and Wilson (1965) also describe prototyping as a design
methodology. This tradition has evolved into modern systems analysis techniques such that
Whitten, Bentley, and Barlow's (1989) textbook, Systems Analysis & Design Methods,
integrates prototyping into the standard model. The use of rapid prototyping in software
engineering is essentially the extension of a successful design methodology into a new
domain.

The use of rapid prototyping in software design depends on development software which
allows rapid construction and modification of software. As anyone familiar with computers
knows, software development has been a tedious and time-consuming procedure. The

Determine
Feasibility

Study
Present
System

 Define Prototype

 Build Prototype
 Exercise Prototype
 Convert Install

Page 5 of 17Module 11 Tripp amd Bichelmeyer

2/9/2006http://www.quasar.ualberta.ca/edpy597mappin/readings/m11_Tripp.htm

extreme time penalties involved in modifying software under traditional conditions obliged
software developers to thoroughly specify product characteristics before a project was
actually coded. The advent of various powerful and modular software prototyping tools has
allowed the prototyping methodology to be applied to a domain where previously it was
impractical. Thus the use of rapid prototyping in software design is a function of the
development media available.

The motivation to use rapid prototyping is based upon both faults in the traditional
development process and advantages founds with prototyping. Some of the faults with
traditional methodologies which Lantz (no date) has documented are as follows:

They are thorough but don't please users.

They produce extensive documentation but don't reduce communication problems.

They identify phases but don't decrease project time.

They describe the system thoroughly but don't guarantee it's the right system.

They delineate the skills needed but don't cut human resource needs.

They track project costs but don't reduce them.

Also, Maher and Ingram (1989) assert that the advantages of rapid prototyping are that it
allows users to try out the system, discover the problem areas, and have input into the
selection of an appropriate interface. Lantz (no date) provides evidence that rapid
prototyping pleases users, reduces development costs, decreases communication problems,
lowers operations costs, slashes calendar time, and produces the right system for the
designated task.

Given the similarities between software engineering and instructional design, especially
instructional design for computer- based instruction, rapid prototyping may offer all the same
advantages in instructional development that it offers in software development, The
argument can be made that rapid prototyping is even more appropriate for instructional
design because it allows the flexibility needed when dealing with the greater complexity of a
human factors-intensive field such as the process of instruction.

A MODEL OF RAPID PROTOTYPING

The word model is widely used and frequently undefined. We follow Marca and McGowan
(1988) and define M to be a model of a process P if M answers questions about P with
accuracy A. It should be pointed out that accuracy A is not absolute accuracy. Therefore, our
model does not represent rapid prototyping completely. We concur with Carroll and Rosson
(1985) that, "Design is a process, it is not a state and cannot be adequately represented
statically (p. 27).

Figure 2 represents the events that occur in a rapid prototyping environment, when
prototyping is specifically used as a method for instructional design. The overlapping boxes
are meant to represent the fact that the various processes do not occur in a linear fashion. In
other words, the analysis of needs and content depends in part upon the knowledge that is
gained by actually building and using a prototype instructional system.

Page 6 of 17Module 11 Tripp amd Bichelmeyer

2/9/2006http://www.quasar.ualberta.ca/edpy597mappin/readings/m11_Tripp.htm

Figure 2. The Rapid Prototyping Model

As with software development, rapid prototyping in instructional systems design is the
building of a model of the system to design and develop the system itself. The process
begins, as in most traditional instructional design models, with the analysis of needs and
content and a statement of tentative objectives. The statement of objectives at this stage is
simply the definition of a plan for instructional design. As a plan, it serves two functions
(Streibel, 1989): to communicate to everyone involved the purpose of instruction and to
delineate tasks the learner ~will pursue. Rapid prototyping continues with the parallel
processes of design and research, or construction and utilization. It is assumed that full
understanding of needs, content, and objectives is a result of the design process and not an
input into it. Reigeluth (1989) notes the expediency of coupling design with research. He
suggests that separating research from design, as has often been done in the past, is not the
best manner by which to build prescriptive theory. If a designer who is familiar with theory
incorporates it when designing products and studies its application when conducting product
evaluation, research and development can be very effective as parallel processes. Minimally,
research should be conducted to discover the complexities of the subject matter, prerequisite
knowledge needed to understand the content, and the presentation modes that are most
conducive to acquiring the material.

