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Stability Analysis of Networked Control Systems
Gregory C. Walsh, Hong Ye, and Linda G. Bushnell

Abstract—We introduce a novel control network protocol, try-

|
once-discard (TOD), for multiple-input—-multiple-output (MIMO) process }
networked control systems (NCSs), and provide, for the first time, oo™ 1 Actuator A2 l—> Plant A (2] Semsor A2 E ]|
an analytic proof of global exponential stability for both the new : !
]

—r———

protocol and the more commonly used (statically scheduled) ac-
cess methods. Our approach is to first design the controller using
established techniques considering the network transparent, and ’ Serial Communication Network Medium w
then to analyze the effect of the network on closed-loop system Sy Sy —— Y p—
performance. When implemented, an NCS will consist of multiple | [~ - """

independent sensors and actuators competing for access to the net-| :
work, with no universal clock available to synchronize their ac- ' v
tions. Because the nodes act asynchronously, we allow access t( )
the network at anytime but we assume each access occurs before al | Plant B
prescribed deadline, known as the maximum allowable transfer in-
terval. Only one node may access the network at a time. This com-
munication constraint imposed by the network is the main focus
of the paper. The performance of the new, TOD protocol and the
statically scheduled protocols are examined in simulations of an
automotive gas turbine and an unstable batch reactor.

Sensor B.1 |+ Sensor B.k Supervisor Compulcr

Fig. 1. Schematic diagram of a complicated control system. In this diagram,
the network is found between sensors and the controller.

Index Terms—Limited communications, networked control sys- Présents some new analytical challenges because the network
tems (NCSs), stability. imposes a communication constraint: only one sensor can
report its measurements at a time. Furthermore, the lack of a
universal clock and the presence of noncontrol related traffic
makes assumptions about constant sampling intervals unreal-

N MANY complicated control systems, such as manustic in many applications. In this paper, an access deadline, or

facturing plants, vehicles, aircraft, and spacecraft, serialaximum allowable transfer intervai,,, is used in its place to
communication networks are employed to exchange informgiasure absolute stability of an NCS.
tion and control signals between spatially distributed systemAmple research papers in analyzing and scheduling the
components, like supervisory computers, controllers, angal-time network traffic have been published [2], [6], [21],
intelligent input—output (1/O) devices (e.g., smart sensors af@#t], [25]. The significance of combining communication
actuators). Each of the system components connected directipstraints and control specifications has not apparently been
to the network is denoted as a node. When a control loopéaddressed in these papers. We propose and analyze a new
closed via the serial communication channel, we label it stheduling algorithm to determine the transmission order of
networked control system (NCS). The serial communicatignultiple sensor nodes in an NCS based on need. The new
channel, which multiplexes signals from the sensors to tlseheduling algorithm efficiently allocates network resources to
controller and/or from the controller to the actuators, servesultiple smart sensors and maintains good closed-loop control
many other uses besides control (see Fig. 1). In contrastsistem performance. Some researchers noticed the detrimental
widely used computer networks, an NCS is concerned primariffects of network-induced randomly time-varying delay on
with the quality of real-time reliable service. the stability of feedback control systems [17], [18]. However,

NCSs are being adopted in many application areas foralprevious research is confined to the one packet transmission
number of reasons [16] including their low cost, reducegroblem, i.e., all system outputs are lumped and sent out in
weight, and power requirements, simple installation ar@he packet, and as a consequence, there is no competition
maintenance, and higher reliability. However, using a netwobletween smart sensors of an NCS [1], [4], [9], [11], [22],

[23]. No general explicit stability condition has been obtained
in the literature even for one packet transmission case. This

Manuscript received January 7, 2000; revised September 11, 2001 Maguper presents, for the first ime, an analytic proof of global
script received in final form December 4, 2001. Recommended by Associate |, ... . . T

ﬁfablhty for an NCS with general multiple-packet transmission

Editor R. Middleton. This work was supported in part by the NSF under Grar J W '~ -
ECS-97-02717 and the ARO under Grant DAAG55-98-D-0002. in addition to providing a global stability condition for the

