
Accurate Modeling of Modbus/TCP for Intrusion Detection in

SCADA Systems

(Extended abstract)

Niv Goldenberg and Avishai Wool,

School of Electrical Engineering, Tel Aviv University

{nivg99@gmail.com, yash@acm.org}

January 4, 2013

Abstract

Modbus/TCP is used in SCADA networks to communicate between the Human Machine Interface

(HMI) and the Programmable Logic Controllers (PLCs). Therefore, deploying Intrusion Detection Sys-

tems (IDS) on Modbus networks is an important security measure. In this paper we introduce a model-

based IDS speci�cally built for Modbus/TCP. Our approach is based on a key observation: Modbus

tra�c to and from a speci�c PLC is highly periodic. As a result, we can model each HMI-PLC channel

by its own unique deterministic �nite automaton (DFA). Our IDS looks deep into the Modbus packets

and produces a very detailed model of the tra�c. Thus, our method is very sensitive, and is able to �ag

anomalies such as a message appearing out of its position in the normal sequence, or a message referring

to a single unexpected bit. We designed an algorithm to automatically construct the channel's DFA

based on about 100 captured messages. A signi�cant contribution is that we tested our approach on a

production Modbus system. Despite its high sensitivity, the system enjoyed a super-low false-positive

rate: on 5 out of the 7 PLCs we observed a perfect match of the model to the tra�c, without a single false

alarm for 111 hours. Further, our system successfully �agged real anomalies that were caused by techni-

cians troubleshooting the HMI system�and the system also helped uncover one incorrectly con�gured

PLC.

1



1 Introduction

1.1 Background

Supervisory Control and Data Acquisition (SCADA) networks are used for monitoring various industrial,

infrastructure and facility-based processes. Some SCADA systems are used in critical national infrastruc-

tures including chemical plants, electric power generation, transmission and distribution, water distribution

networks, and waste treatment. Such SCADA systems have a strategic signi�cance due to the great damage

consequences of any fault or malfunction.

SCADA systems typically incorporate sensors and actuators controlled by Programmable Logic Con-

trollers (PLCs), and a Human Machine Interface (HMI). SCADA systems were originally designed for serial-

line communications, and were built on the premise that all entities operating in the network are legitimately

installed, perform the intended logic and follow the protocol's pattern. The result is that many such sys-

tems have almost no measures of defense against deliberate attacks. Network components do not verify the

identity and permissions of other components associated with them (Authentication and Authorization), nor

do they verify the messages' content and legitimacy (Data Integrity), and all the data transferred over the

network is plaintext, without any encryption.

However, economic trends drive SCADA technology away from serial lines toward o�-the-shelf components

and IP communication protocols. In particular Modbus/TCP is commonly used in SCADA networks to

communicate between the HMI and the PLCs. If attackers would be able to inject Modbus messages into

the network they could cause signi�cant damage. Therefore, deploying Intrusion Detection Systems (IDS)

on Modbus networks is an important security measure.

1.2 Related Work

The domain of SCADA-speci�c Intrusion Detection Systems (IDS) is fairly active. Media attention to cyber

attacks such as Stuxnet (cf. Chen [14]) has emphasized the need for reliable IDSs.

Several di�erent approaches for securing SCADA networks have been published. Yang et al. [29] use

the Auto Associative Kernel Regression (AAKR) model coupled with the Statistical Probability Ratio test

(SPRT) and apply them to local simulated SCADA systems looking for matching patterns. The AAKR

model uses predetermined features, representing network tra�c and hardware-operating statistics.

An approach featuring an unsupervised anomaly-learning model was proposed by Tsang and Kwong

[26]. Using an Ant Colony Clustering Model (ACCM) based multi-agent decentralized IDS they managed

to reduce data dimensions while keeping model accuracy.

2



Næss et al. [24] use interval-based, procedural-based IDS sensors and misuse-based IDS detectors. Interval-

based sensors are responsible for identifying whether parameter values and method invocation frequencies fall

within their prede�ned ranges. Procedural-based sensors embedded at the entry or exit points of application

monitor its execution patterns. Misuse-based detectors reside within the application's source code at those

locations where known vulnerabilities exist.

Gao et al. [18] present a neural network based intrusion detection system which monitors control system

physical behavior to detect artifacts of command and response injection denial of service (DOS) attacks.

Digital Bond Inc. [2] has developed a set of Modbus/TCP Snort rules, as part of its SCADA IDS research

project. The set consists of 14 rules that can be broadly grouped to three groups: Unauthorized Modbus

use, Modbus protocol errors and Scanning. Our method successfully detects all the anomalies encoded into

the Snort rules. However, in our evaluation on a production Modbus/TCP system, our method �agged real

anomalies that Digital Bond Snort rules are unable to catch.

Fovino et al. [17] present a State-Based Intrusion Detection System. In their approach, explicit knowledge

of the SCADA system is used to generate a System Virtual Image (SVI). The SVI represents the PLCs and

RTUs of the monitored system, with all their memory registers, coils, inputs and outputs. The SVI is kept

updated by using a periodic active synchronization procedure and by a feed generated of the conventional

packet analysis performed by the IDS (searching for known signatures).