DIFFERENCES BETWEEN RAPID PROTOTYPING AND TRADITIONAL ISD

Although there are traditional models which resemble rapid prototyping, both in their
sequencing of decisions and their use of prototypes (e.g., Sullivan, 1971), the orientation of
the rapid prototyping approach is to acknowledge rather than to minimize the com plexity of
actual situations. The emphasis of many writers (e.g., Briggs, 1977) is on instructional
planning, rather than learning from actual situations. Needs assessment and serious field
testing are minor topics. No doubt, this is partly a function of typical instructional design
situations, which may constrain these activities, but it also represents an attitude of technical
rationality which discounts the interacting complexity of budget, time, content, methods,
local history, talent, and social interaction. As a result, many traditional models emphasize
early constraining of design decisions, while rapid prototyping follows the pragmatic design
principle of minimum commitment (Asimow, 1962; Wilson & Wilson, 1965), that at each
stage in synthesizing a design no commitment is made beyond what is absolutely necessary
to solve the problem at hand. In fact, given the power of our available tools, it is not outside
the spirit of rapid prototyping to create alternate, and even contradictory designs, as has been
advocated by Carroll and Rosson (1985). Traditional instructional designers may find this
suggestion surprising, but the fact that contradictory .approaches may have efficacy is
illustrated by the work of Asher and Gattegno in language teaching. Asher (1977) advocates
a methodology in which only the teacher speaks. Gattegno (1972), however, originated a
methodology in which the teacher almost never speaks. Both methods have generated
sufficient success to produce a following. It is not unthinkable that the generation and testing
of seemingly contradictory designs may result in theoretical knowledge. It is well-established
(Ellul, 1964) that the natural sciences have often been advanced by work in the artificial

 Assess Needs & Analyze
Content

 Set Objectives

 Construct Prototype (Design)
 Utilize Prototype (Research)
 Install & Maintain System

Page 7 of 17Module 11 Tripp amd Bichelmeyer

2/9/2006http://www.quasar.ualberta.ca/edpy597mappin/readings/m11_Tripp.htm

sciences.

USING THE DESIGN

A crucial part of the prototyping process is the utilization of the design with potential
learners. Utilization is the situated action in which the learner develops cognitive skills and
learns content. During utilization, the designer observes the learner and asks questions to
discover strengths and weaknesses of the prototype. As a result of the utilization phase, the
learner and the designer have separate learning experiences which are determined by their
individual plans and their reflections about and cognitive reconstructions of the utilization
experience. Both the learner and the designer are affected by the utilization phase in that they
gain new information by problem solving, but additionally and more important, utilization
involves problem discovery. For the designer, the discovery of new problems results in the
modification of the tentative objectives or the creation of new ones. With these objectives,
the rapid prototyping process begins again. For evaluation, we believe that the detailed
observation and debriefing of a small number of subjects can be revealing (Komoski, 1974).
The end of a design project is an appropriate artifact not a generalization. An instructional
system must be adapted to a unique situation and need not have general applicability.