G. C. Walsh is on leave from the University of Maryland and is with Cyf%pecial one packet transmission problem.

Technologies, Oakland, CA 94621 USA (e-mail: greg.walsh@cyra.com). . .
H. Ye is with Delphi Communication Systems, Inc., Maynard, MA 01754 The auQmented state space method and jump linear control

USA (e-mail: hye@delcomsys.com). _ ~ system method are two significant methods proposed in the lit-
L. G. Bushnell is with the Department of Electrical Engineeringarature for analyzing and designing an NCS. The former one re-

University of Washington, Seattle, WA 98195-2500 USA (e-mail: bushnell .. . . . .
ee_washi)r/,gton_edu)_g ¢ uced the problem to a finite dimensional discrete-time control

Publisher Item Identifier S 1063-6536(02)03421-8. by augmenting the system model to include past values of plant

. INTRODUCTION

1063-6536/02$17.00 © 2002 IEEE



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 10, NO. 3, MAY 2002 439

input and output (i.e., delayed variables) as additional states [4], u(t) LG

= " o Controller »  Network Plant
[5]. A necessary and sufficient condition for system stability Y X ¥
was established only for the special case of periodic delays. This \ ¢ <Y 0 j p
technique is very useful for developing control laws to improve e h “p

the performance of an NCS [12], [13], [19], [20] except that it
fails to give a general stability condition for random delay. If'9- 2. Configuration of a networked control system.

[11] and [14], distributed linear feedback control systems with

random communication delays were modeled as a jump lind@gtantly, since most of the NCS is connected by a local area
control systems, in which random variation of system delaytwork with very high data rate and a physical range less than
corresponds to randomly varying structure of the state-spak0 m. The communication medium is error-free based on the
representation. Necessary and sufficient conditions were fodager error rate of modern high-speed communication systems
for zero-state mean-square exponential stability of the consi&nd the higher reliability offered by many error detection and
ered class of systems. This method requires that the transitigtirection technologies. No observation noise exists. All ma-
probability matrix is knowra priori. Furthermore, both methodstrices in the paper have compatible dimensions and the standard
were limited to the one packet transmission problem. Euclidean norm will be used unless noted otherwise.

The occurrence of transmission events on the network is imeWe label the network-induced errat(t) = #(t) —
varying and often modeled as a random process, e.g., Poisgd#), «(t)]* and the combined state of the controller and plant
process, and the resulting times that pass between each ace&ds= [z,(t), z.(t)]". The state of the entire NCS is given by
to the network are independent and have an exponential distfit) = [(t), e(#)]" and between transmission instances the
bution. The stochastic Lyapunov function method [8], [9] holddynamics of the NCS can be summarized as
much promise fordetermlnlng alfnost-sure stability and.control . F(t)} {An Am} {x(t)}
system performance. This paper’s approach, however, is to pro- )= . =
vide guarantees by employing transmission deadlines. The re- &(t) Ao Aga | Le(t)
sults presented here are absolute instead of almost sure.  where

This paper is organized as follows. The dynamic model for the

1)

NCS and our new TOD protocol are described in Section Il. In Ay = [Ap T BpDeCy BPO‘:}
particular, we model the effect of different scheduling technique B.Cp A
as afinite error bound imposed on the system. In Section IlI, ab- B,D. B
solute stability conditions are derived for both a multiple-packet A = [ ; Op}
transmission system and a single packet transmission system. ¢
The results of numerical simulations are presented in Section IV. ¢, 0
Conclusions are stated in Section V. Az =- [ 0 CJ 1
C, 0
Il. MODELING OF ANCS Agz =— [ 0 C } Asz.

The NCS model is shown in Fig. 2. It consists of three maiB . . .