The approach closest to ours was introduced by Cheung et al [15]. They designed a multi-algorithm IDS

appliance for Modbus/TCP, containing pattern anomaly recognition, Bayes analysis of TCP headers, and

stateful protocol monitoring complemented with customized Snort rules [25]. Three model-based techniques

characterize the expected/acceptable system behavior according to the Modbus/TCP speci�cation: The

protocol-level technique veri�es Modbus/TCP speci�cations for individual �elds and for groups of dependent

�elds in the Modbus/TCP messages; The communication patterns modeling technique, is based on Snort

rules; and a learning model that describes the expected trends in the availability of servers and services. The

appliance was integrated into a control system testbed implemented at Sandia National Laboratories and

experimented on a multistep attack scenario. Our approach is also model-based, but it goes much deeper

into the Modbus/TCP speci�cations and captures inter-packet relationships. Thus it is able to perform all

the tests of the �rst two levels of Cheung et al.'s system�with higher sensitivity and with minimal training,

In subsequent work, Valdes and Cheung [27, 28] incorporated adaptive statistical learning methods for

two anomaly detection techniques, namely, pattern-based detection for communication patterns among hosts,

and �ow-based detection for tra�c patterns for individual �ows. In addition, they developed a visualization

tool that assists human analysts. Most recently [13], they integrated the developed intrusion detection

technologies into the EMERALD [10] event correlation framework.

3



Due to lack of access to production Process Control System (PCS) networks, many works deal with the

issue of building a SCADA testbed that enables experimental capabilities of checking vulnerabilities and

validating security solutions [19, 16, 23, 20, 22, 21]. In contrast, one of the contributions of our work is that

we evaluated our IDS on a real tra�c from a production SCADA network.

1.3 Contributions

In this paper we introduce a model-based IDS speci�cally built for Modbus/TCP. Our approach is based on

a key observation: Modbus tra�c to and from a speci�c PLC is highly periodic, with the same messages

sent repeatedly in a �xed pattern. As a result, we can model each HMI-PLC channel by its own unique

deterministic �nite automaton (DFA).

Our IDS looks deep into the Modbus packets. The model captures detailed packet characteristics (not

only the function codes but also the speci�c registers and coils that each message reads from or writes to).

Based on the packet characterization the model captures the precise periodic tra�c pattern between the

HMI and PLC. Thus, our method is very sensitive, and is able to �ag anomalies such as a message appearing

out of its position in the normal sequence, or a message referring to a single unexpected bit. We designed

an algorithm to automatically construct the channel's DFA based on about 100 captured messages.

A signi�cant contribution is that we tested our approach on a production Modbus system controlling

campus-wide power supply. We used our method to analyze over 120 hours of live tra�c collected in two

sessions several months apart.

Despite its high sensitivity, the system enjoyed a super-low false-positive rate: on 5 out of the 7 PLCs

we observed a perfect match of the model to the tra�c, without a single false alarm for 111 hours. Further,

our system successfully �agged real anomalies that were caused by technicians troubleshooting the HMI

system�and the system also helped uncover one incorrectly con�gured PLC.

2 Modbus over TCP/IP

2.1 Overview

Modbus has become a de facto standard for industrial control systems. Many Modbus systems implement the

communication layer using TCP, as described in the Modbus over TCP/IP speci�cation [4]. The speci�cation

de�nes an embedding of Modbus packets into TCP segments and assigns TCP port number 502 for the

Modbus protocol. To maintain compatibility with Modbus over serial lines, the payload is limited to at most

253 bytes. Figure 2.1 illustrates the message structure of the Modbus protocol.

4



Figure 2.1: Modbus/TCP Frame Structure

The Modbus protocol provides a simple master-slave communication mode between the devices. The

master initiates the transactions (called queries) and the slaves respond by supplying the requested data

to the master, or by taking the action requested in the query. Only one device can be declared master,

usually the human machine interface (HMI), while the rest of the devices are slaves (usually Programmable

Logic Controllers (PLCs) controlling devices like I/O transducers, valves, network drives, etc.). A response

message is sent by the slave to all queries addressed to it individually. In heterogeneous networks, which

comprise of both Modbus/TCP devices and serial Modbus devices, a gateway or a bridge can be used to

connect the serial line sub-network to the IP network. In this case, the destination IP address identi�es the

bridging device that chains all the devices in the sub-network. The Modbus header (MBAP) has four �elds

over seven bytes (see Figure 2.1), two of which are relevant to our work:

• Transaction Identi�er - is a 2 bytes integer used for pairing the request and the response corresponding

to a transaction. A unique Transaction ID is created on the request message from a master, which the

slave includes in its response.

• Unit Identi�er - is a single byte integer used to identify the Modbus slave associated with the transaction

(relevant for the case of a Modbus gateway chaining several slaves).

2.2 The Modbus PDU

Each PLC provides an interface based on the Modbus data model. The data model is composed of �coil�

(single bit) and �register� (16-bit) tables each containing elements numbered [1..n]. For each table the data

model allows up to 65536 data items. The read or write operations of these items can access multiple multiple

consecutive data items. The Modbus PDU has two �elds that refer to the data model:

• Function Code - is a single byte integer in the range 1-127. The Modbus standard de�nes the meaning

of 19 out of the 127 possible function codes . In our data sets, we have witnessed the appearance of

only four di�erent Function Codes, three read function codes (1,2,3) and one write (5).

• Payload - this �eld has variable size, limited to 252 bytes, and contains parameters that are speci�c to

the function code. A Read request (Function Codes 1,2,3,4) payload consists of two �elds: Reference

Number and Bit/Word Count. The Reference Number �eld speci�es the memory address to start

5



reading from. The Bit/Word Count �eld speci�es the quantity of �memory object� units to be read.