USING RAPID PROTOTYPING IN INSTRUCTIONAL DESIGN

Rapid prototyping presupposes a design environment which makes it practical to synthesize
and modify instructional artifacts quickly. Without such an environment it becomes
inefficient and, therefore, loses its attractiveness. To make prototyping efficient and
effective, certain types of media are required. Rapid prototyping requires the availability of
tools (mainly computer software) that offer modularity and plasticity. Modularity allows a
segment of the instructional unit to be added, removed, or modified without affecting severe
interactions in the other segments or the unit as a whole. Examples of modular media are
loose leaf notebooks, overhead transparency presentations, and object-oriented computer
programs such as HyperCard. The second requirement, plasticity, refers to the ability to
change aspects of a unit of instruction with only minor time or cost penalties. Plasticity is
difficult to achieve with most types of instructional media. Textbooks, film, videodiscs,
slides, audio recordings, and even transparencies are all created using technologies which
make revision tedious or costly after the product is initially mastered. Again, computer
programs such as HyperCard offer a high degree of plasticity for instructional design. Thus,
it is probable that only in the context of computer-based instruction is rapid prototyping a
viable methodology. Although rapid instructional prototyping can always be accomplished
given a sufficient commitment of money and human resources, it has become a practical
instructional design methodology only within the modern software development
environment.

INSTANCES FOR USE OF THE RAPID PROTOTYPING MODEL

While we do contend that the rapid prototyping model, when feasible because of the
availability of modular and plastic media, is more compatible with real-world design
processes than are traditional models of instructional design, we do not mean to suggest that
the existing body of knowledge in the field of instructional design be disregarded. Indeed,

Page 8 of 17Module 11 Tripp amd Bichelmeyer

2/9/2006http://www.quasar.ualberta.ca/edpy597mappin/readings/m11_Tripp.htm

the experience of generations of instructional designers and researchers constitutes a body of
situated cognition that serves as a platform for further design activities. In addition,
traditional analytic approaches offer a good first step in the design process. Neither do we
assert that use of the rapid prototyping model would be appropriate in every instructional
situation. Many situations, such as the production of satellite-broadcast lecture courses, make
rapid prototyping a near impossibility. It appears, however, that in certain circumstances,
especially when coupled with modular software development tools, rapid prototyping is a
plausible model for instructional design. We believe that rapid prototyping appears to be
appropriate in at least the three following types of situations: cases that involve complex
factors which make prediction problematical, cases where we have experience but lack
satisfaction with results derived from conventional methods, and new situations where there
is not an abundance of experience from which to draw.

Cases with complex factors

There are two reasons why rapid prototyping appears to be an appropriate methodology in
cases where complex factors make prediction problematical. The first reason focuses on the
nature of complex factors. In learning situations, complex factors typically concern either
communication problems such as human-machine interaction, cognitive processing
capabilities such as higher order thinking skills, or "soft skills such as management skills
where there is really no well-defined body of knowledge to guide us. In dealing with these
factors, a model of instructional design is required that can provide plasiticity and modularity
to allow for the variations that occur in each new situation of use. Flexibility of the
instructional system is also the key to dealing with situations in which prediction is
problematical. In such situations, rapid prototyping is more appropriate than traditional
models of instructional design because it is not based on general principles that standardize
every learning situation by forcing them all into similar molds. Problematical prediction is
less of an issue in the rapid prototyping model because front-end analysis is only intended to
be a beginning point. Plans can easily be changed during the research, development, and
even utilization phases because the model takes advantage of the flexibility of the medium
used to create the instructional sequence and strategy.

When Conventional Methods Yield Unsatisfactory Results

Streibel (1989) wrote about the challenge that Suchman's theory of situated learning presents
for instructional designers. In that pa; per, Streibel expressed his own feelings of frustration
with the inadequacy of traditional instructional models. He wrote:

I first encountered the problematic relationship between plans and situated
actions when, after years of trying to follow Gagné's theory of instructional
design, I repeatedly found myself, as an instructional designer, making ad hoc
decisions throughout the design and development process. At first, I attributed
this discrepancy to my own inexperience as an instructional designer. Later,
when I became more experienced, I attributed it to the incompleteness of
instructional design theories. Theories were, after all, only robust and mature at
the end of a long development process, and instructional design theories had a
very short history. Lately, however, I have begun to believe that the discrepancy
between instructional design theories and instructional design practice will never
be resolved because instructional design practice will always be a form of
situated activity (i.e., depend on the specific, concrete, unique circumstances of
the project I am working on). Furthermore, I now believe instructional design
theories will never specify my design practice at anything other than the most