; efine the matrix4 such that:

parts: the plank,(A,, B,, C}, 0) with statez,, € R"» and ! A Su
outputy € R"~; the controller¥.(A., B., C., D.) with state

x. € R™ and outputu(t) € R™, and the network, with state

(t) -~ [4t). a(o]”, cons_isting of the most re(_:ently reporte(yv Without a networke(t) = 0, and hence the dynamics reduce
versions ofy(¢) andu(t), Without loss of generality we have asy, #(t) = Apx(t). It is assumed that the controller has been

sumedD,, = 0. Outputs measured locally at an actuator can %eesigned ignoring the network, hende; is Hurwitz. Conse-

mcorpprated directly into the controller and do notrequire tre uently there exists a unique symmetric positive definite matrix
ment in our model. If such outputs are needed elsewhere, { eSlfch that
0

actuator node can also be considered a smart sensor. Because

the networl_<, only the_reported outm(lt? is available to the con- AL P4 PAy =1 2

troller and its prediction processes, similarly, o#ly) is avail-

able to the actuators on the plant. Commonly used local arf@afine the constants; = A\y,in(P) andeos = Apax(P), (A =

networks support broadcast, herigg) is globally known and eigenvalue). Since we are modeling the network as a perturba-

in such a case the controller itself may be physically distributetibn on the system, choosing the right-hand side of (2) equal to
To focus on the effect of network competition on the stability-1 is desirable for maximizing the tolerable perturbation bound

of an NCS, we make the following assumptions. The contrfilO, p. 206].

law is designed in advance without considering the presence offhe behavior of the network-induced eregt) is mainly de-

the network. The controller dynamics are considered continuaesmined by the architecture of the NCS and the scheduling

and sampling delay is ignored, because the access intervasiétegy. In the special case of one-packet transmission, there is

the NCS to the network is much larger than the processing aily one node transmitting control data on the network, there-

riod of the controller and smart sensors. Once access to a fdare the entire vectar(¢) is set to zero at each transmission time.

ticular sensor node is granted, data is assumed to be transmiftedmultiple nodes, transmitting measured outpi{ts and/or

(t) = Az(t). Any prediction or
filtering process can be used to improve the estimat@(of.
Such predicting and filtering will add extra states and dynamics
hich we incorporate in matrice$,; and Ass.
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computed inputs:(¢), the transmission order of the nodes dethe absolute stability of NCS. The size @fdoes not affect the
pends on the scheduling strategy chosen for the NCS. In otheund ofr,,,. The following two lemmas characterize the sched-
words, the scheduling strategy decides which componentsutihg algorithms.
e(t) are set to zero at the transmission times. Dynamic and statitemma 1 (Dynamic Scheduler Error Boundgiven a dy-
scheduler are two major scheduling strategies. Both of them withmic (TOD) network scheduler starting at tisgewvith p nodes
be analyzed for NCS implementation. competing, maximum allowable transfer intervgl, maximum

A dynamic scheduler determines the network schedule whiigowth in error inr,,, seconds strictly bounded /€ (0, o).
the system runs. Unlike dynamic scheduling processor timeThen, for any time > to + p7,, ||e(t)|| < Bp(p +1)/2.
real-time control, however, the information needed to decide Proof: There are at leasi transmissions in the interval
which node should be granted access to the network is fibt p7m, t]. Letty, ..., ¢, be the lasp transmission times with
centrally located. Based on the characteristics of the real-tife< ¢, < --- <tz <t1 < ¢, ¢ >t — pTy, andiy, ..., i, be
NCS, we propose a novel protocoL try_once_discard (Tome nodes that gOt transmitted at those timeS, reSpeCtiVEly.
protocol, which employs dynamic scheduling, allocating Suppose the first € [1, p] nodes being transmitted are dis-
network resource based on the need. In TOD, the node with fHtct, and the(k + 1)th transmitted node was also transmitted
greatest weighted error from the last reported value will win tRefore, say at timey, I € [1, k]. Then|e;,(t)|| < jB, for
competition for the network resource. We call the schedulidg = 1. - - -, k. Since node; was transmitted both & and
technique maximum-error-first (MEF) and the protocol TODk+1, We havelle;, ()] < (k +1 — ) with £~ denote the
because if a data packet fails to win the competition for netwolfkStant right before transmission. By the construction of the dy-
access, it is discarded and new data is used next time. S{gfnic scheduler (TOD), & transmission time, nodg has
a method is vulnerable to noise. In practice, the sensor noda§ dreatest error. As a consequerfpg(t,)|| < [le:, (t, )l <
must employ some sort of filtering to prevent a channel with @& 1 =0/ and|le; (#)[| < (& +k‘1)/3,.for ally # i, j € [1, p]-
large noise signal from dominating the network. This protocaone(t)” S E?:l lle: (B < Ej=1 B+ (0= k)(k+1)8.
can be realized by using the flexible low-level software imple- Sincemaxi <k<, {3":_; j3 + (p — k)(k + 1)3} = Bp(p +
mentation and the mature hardware technology of controliel/2, whenk = p — 1 or p, we have the worst case error bound
area network (CAN), which is specifically designed for bitwiséor the dynamic scheduldlie(t)[| < Sp(p + 1)/2. 0
arbitration. Lemma 2 (Static Scheduler Error Boundiven a static net-