The corresponding response's payload consists of two slightly di�erent �elds: Byte Count and Data.

The Byte Count �eld speci�es the quantity of complete bytes of data. The Data �eld contains the

values of the �memory objects� that were read. In addition to memory references, Write messages'

payload includes �elds specifying the values to be written.

A successful request execution is indicated by sending back a response packet, echoing the command's

Function Code, followed by the relevant data (e.g., the read byte sequence in response to a read command).

Failure is indicated by an exception response, which is a two-byte error response comprising of the original

Function Code from the request PDU with its most signi�cant bit set to logic 1.

2.3 Some Security Properties of Modbus/TCP

Note that the Modbus protocol does not defend itself in any way from a rogue master sending commands to

the slaves. Further, Modbus does not have long-term session semantics: the whole protocol is a just single

2-message query-response. However, in all the examples we saw, the Modbus connection between the master

and a speci�c slave is embedded into a single long-lived TCP connection. Moreover, at least one PLC we

tested (Unitronics Vision350 [11]) can only accept a single TCP connection at a time on port 502. Thus,

an attacker attempting to control an already controlled PLC would need to either hijack the existing TCP

connection [12] and inject spoofed packets into the stream, or cause a Reset to the existing connection and

start a new connection. PLCs that allow multiple concurrent connections on port 502 would be susceptible

to much simpler attacks.

3 Accurate Protocol Modeling for Intrusion Detection

3.1 Overview

Our starting hypothesis is that a domain-speci�c Modbus IDS can be much simpler than a general-purpose

IDS, and with much better false-positive rates. The intuition is that in a Modbus system entities are

rarely added or removed: due to the network nature and purpose, we expect the emergence of new devices

(neither PLCs nor HMI) to be very infrequent. Further, the HMI-to-PLC communication is extremely

regimented device-to-device communication, with minimal human-initiated actions. A key ingredient is that

the communication is highly periodic; The HMI repeatedly polls every PLC, at a �xed frequency, with

a repeating sequence of commands. Thus we assume that the tra�c pattern allows simple models with

extremely high predictive power, which in turn admit very low false-positive IDS to be constructed.

6



Si The i-th state in the DFA. E.g., S1 is the �rst state in the DFA.

si The input-symbol leading to Si.

qi The i-th Query message in the sequence.

Qi The state reached after qi. E.g., Q1 is the state reached after the �rst Query message in the sequence.

ri The i-th Response message in the sequence.

Ri The state reached after ri.E.g., R1 is the state reached after the �rst Response message in the sequence.

Table 1: Notation

Figure 3.1: A DFA representing a 2-Query Modbus tra�c pattern. The �normal� transitions follow the
periodic tra�c pattern consisting of two queries and their matching responses.

A preliminary inspection of our data sets yielded a few important observations that support the mentioned

premises. As we shall see in Chapter 5, the system's static nature was validated by the near-�xed number

of network entities. Throughout 120 hours of tra�c recorded in our data set, over 5 months, we saw a single

HMI and six PLCs (�ve of which were active during the whole period). Further, we recognized that the

HMI communicates separately with each of the PLCs. Each connection is maintained as a long-term TCP

connection, which is immediately restarted on any disconnection. This behavior enables us to handle every

PLC individually.

3.2 Using Deterministic Finite Automata

Because of the clear patterns in the communication, we chose to model each HMI-PLC channel as a deter-

ministic �nite automaton (DFA). A classical DFA is a 5-tuple, (Q,
∑
, δ, q0, F ), consisting of: a �nite set of

states (Q), a �nite set of input symbols called the alphabet (
∑

), a transition function (δ : Q×
∑
→ Q), a

`start' state (q0 ∈ Q) and a set of `accept' states (F ⊆ Q). To apply a DFA approach to Modbus data we

need to make the following adjustments:

1. We do not require the `accept' states, since we want the IDS to continuously monitor an endless

7



repetitive stream. Instead, we opt for a Moore DFA, that associates an Action with every state

transition in δ. Any deviation from the predicted pattern triggers a δ transition with an associated

�error� action, which potentially causes an IDS alert (depending on the severity of the deviation).

Further, we decided that the `start' state will be de�ned as the state corresponding to the �rst query

recognized in the periodic tra�c pattern (this notation is further described in Table 1).

2. We need to select the Modbus features that identify a symbol in the alphabet
∑
. At an extreme, we

could use an overly naive alphabet of the two symbols
∑
={Query,Response} and expect a pattern

of {Query,Response}*. We chose to incorporate much more granularity into our model, by de�ning

a symbol as a concatenation of several Modbus �elds (see Section 3.4 below) totaling 33-bits. Despite

the much longer alphabet, we did not su�er from state space explosion.

3.3 Channel Separation and Identi�cation

The communication pattern to each PLC depends only on the HMI and is independent of the other PLCs

behavior. Therefore, we decided to split the recorded tra�c into separate channels, each containing only a

single PLC's tra�c. This enables us to model and analyze each PLCs behavior separately without arti�cially

increasing the model's state space. This channel separation is easy to do based on the PLC's IP address.

A channel is de�ned by the tuple (Master IP, Slave IP ) and is identi�ed after the recognition of a

Modbus packet (port 502 by default). If the master IP is di�erent from the (single) expected IP an alert

�UNEXPECTED MASTER� will be raised. Similarly, if the slave IP is not one of the expected slaves IPs, an

alert will be raised. These conditions are equivalent to the Digital Bond [2] Snort rules 1111006, 1111007.