Page 9 of 17Module 11 Tripp amd Bichelmeyer

2/9/2006http://www.quasar.ualberta.ca/edpy597mappin/readings/m11_Tripp.htm

general level. (Streibel, 1989, p. 7)

Certainly, there are many cases in which traditional models have worked satisfactorily in
achieving prescribed instructional objectives. There are also many instances, however, in
which traditional models have not done the job expected of them, and it is in these cases that
rapid prototyping might be seen as a viable alternative to conventional practice.

There are a number of reasons why traditional models may not be successful. As Streibel
suggested, they may be incomplete, or they may not account for the situated nature of
knowledge. Or perhaps, as Maher and Ingram (1989) suggested, many traditional designs
have a linear quality which in many instances is not a true reflection of the design process.
They argue specifically that recent research has found instructional design models with
sequential, hierarchical features do not adequately represent what people really do, or what
they should do, in specific design situations, and that software engineers frequently need
more realistic, more flexible models to follow in planning and executing a project. Conklin
and Bridge land (1986) support this position and assert that, "It has become a commonplace
that people don't really proceed along the linear stages of the waterfall model. The same
could be said about instructional design models, with the possible exception of large projects
where different people are responsible for each stage of the project.

Reigeluth (1989) recognized that educational technology is a field that is rapidly changing,
and he discussed the challenges that face theorists and practitioners because of changes that
are occurring in the field. He suggested that some of the most important new directions will
include, among other things, the development of prescriptions for types of learning which
have been largely ignored by the field (such as situated learning), and development of
prescriptions that take advantage of the unique capabilities of new technologies. Although he
was referring to instructional strategies, rather than design strategies, we contend that the
argument holds for both.

Unfamiliar Situations

Rapid prototyping appears to be more appropriate for use than traditional methods of
instructional design in situations, such as learning from hypertext, where there is little
experience from which to draw. This is because in the rapid prototyping methodology,
research is conducted concurrently with development; therefore little formal research is
needed to begin a project, and much information can be gathered from research conducted as
learners use the prototype. The rationale for rapid prototyping recognizes that, in reality,
each learning situation is to some degree different from any before or after, and therefore
acknowledges that all research is in some manner relative to the situation in which it was
conducted. Thus, rapid prototyping is designed so that each learning situation is dealt with as
a new situation, with unique problems to be discovered and solved.

RAPID PROTOTYPING AS A PARADIGM SHIFT IN INSTRUCTIONAL DESIGN

Up to this point, the purpose of this paper has been primarily to point out the features of the
design environment that make rapid prototyping a plausible model of instructional design.
This has included an explanation of how the difference between design sciences and natural
sciences influences the kind of design models we should use, and a statement of the
situational nature of knowledge, which should affect the type of design procedures we

Page 10 of 17Module 11 Tripp amd Bichelmeyer

2/9/2006http://www.quasar.ualberta.ca/edpy597mappin/readings/m11_Tripp.htm

employ. Additionally, we have attempted to give a brief introduction to the terms, stages, and
operations used in rapid prototyping, so that readers may have some understanding of the
practical aspects of this methodology.

At this point, we will attempt to delineate assumptions which we believe make rapid
prototyping more than just an alternative model of instructional design. Based on these
assumptions, we believe that the rapid prototyping methodology represents a paradigmatic
shift in understanding the nature and purpose of the field of instructional design.