As mentioned in Section 2, in some SCADA networks a Modbus gateway is used to chain several PLCs.

In our network, we observed PLC #5 functioning as a gateway chaining two PLC. The communication

between each of the chained PLCs and the HMI is independent (similar to the communication between a the

HMI and non-chained PLCs). Recall that the Unit Identi�er �elds is used to address chained PLCs, thus we

execute a �ner channel de�nition and separation using the 3-tuple (Master IP, Slave IP, Unit Identifier).

This de�nition enables us to treat each chained PLC individually, which in our case separates between PLC

#5.1 and PLC #5.2. Reference to a new Unit Identi�er in a query message will raise an alert. Note that

the Digital Bond Modbus Snort rules do not catch such an anomaly.

3.4 States and Input Symbols

Our basic observation is that the HMI-PLC tra�c pattern for a given PLC is periodic, repeating the same

sequence of queries (and matching responses) over and over. E.g., Our data shows that for PLC #2 the HMI

8



sends a sequence of 3 �xed queries (and receives their matching responses) every 30ms, and this pattern of

6 messages is maintained for many hours. Once we identify the pattern's length (6 in the above example),

we can de�ne a DFA similar to the DFA depicted in Figure 3.1. Hence, for each message in the pattern we

de�ne a state and a �normal� transition.

States that are reached after a query message are called Q-states. Respectively, states that are reached

after response messages are called R-states.

Recall that a Modbus query consists of the following �elds: Transaction Identi�er (T.ID), Function Code

(FC), Reference Number (RN), and bit/word1 count (Count).

We de�ne a symbol in the alphabet Σ as a 4-tuple containing the above mentioned �elds except the

T.ID . This leads us to 33-bit symbols (1-bit for Q/R, 8-bit for function code, 16-bit reference number and

8-bit for bit/word count). Responses do not include the reference number so those 16 bits in the symbol are

always 0.

Input symbols are categorized into two groups: Known and Unknown. The Known group consists of

all the input symbols that were observed during the learning phase (described in Chapter 4), and have a

matching DFA state. Respectively, the Unknown group consists of the input symbols that do not have a

matching DFA state or were not observed during the learning phase.

3.5 The Transition Function

The transition function in a Moore DFA is a transformation that for each (Base State, Input Symbol) tuple

returns a (Dest State,Operation) tuple. The transition function implements the predicted behavior and

expresses our premises about the network tra�c characteristics by matching the correct state and operation

to the given base-state and input-symbol. We de�ne four types of transitions. We denote current position

as Si and the received input-symbol as sj :

• Normal - A normal transition occurs on a known symbol that leads to the next state in the periodic

sequence. I.e., sj = si+1.

If the symbol triggering the �normal� transition is a query leading to a Q-state, we save the message's

T.ID. If the symbol is a response, we compare the current message's T.ID with the saved T.ID. If the

IDs do not match, we increment a �T.ID mismatch� counter. In our data we observed only a handful

of T.ID mismatches (less than 0.004% of the packets), and these were all caused by dropped packets

in the capture mechanism.

As part of the Normal transition we implement the in-packet validation tests suggested by [2] and

1Depending on the Function Code �eld value. Some Function codes are followed by bit count while other are followed by

word count.

9



[15], most importantly verifying that the packet payload length is indeed at most 252 bytes. This

mechanism �ags bu�er-over�ow attempts against the HMI [via too-long fake responses from PLCs]

or against the PLCs [via too-long queries from the HMI]. Note that we do not need to explicitly test

the actual packet length against the in-packet Count value, or for mismatches between the requested

Count and the supplied length in the response: since the Count �eld is always part of the symbol, any

attempt to send too much (or too little) data would cause the packet to trigger an Unknown transition

(see below).

• Retransmission - A �retransmission� is an occurrence of a known symbol that is identical to the

previous symbol. I.e., sj = si. For this occurrence we add a self-loop to the DFA,

Dest State = Base State = Si

Retransmissions occur normally in TCP tra�c due to momentary congestion, and they do not indicate

a real anomaly in the Modbus operation. Thus, the action we take is just to increment a counter. Note

that if the pattern includes two identical symbols, we will get a state with 2 di�erent transitions for

the same symbol (a �normal� transition forward, and a �retransmission� self loop). We resolve such

non-determinism in run-time by preferring the �normal� transition over the self-loop �retransmission�

transition.

• Miss - A �miss� is an occurrence of a known symbol sj which appears at state Si out of its expected

position in the pattern. I.e., sj 6= si+1.

This typically occurs because the packet capture mechanism sometimes drops packets. Our view is

that it is unlikely that the HMI will skip sending some packet in the normal pattern, and even more

unlikely that the PLC will ignore a query. Therefore we chose to handle a Miss event by a transition

to the closest forward state (modulo Pattern_Length) that follows the normal sj symbol. Again, since

in our view a Miss is a relatively benign anomaly, and most probably an arti�cial anomaly introduced

by the IDS packets capture, we only increment a �Miss� counter.

• Unknown - The most serious anomaly is an �unknown� symbol appearing. At worst, an unknown

symbol can be an indication of a malicious packet injected into the TCP stream. However, other inter-

pretations are also possible a-priori: An unknown query could indicate a human operator's action, or

an (un-modeled) automatic response by the HMI to some condition observed in previous data, or an

indication that the modeled pattern is too short to capture infrequently sent queries. An unknown re-

sponse could indicate a faulty PLC which is responding with the wrong Function Code, or sending back

the wrong amount of data. Whatever the interpretation of the unknown symbol may be, technically

we transition back to the �rst state (in the hope that the pattern will resynchronize), increment the

10



�unknown� counter, and raise an alarm with the value of the symbol. Naturally, an unknown �write�

Function Code is more severe than an unknown �read�.

4 Creating the Model

4.1 Automatic model generation

One of the novel aspects of our approach is that we can automatically learn the model without any labeling of

the training data. All we require is a clean capture of normal tra�c that is longer in length than the pattern.

We start the learning phase by capturing a �xed number of packets, indicated by Learning_Window_Size.

We take an inventory of the identi�ed queries and responses in the window, and perform several checks on

that inventory. Those checks include verifying that each query has a valid response and verifying that each

response has a preceding query. Then, we use an iterative method to create the smallest DFA that models

the sni�ed Modbus packets (See Algorithm 1).

We start with an initial estimate of 2 for the pattern length (i.e., one query and one response, the

shortest possible legitimate pattern). In each iteration, we de�ne the current pattern candidate as the

�rst Pattern_Length Modbus messages, starting with a query message, in the window. From this candidate

pattern, we construct a DFA as described in Sections 3.4 and 3.5. Then, we run the created DFA against Val-

idation_Window_Size captured Modbus messages, and count �misses�, �retransmissions�, and �unknowns�

as in Section 3.5 (this window is assumed to be clean of unexpected network events or activities, having no

anomalies). From these counters we de�ne a performance value as:

P = normals
total = normals

normals+misses+retransmissions+unknowns .

If P is below a set threshold we conclude that Pattern_Length was too small, thus we increment it by 2

and start a new iteration. If Pattern_Length exceeds Learning_Window_Size, we stop with a failure.

4.2 Setting the Threshold

Each channel, hence each PLC, is characterized by its own periodic pattern length. Let us denote the periodic

pattern length as k and the candidate pattern length as n. For each channel, we need to discover k sepa-

rately. Our performance threshold, mentioned in Algorithm 1, should be de�ned such that it di�erentiates

between the correct pattern length from other shorter/larger candidate pattern lengths. Manually tuning

the threshold to a good value is a challenging task. A better choice is to have a self-tuning threshold. Using

the following observations, we were able to analytically de�ne a threshold that accomplishes the desired

di�erentiation. We make the following assumptions: (a) We have a clean validation window of length V .

For simplicity, we assume that the validation window size obeys V mod k = 0 and that V →∞; and (b) The

11



Algorithm 1 Pattern Modeling

1. Pattern_Length ← 2

2. DFA ←DataLearning(Pattern_Length)

3. performance_value ←ModelValidation(DFA)

4. while (performance_value > Threshold) and
(Pattern_Length < Learning_Window_Size):

(a) Pattern_Length ←Pattern_Length +2

(b) DFA ←DataLearning(Pattern_Length)

(c) performance_value ←ModelValidation(DFA)

5. if (Pattern_Length = Learning_Window_Size): �FAILED�

6. else: return DFA

expected symbol a b c d a a c d a a c d a a c d

input symbol a b c d a b c d a b c d a b c d

transition type N N N N N M N N N M N N N M N N

Table 2: Model performance for an input (a,b,c,d)* with k=4, and a candidate pattern (a,b,c,d,a)* with
n=5 and i=1. Notation: N - normal ; M - miss ; U - unknown. Ignoring the �rst 4 symbols we can see that
P = i·k−1

i·k = 3
4 = 75% .

pattern consists of k distinct messages.

Given a periodic sequence of distinct messages of a length k and a clean validation window of a size

Validation_Window_Size = V , we construct a DFA in the size of the candidate length n. The DFA is

constructed by the method mention in chapter 3. For each candidate, we evaluate the DFA's performance

on the validation window. Consider the following cases:

• The candidate length is shorter than the actual pattern length, i.e., n ≤ k. Then the model will

mistakenly recognize the last k − n message in the periodic sequence as �unknowns�. Thus, for each

appearance of the periodic pattern our model will count n `normal' transitions and k − n �unknown�

transitions (corresponding to the unknown messages), resulting with P = n
k .

• The candidate length is a multiple of the actual pattern length, i.e., n = i · k where i ∈ N . The the

model will contain multiple repetitions of the complete periodic sequence. Thus, no �unknowns� will

occur since the DFA contains all the messages appearing in the validation window. Further, since

the DFA contains an exact multiple of the period sequence no `misses' or `retransmissions' will occur

either. Consequently, P = 1.

• The candidate length is longer than the actual pattern length but is not a multiple of the the actual

pattern length. Thus, n = i · k + r for 1 ≤ r < k. Then the �rst i · k + r symbols will trigger �normal�

12



transitions. Then the DFA will expect symbol s1 but will encounter symbol sr+1 , causing a �miss�.

However, recall that a miss transition has a next state which is the closest forward state matching the

input, i.e., the DFA will transition to state Sr+1 - e�ectively resynchronizing the expected pattern with

the input. All subsequent symbols will again trigger �normal� transitions, until s2ik+r triggers another

�miss�, and so forth. In every block of i · k input symbols (except the �rst) the DFA will trigger a

single �miss� and i · k − 1 �normal� transitions. Thus when V → ∞ we obtain P = i·k−1
i·k - see Table

2. Note that the performance value is independent of r, we obtain the same P = i·k−1
i·k for all values

n = i · k + 1, ..., i · k + (k − 1).