First, based on the arguments given in the first section of this paper, we have assumed that
there is a legitimate and important difference between science and design. Second, we have
noted our belief that it is possible to acquire specific knowledge of the world by using
materials synthesized within the realm of design science. Third, we assume that there is a
fundamental difference between the meaning of validity when applied to design theories, as
opposed to the manner in which it is used in educational psychology. The difference,
according to Reigeluth (1989), is based on the purposes of the study. When attempting to add
to a knowledge base that is descriptive or analytical, construct validity should be the major
concern of research. But as in the case of instructional design, where research is aimed at
prescription and synthesis, "optimality becomes the major research concern. The focus on
optimality might be best described as research conducted to determine if the theory or the
model used achieves the desired results in a specific instructional situation. As Reigeluth
outlines, the process for determining optimality requires (a) using one particular model to
produce an instructional product, (b) conducting a series of formative evaluations in
naturalistic conditions using both obtrusive measures such as face-to-face interviews and
unobtrusive measures such as observation, and (c) replicating the study using different
content, learners, settings, and mediation as dependent variables. Reigeluth suggests that
"this kind of study yields much more data about a broad range of features of the theory or
model, and these data are far more relevant for improving the theory or model than any
experimental study (1989, p. 72). Research of this type has recently been reported by Ingram
(1988). Although these researchers were primarily concerned with design prescriptions rather
than designs, the methodology of rapid prototyping is amenable to both endeavors. This is
because design prescriptions may be thought of as designs themselves (Perkins, 1986) and
therefore may be rapidly prototyped.

Finally, we assume the post-positivist position that human experience is a subjective entity
and that perfect objectivity is not achievable, at least in regard to human affairs. In this paper
we refer specifically to design, which is a form of knowledge construction. Documentation
for this particular assumption could lead to volumes in itself; we acknowledge that we have
neither the space nor the resources to present the complete argument here. For those who
seek a very complete and detailed argument for the case of post-positivism, especially in the
behavioral sciences, we suggest Guba and Lincoln's Fourth Generation Evaluation, (1989).
If this position is valid, it means most importantly that there is no one "right way for learners
or designers to acquire knowledge since there is not one particular set of knowledge claims
that can be accepted as truth. Since the process of design is a process of knowledge
acquisition, the implications of this position are several. Asimow (1962), writing about
engineering design, emphasized the conflicting demands of uniqueness and uncertainty, and
that, since philosophy is based upon what we believe, there cannot be one philosophy of
design. If engineering design is uncertain and subjective, instructional design must be even
more so. Recent theoretical writing on the design process (Carroll & Rosson, 1985; Schön,
1988) has not supported the technical rationality approach to design advanced by Simon and
has emphasized the subjective nature of skilled design. Such theories of design undermine
traditional instructional design models which strive for technical rationality, unless it be

Page 11 of 17Module 11 Tripp amd Bichelmeyer

2/9/2006http://www.quasar.ualberta.ca/edpy597mappin/readings/m11_Tripp.htm

asserted that traditional design is not a member of the general category, design-an awkward
position.

When based on the four assumptions cited above, use of the rapid prototyping methodology
becomes more than just the acceptance of a viable alternative to instructional design, it
becomes a statement of belief about how design takes place and how instructional designers
can synthesize learning environments. Not every environment will be ame nable to this
methodology. The final test of rapid prototyping, like anything in the design sciences, is not
whether it is based on true assumptions, but whether it is useful. It has proved to be useful in
other domains.

AN EXAMPLE

One of our students had been involved in the development of a computer-based grammar
tutor for foreign students. He found that his analysis of the types of information which would
be useful to students, the types of feedback that should be given, and the general structure of
the tutorial was becoming very complex. On the other hand, he felt that he could not pilot-
test the program until it was in a relatively finished form. I suggested to him that he should
try rapid prototyping the tutorial. The prototype was deliberately only a model of the finished
product. That is, it contained only the major elements of the final tutorial, and these elements
were presented in a schematic way. He was able to produce the prototype in a short period of
time (a matter of hours) and immediately started testing it with potential users, while
collecting their suggestions and comments. He reported that this process answered many of
his questions and that he was able move quickly toward a full version of the tutorial. This
example illustrates the essential features of rapid prototyping. First, a model of the system
was used to investigate and design the full system. Second, the software environment
allowed rapid synthesis and modification of the system. Third, a slow and uncertain process
of analysis and detailed specification was replaced by an efficient process of hands-on
design. Although this application was successful, it depended upon two factors: a plastic and
modular medium, and an intention to learn through the process of design.