In summary, we see that when the pattern comprises of k distinct symbols, the input is perfectly clean and

the validation window V →∞, the performance value as a function of the candidate length n obeys:

P =



k
n

1

i·k−1
i·k

n ≤ k

n = i · k, i ≥ 1

i · k + 1 ≤ n ≤ i · k + (k − 1), i ≥ 1

(4.1)

We would like to tune the threshold T so that it causes Algorithm 1 to stop for n=k. To achieve this we

need to set T = k−1
k - except k is unknown to us. However, as long as k ≤ n the sequence P (n) is increasing,

so it su�ces to set T high enough to not accept n = k − 1: i.e., setting T = n
n+1 and having Algorithm 1

stop when P > T is enough. Note that the threshold provides less discrimination as n grows, since the gap

between n
n+1 and 1 shrinks.

5 Data Acquisition

5.1 Overview

Due to their sensitivity, real data sets of SCADA networks are usually kept con�dential and it is quite

di�cult to get hold of real data sets. Therefore, many researchers rely on data sets extracted from SCADA

testbeds in their work. In fact, we are unaware of any publicly accessible traces of Modbus/TCP that consist

of more than a handful of packets.

One of contributions of this work is that we were able to collect and analyze long traces from a production

Modbus network. We discovered that the facility manager at our university uses a Modbus/TCP-based

system to monitor the campus power grid, and that this system's communication uses the campus-wide IP

network. With the assistance of the university's CISO we were allowed to tap into the Modbus communication

and record it at two points in time, producing two data sets. Basic information about the data we collected

13



appears below.

Data set Start Date End Date Duration File Size

#1 16.1.12 17:40 17.1.12 13:50 20 hours 6.3 GB

#2 19.6.12 9:00 24.6.12 00:50 111 hours 35.5 GB

5.2 Preliminary Analysis

One of our research goals was to keep our method's network-dependency as low as possible by not using

any prior knowledge about it. Therefore, a preliminary network analysis was needed to be performed in

order to produce basic insights. The pre-analysis focused mainly on gathering SCADA entities identi�cation

and tra�c statistics. The preliminary analysis was performed using WireShark [8] Analysis and Statistics

built-in features and using automated scripts written in Python using Impacket [3] and Pcapy [6] modules

for network packets handling. After the pre-analysis was done, we met the facility manager to validate our

�ndings and got the vendor and model names of the system components.

In data set #1 we observed 4 Modicon [5] PLCs and a single Satec [7] PLC (with two chained unit-ids),

all controlled by an Afcon [1] Pulse HMI. In data set #2 we observed the same PLCs with the appearance

of one additional Modicon PLC.

Using a splitting procedure written in Python, we split the primary data �les into sub-�les, each containing

the packets of a certain time-frame. Data set #1 was split into 630 time-frames, 10 MB each (equivalent to

2 minutes). Data set #2 was split into 1340 time-frames, 26 MB each (equivalent to 5 minutes). During our

analysis, we often used these time-frames as a basic unit for calculations and comparison.

6 Model Validation

To validate our DFA-based model we implemented our DFA construction method in standard Python using

Impacket [3] and Pcapy [6] modules for network packet handling. The analysis results as well as anomalous-

suspected tra�c were veri�ed and validated against the network activity-log with the facility manager.

6.1 Model Creation with Automatic Threshold Tuning

Running our Algorithm 1 with an auto-tuned threshold (recall section 4.2) on our data sets with the param-

eters values as in Figure 6.1(a) yielded very good results accurately identifying periodic pattern length for

each one of the PLCs for both data sets. Figure 6.1(b) shows the method performance for PLC #1. We see

that on data set #1 the method successfully identi�ed the periodic pattern length k = 16. Note the local

maxima at n=16, 32.

14



Parameter Value

Learning_Window_Size 50 packets

Validation_Window_Size 100 packets

Performance Threshold n
n+1

(a) (b)

Figure 6.1: Parameter values in model creation procedure, and Performance value vs. candidate DFA size
for PLC #1 on data set #1 .

6.2 Basic Model Validation

Basic model validation deals with the model's ability to represent the `normal' network tra�c using a

DFA structure. We use two parameters to measure the DFA quality: Pattern_Length, and �unknown�,

�miss� and �retransmission� rates. Recalled that Pattern_Length is the smallest integer whose performance

passes the threshold. Successfully �tting a Pattern_Length that makes the DFA pass the performance

threshold, demonstrates that the DFA represents the tra�c captured in the `validation window' accurately.

Pattern_Length = Validation_Window_Size, will obviously pass the threshold successfully.

Table 3 summarizes the Pattern_Length results for the PLCs. We see that for each of the PLCs our

method successfully constructed DFA representing very short periodic patterns. E.g., on data set #1, the

largest DFA was observed on PLC #1, with a Pattern_Length of 16. Hence, the network tra�c between

PLC #1 and the HMI follows a periodic pattern comprising of 8 queries and their matching responses.

The second set of parameters measuring the model's quality are low �unknown� �miss� and �retransmis-

sion� rates. Figure 6.2 (left column) shows that except for few distinct peaks throughout the entire model

run, all three anomaly counters were extremely low and represent only veri�ed network congestion and

packet drops. In fact, 625 of the 630 time frames (of data set #1) are �quiet�: the �unknown� counter was

exactly 0, and both the �miss� and �retransmission� counters was below 15 per time-frame. This validation

was performed on each one of the PLCs, with similar results .

6.3 Anomaly Detection

In data set #1 the �unknown� rate was very low for all PLCs� at most 0.39% of the packets. However, we

can see that the �unknown� symbols are not evenly distributed over time: in fact 97.7% of the time-frames

in data set #1 are completely quiet. Figure 6.2 (left column) clearly shows that in data set #1 there were 2

interesting periods of anomalous activity: near time-frames #84 and #460. Furthermore, Figure 6.2 (right

15



Data set #1 Data set #2

PLC Pattern_Length PLC Pattern_Length

#1 16 #1 18

#2 6 #2 4

#3 6 #3 6

#4 6 #4 6

#5.1 2 #5.1 2

#5.2 2 #5.2 2

#6 - #6 6

Table 3: Pattern_Length results for the PLCs recognized over Data Set #1 and Data Set #2.

column) shows that these events a�ected all the PLCs at the same time, making them even more suspicious.

As we discovered later, these were not false-positives but actual anomalies that our system �agged (see

Section 6.4).

Note that correlating anomalous activity observed in multiple devices is a well known IDS mechanism.

An IDS following our approach is a suitable feed for event-correlation systems such as EMERALD [10] or a

commercial system such as ArcSight [9].

Recall that our transition function is de�ned such that after each �unknown� input-symbol our model's

state is changed to the start-state. Due to the arbitrary �unknown� symbol position (in the periodic sequence)

the next transition will likely be either a �miss� or a �retransmission�. Therefore, the three counters are

technically correlated due to the way we construct the model. Figure 6.2 (left column) clearly shows this

correlation, with obvious spikes in all three counters near time frames #84 and #460.

6.4 Real Anomalies in Data Set #1

Once we �nished analyzing the network using our modeling method, we met with the facility manager

and examined our suspicious-labeled messages and events versus the network logs. We discovered that all

the �unknown� transition were veri�ed to be indeed suspicious (and not a misdetected false alarm). The

prominent interrupts depicted Figure 6.2 were veri�ed and were found to be indication of a technician, who

was troubleshooting problems with the system that day.

7 Details of Data Set #2

Data set #2 was recorded �ve months after the recording of data set #1. During these months, the SCADA

system was successfully upgraded and stabilized by technicians. The changes made, as part of the upgrade

process, caused several signi�cant e�ects on the SCADA network tra�c. First, in addition to the 5 PLCs we

saw in data set #1, a new PLC appeared. The new PLC is another Modicon PLC, similar to PLCs #2-4,

16



Unknowns PLC #1

Misses PLC #2

Retransmissions PLC #3

Figure 6.2: Left column: correlation between event types in PLC #2 on data set #1. Right column:
correlation between Unknowns across di�erent PLCs.

and is labeled as PLC #6. As seen in Table 3, we also observed some minor changes in the tra�c pattern

of two PLCs: The Pattern_Length of PLC #1 grew to 18, adding an additional query (and its matching

response) to the periodic sequence, and PLC #2 dropped a query (and its matching response) of the periodic

sequence, bringing it to a shorter Pattern_Length = 4.

When we ran our method on data set #2, we reached distinctly di�erent performance statistics . We

identi�ed two opposite e�ects in the performance in comparison to data set #1. The �rst e�ect shows a

perfect modeling of the network tra�c for 5 of the 7 PLCs. For each of these PLCs, our method modeled

the network tra�c perfectly for 111 hours, without any �unknown� messages. Thus for these PLCs we can

conclude that despite the high sensitivity of the DFA approach, our system did not raise any false alarms.

The second e�ect, concerning only PLC #1, shows a signi�cant increase in the �misses� and �unknowns�

frequency: from 0.09% in data set #1 to 0.9% in data set #2. Even more problematic is that the fraction

of quiet time-frames dropped to only 66% . In other words, the �unknown� events are not localized to a

few anomalous time frames as in data set #1, but are spread throughout the entire data set. A closer

examination of �unknowns� events versus time, reveals that the control of PLC#1 is operating with three

separate time periods. Besides the high-frequency pattern that is well modeled by the DFA, we observed two

other periodic patterns that are much slower: a low-frequency periodic pattern with a period T1 = 24hours,

17



observed 4 times in data set #2, and a mid-frequency periodic pattern with a period T2 = 15min, observed

446 times in data set #2. Because we used a 5-minute time frame for data set #2, the quarter-hourly

pattern caused the e�ect that only 66% of time frames were quiet: it occurred in one out of every three time

frames. Our facility manager veri�ed that both patterns are �normal�, noting that the daily periodic pattern

(T1 = 24hours) is used to reset various PLC counters, and the quarter-hourly pattern (T2 = 15min) is for

averaging a set of control process counters.

We have extended our approach to deal with multi-period patterns. Using a multi-level DFA we have

been able to reduce the number of �unknowns� in PLC#1 down to only 0.0045%. Details omitted from this

extended abstract due to space constraints.

8 Concluding Remarks

We believe that DFA-based approach has been successful in two ways. On one hand, despite its high

sensitivity, the system enjoyed a super-low false-positive rate. On the other hand, the system successfully

�agged real anomalies�that do not raise any alerts from the Snort rules of [2]. Thus we are encouraged by

the system's performance so far and we believe the approach has merit.

Evaluating an IDS on live tra�c from a production system provides valuable insights, but has some

inherent limitations, which we plan to address in future work:

• We did not attempt to inject any malicious tra�c into the network to avoid interfering with the SCADA

system's operation. We would like to experiment further with our approach in a lab environment where

we can test more aggressive scenarios.