PROS AND CONS

Some may argue that rapid prototyping is nothing new-the methodology of rapid prototyping
has always been with us, even if the models of design did not acknowledge it. In one sense
this is true. Where possible, engineering design and instructional design have used
prototypes. The use of prototypes is not the same as rapid prototyping, however. In many
cases, the use of prototypes is dictated by the severe consequences of error (i.e., aircraft
design), rather than efficiency considerations. Rapid prototyping emphasizes the rapid
synthesis and utilization of designs because the medium affords it.

Others may say that traditional models with their formative evaluation are a kind of
prototyping. First, the need for formative evaluation is an acknowledgment that front- end
analysis, no matter how rigorous, cannot guarantee a successful design. Second, prototyping
is not rapid prototyping. Traditional models do not emphasize the efficiency potential of
modern software environments. The prototypes produced in such a methodology are really
pilot tests. They represent a relatively final form of the instructional system. Rapid
prototyping differs in its assumptions from formative evaluation approaches. Perhaps most
importantly, rapid prototyping assumes that design involves the discovery of goals as well as

Page 12 of 17Module 11 Tripp amd Bichelmeyer

2/9/2006http://www.quasar.ualberta.ca/edpy597mappin/readings/m11_Tripp.htm

their satisfaction. To discover goals, rapid prototyping places synthesis before analysis, or
uses an analysis-by- synthesis approach. The reasoning behind this approach stresses that
uncertainty, uniqueness, and conflict are the defining attributes of design situations; design,
therefore, is treated not only as problem-solving, but as making (Schön, 1988). Seeing
design as making means that this approach shares many fundamental ideas with Winograd
and Flores (1987) and Suchman (1987). These ideas emphasize that design is highly
contextualized and not a product of technical rationality. Instructional designs are negotiated
products, based upon many factors besides learning theory and instructional prescriptions.
Differences like this make rapid prototyping a legitimately alternative approach with its own
set of advantages and disadvantages.

Whitten et al., (1989) have summarized advantages and disadvantages of rapid proto typing
in a systems engineering context. We have adapted their conclusions into the instructional
design environment. The following are potential advantages of rapid prototyping:

It encourages and requires active student participation in the design process.

Iteration and change are natural consequences of instructional systems development.
Clients tend to change their minds.

Clients don't know their requirements until they see them implemented.

An approved prototype is the equivalent of a paper specification-with one exception.
Errors can be detected earlier.

Prototyping can increase creativity through quicker user feedback. (But see below.)

Prototyping accelerates the development cycle.

The main disadvantage of prototyping can be summed up in one complaint that is easy to
imagine: it has a tendency to encourage informal design methods which may introduce more
problems than they eliminate. This failure can be avoided if the following issues are kept in
mind:

Prototyping can lead to a design-by-repair philosophy, which is only an excuse for
lack of discipline.

Prototyping does not eliminate the need for front-end analysis. It cannot help if the
situation is not amenable to instructional design.

A prototype cannot substitute completely for a paper analysis.

There may be many instructional design problems which are not addressed by
prototyping.

Prototyping may lead to premature commitment to a design if it is not remembered
that a design is only a hypothesis.

When prototyping an instructional package, creeping featurism (the adding of bells
and whistles) may lead to designs that get out of control.

Page 13 of 17Module 11 Tripp amd Bichelmeyer

2/9/2006http://www.quasar.ualberta.ca/edpy597mappin/readings/m11_Tripp.htm

Prototyping can reduce creativity by eliminating the urge to find better designs.