• We only evaluated our approach on a single Modbus/TCP system. To further validate our observations

we would like to test our approach in other Modbus/TCP systems.

References

[1] Afcon software and electronics ltd. http://www.afcon-inc.com/.

[2] Digitalbond. http://www.digitalbond.com.

[3] Impacket - network protocols constructors and dissectors. http://oss.coresecurity.com/projects/

impacket.html.

[4] Modbus Messaging Implemetion Guide V1.0b. http://www.modbus.org/docs/Modbus_Messaging_

Implementation_Guide_V1_0b.pdf.

18



[5] Modicon. http://www.schneider-electric.com/.

[6] Pcapy - python pcap extension. http://oss.coresecurity.com/projects/pcapy.html.

[7] Satec. http://www.satec-global.com.

[8] Wireshark - network protocol analyzer. www.wireshark.org.

[9] HP ArcSight security intelligence. http://www.hpenterprisesecurity.com/products/

hp-arcsight-security-intelligence.

[10] Event monitoring enabling responses to anomalous live disturbances (EMERALD). http://www.csl.

sri.com/projects/emerald/.

[11] Unitronics vision350. http://www.unitronics.com/Series.aspx?page=Vision350.

[12] S. M. Bellovin. Security problems in the TCP/IP protocol suite. SIGCOMM Comput. Commun. Rev.,

19(2):32�48, April 1989. ISSN 0146-4833. doi: 10.1145/378444.378449. URL http://doi.acm.org/

10.1145/378444.378449.

[13] L. Briesemeister, S. Cheung, U. Lindqvist, and A. Valdes. Detection, correlation, and visualization of

attacks against critical infrastructure systems. In Eighth Annual International Conference on Privacy

Security and Trust (PST), pages 17�19, 2010.

[14] T.M. Chen. Stuxnet, the real start of cyber warfare? IEEE Network, 24(6):2�3, 2010.

[15] S. Cheung, B. Dutertre, M. Fong, U. Lindqvist, K. Skinner, and A. Valdes. Using model-based intrusion

detection for SCADA networks. In Proceedings of the SCADA Security Scienti�c Symposium, pages

127�134, 2007.

[16] W. Chunlei, F. Lan, and D. Yiqi. A simulation environment for SCADA security analysis and assess-

ment. In International Conference on Measuring Technology and Mechatronics Automation (ICMTMA),

volume 1, pages 342�347. IEEE, 2010.

[17] I.N. Fovino, A. Carcano, T. De Lacheze Murel, A. Trombetta, and M. Masera. Modbus/DNP3 state-

based intrusion detection system. In 24th IEEE International Conference on Advanced Information

Networking and Applications (AINA), pages 729�736. Ieee, 2010.

[18] W. Gao, T. Morris, B. Reaves, and D. Richey. On SCADA control system command and response

injection and intrusion detection. In eCrime Researchers Summit, pages 1�9. IEEE, 2011.

19



[19] B. Genge, C. Siaterlis, I. Nai Fovino, and M. Masera. A cyber-physical experimentation environment

for the security analysis of networked industrial control systems. Computers & Electrical Engineering,

2012.

[20] A. Giani, G. Karsai, T. Roosta, A. Shah, B. Sinopoli, and J. Wiley. A testbed for secure and robust

SCADA systems. ACM SIGBED Review, 5(2):1�4, 2008.

[21] A. Hahn, B. Kregel, M. Govindarasu, J. Fitzpatrick, R. Adnan, S. Sridhar, and M. Higdon. Development

of the PowerCyber SCADA security testbed. In Proceedings of the Sixth Annual Workshop on Cyber

Security and Information Intelligence Research, page 21. ACM, 2010.

[22] D.J. Kang and H.M. Kim. Development of test-bed and security devices for SCADA communication

in electric power system. In 31st International Telecommunications Energy Conference (INTELEC),

pages 1�5. IEEE, 2009.

[23] M. Mallouhi, Y. Al-Nashif, D. Cox, T. Chadaga, and S. Hariri. A testbed for analyzing security of

SCADA control systems (tasscs). In IEEE Innovative Smart Grid Technologies (ISGT), pages 1�7.

IEEE, 2011.

[24] E. Naess, D.A. Frincke, A.D. McKinnon, and D.E. Bakken. Con�gurable middleware-level intrusion

detection for embedded systems. In 25th IEEE International Conference on Distributed Computing

Systems, pages 144�151. IEEE, 2005.

[25] Martin Roesch. Snort - lightweight intrusion detection for networks. In Proceedings of LISA '99: 13th

Systems Administration Conference, USENIX, 1999.

[26] C.H. Tsang and S. Kwong. Multi-agent intrusion detection system in industrial network using ant

colony clustering approach and unsupervised feature extraction. In IEEE International Conference on

Industrial Technology (ICIT), pages 51�56. IEEE, 2005.

[27] A. Valdes and S. Cheung. Communication pattern anomaly detection in process control systems. In

IEEE Conference on Technologies for Homeland Security (HST), pages 22�29. IEEE, 2009.

[28] A. Valdes and S. Cheung. Intrusion monitoring in process control systems. In 42nd Hawaii International

Conference on System Sciences (HICSS), pages 1�7. IEEE, 2009.

[29] D. Yang, A. Usynin, and J.W. Hines. Anomaly-based intrusion detection for SCADA systems. In

5th Intl. Topical Meeting on Nuclear Plant Instrumentation, Control and Human Machine Interface

Technologies (NPIC&HMIT 05), pages 12�16, 2006.

20