Prototyping environments can lead to designs that execute less efficiently than designs
instantiated in dedicated authoring languages.

SUMMARY

We have presented several arguments for the notion that rapid prototyping is a viable model
for instructional systems design in a computer-based instruction context. First, there is a long
history of the successful use of prototyping in software engineering. Additionally, there are
strong similarities between software engineering and instructional systems design. Rapid
prototyping is compatible with the evidence of empirical research on how designers work.
What's more, rapid prototyping is not based on naive models of the scientific method. It is
only recently that software authoring tools have made rapid prototyping realizable. Rapid
prototyping is consistent with current views of how instructional design research should
proceed. Finally, it is a methodology which can survive more sophisticated theories of
design. That is, it allows us to be systematic in the face of design theories which emphasize
the representational complexity and situational grounding of design. Previous models were
based upon naive idealizations of how design takes place. When naive theories are replaced
with more sophisticated ones the intellectual underpinnings of ISD are weakened. We then
must choose between teaching unjustified models or no models at all. Rapid prototyping
bridges this dilemma.

REFERENCES

Alexander, C. (1964). Notes on the synthesis of form. Cambridge, MA: Harvard University.

Andrews, D. H., & Goodson, L. A. (1980). A comparative analysis of models of instructional
design. Journal of Instructional Development, 3(4), 2- 16.

Asher, J. J. (1977). Learning another language through actions-The complete teacher's
guidebook. San Jose, CA: Sky Oaks Productions.

Asimow, M. (1962). Introduction to design. Englewood Cliffs, NJ: Prentice-Hall.

Ausubel, D. P. (1959). Viewpoints from related disciplines: Human growth and
development. Teachers College Review, 60, 245-254.

Bechtel, W (1988). Philosophy of science. Hillsdale, NJ: Lawrence Erlbaum.

Branson, R. K. (1975). Interservice procedures for instructional systems development:
Executive summary and model. Tallahassee: Florida State University, Center for Educational
Technology. (ED 122 022)

Branson, R. K., & Grow, C. (1987). Instructional systems development. In R. Gagne (Ed.),
Instructional technology: Foundations (pp. 397-428). Hillsdale, NJ: Lawrence Erlbaum
Associates.

Page 14 of 17Module 11 Tripp amd Bichelmeyer

2/9/2006http://www.quasar.ualberta.ca/edpy597mappin/readings/m11_Tripp.htm

Briggs, L. J. (Ed.). (1977). Instructional design. Englewood Cliffs, NJ: Educational
Technology Publications.

Briggs, L. J., & Wager, W W (1981). Handbook of procedures for the design of instruction.
Englewood Cliffs, NJ: Educational Technology Publications.

Broadbent, C. (1973). Design in architecture. London: John Wiley & Sons.

Carroll, J. M., & Rosson, M. B. (1985). Usability specifications as a tool in iterative
development. In H. R. Hartson (Ed.), Advances in human-computer interaction (pp. 1-28).
Norwood, NJ: Ablex.

Carroll, J. M., & Rosson, M. B. (1987). Paradox of the active user. In J. M. Carroll (Ed.),
Interfacing thought (pp. 80-111). Cambridge: MIT Press.

Conklin, J., & Bridgeland, D. (1986). Beyond macro- iteration: An organic model of system
design. (STP398-86). Austin, TX: MCC Software Technology Program.

Dreyfuss, H. (1974). Designing for people. New York: Grossman Publishers.

Ellul, J. (1964). The technological society (I. Wilkinson, trans.). New York: Knopf.

Gagne, R. M. (Ed.). (1987). Instructional technology: Foundations. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Gagne, R. M., & Briggs, L. J. (1979). Principles of instructional design (2nd ed.). New
York: Holt, Rinehart and Winston.

Gattegno, C. (1972). Teaching foreign languages in school: The Silent Way (2nd ed). New
York: Educational Solutions.

Cuba, E. C., & Lincoln, Y. 5. (1989). Fourth generation evaluation. Beverly Hills, CA:
Sage.

Ingram, A. L. (1988). Instructional design for heuristic-based problem solving. Educational
Communication and Technology Journal, 36, 211-230.

Jones, J. C. (1963). A method of systematic design. In J. C. Jones, and D. C. Thornley (Eds.),
Conference on design methods (pp. 53-73). Oxford: Pergamon.

Jordan, P. W, Keller, K. S., Tucker, R. W, & Vogel, D. (1989). Software storming.
Computer, 22(5), 39-48.

Komoski, P. K. (1974). An imbalance of product quality and instructional quality: The
imperative of empiricism. AV Communication Review, 22, 357- 386.

Langley, P, Simon, H. A., Bradshaw, G. L., & Zytkow, J. M. (1987). Scientific discovery.
Cambridge, MA: MIT Press.

Lantz, K. E. (no date). The prototyping methodology. Englewood Cliffs, NJ: Prentice Hall.

Page 15 of 17Module 11 Tripp amd Bichelmeyer

2/9/2006http://www.quasar.ualberta.ca/edpy597mappin/readings/m11_Tripp.htm

Lawson, B. (1980). How designers think. Westfield, NJ: Eastview Editions.

Luqi. (1989). Software evolution through rapid prototyping. Computer 22(5), 13-25.

Maher, J. H., & Ingram, A. L. (1989, February). Software engineering and ISD: Similarities,
complementarities, and lessons to share. Paper presented at the annual meeting of
Association for Educational Communications and Technology, Dallas, TX.

Marca, D. A., & McGowan, C. L. (1988). SADT™ Structured analysis and design technique.
New York: McGraw-Hill.

Nunan, T. (1983). Countering educational design. New York: Nichols Publishing.

Perkins, D. N. (1986). Knowledge as design. Hills dale, NJ: Erlbaum.

Reigeluth, C. M. (1989). Educational technology at the crossroads: New mindsets and new
directions. Educational Technology Research and Development, 37, 67-80.

Romsizowski, A. J. (1981). Designing the user interface. Reading, MA: Addison-Wesley.

Schön, D. A. (1987). Educating the reflective practitioner: Toward a new design for teaching
and learning in the professions. San Francisco: Jossey-Bass.

Schön, 0. A. (1988). Designing: Rules, types and worlds. Design Studies, 9, 181-190.

Simon, H. A. (1981). The sciences of the artificial (2nd ed.). Cambridge, MA: MIT Press.

Streibel, M. J. (1989, February). Instructional plans and situated learning: The challenge of
Suchman's theory of situated action for instructional designers and instructional systems.
Paper presented at the annual meeting of Association of Educational Communications and
Technology, Dallas, TX.

Suchman, L. A. (1987). Plans and situated actions: The problem of human-machine
communication. New York: Cambridge University Press.

Sullivan, H. J. (1971, July). Developing effective objectives based instruction. Educational
technology, 55-57.

Tanik, M. M., & Yeh, R. T. (1989). Rapid prototyping in software development. Computer
22(5), 9-10.

Whitten, J. L., Bentley, L. D., & Barlow, V. M. (1989). Systems analysis & design methods
(2nd ed.). Homewood, IL: Irwin.

Wilson, I. G., & Wilson, M. E. (1965). Information, computers and system design. New
York: John Wiley & Sons.

Winograd, T., & Flores, F. (1987). Understanding computers and cognition. Reading, MA:
Addison-Wesley.

Page 16 of 17Module 11 Tripp amd Bichelmeyer

2/9/2006http://www.quasar.ualberta.ca/edpy597mappin/readings/m11_Tripp.htm

© Permission being sought

Page 17 of 17Module 11 Tripp amd Bichelmeyer

2/9/2006http://www.quasar.ualberta.ca/edpy597mappin/readings/m11_Tripp.htm