How does the TOD protocol work? Without loss of generality/O"k scheduler starting at timg, with integer periodicityp,
assume there agenodes competing, each one may be assoflaximum allowable trgnsfer interval,, maximum growth in
ated with one or multiple plant inputs and outputs. In the TOBTOT iN7m seconds strictly bounded By € (0, oc). Then, for
protocol, the priority level of each node’s message is propd?™y UMe? 2 fo + p7m, le®I < Ap(p +1)/2.
tional to the norm of;(¢), which is ak-dimensional subvector Prqof. The integer periodicity, allows at mosp nodes
of e(t) with k € [1, n,+n,] representing the number of plamorcompetmg. Assume there afé nodesx € [1, p]. The sched-

controller outputs transmitted by nodeThe weights assigned gfr:ndecsal?er; alic(;::gg'jt?vteh{argﬁzfnr;sg?::s'S visited at least once
to error signals are assumed already built into the output matnx.At Igeast o)f\)ce cycle (op transmissions) .is completed durin
At every transmission time, the node with the highest priority (%einterva[t— i y ; chit + bethe lasp trznsmission 9
greatest weighted error) gets transmitted. If two or more m S es with £ >p t’"’ >' ; 't'">f’ et > t— e and
sages have equal priority, a prespecified ordering of the no les i beth ! d h po= Y0l = d p r’]"’ .

i . . 1, ---, ip be the nodes that were transmitted at those times,
will be imposed to resolve the collision.

Today, static scheduling is the most common methodolog{ﬁzpsi?lle%Tr}?;iecz”{(fl)H.f ﬂZﬁ fvc\)/:eﬂr:a;e||1@7(.tj|.|’ f .Z'Sjlgce
in which the order (or pattern) of transmission is decided inei(t)|| <’ 2}3 7.[; _ 7[3p(p7 +p 1’)/2. So for any Emet]:>l
advance and fixed during system operation. We label suc 0aJr P, ||e(tj)ﬁlé Bplp +1)/2. O
schemestatic schedulerwhich is typically implemented by ¢ \yorst case error bound of the dynamic scheduler is the
polling or by token ring. Though the schedule is fixed, SOM&, e a5 that of a special case of the static scheduler, i.g., all
nodes may be granted access multiple times before others gefes are visited equally. The bound is conservative for both
any access. If a transmission pattern is of lengtfeveryp  scheduling algorithms, becausg represents a deadline. But
consecutive visits form a repeated cycle. In one cycle, all Nodgg the same transmission times distribution, the error bound for
are visited at least once. The pattern lengths called the gynamic scheduler will be better than that of the static scheduler,

periodicity of the static scheduler. _ because it grants access to the node with the greatest error.
In order to characterize the behavior of the scheduling algo-

rithms and their relation witk(¢), we introduce a constarit

The existence off will be proved in later section by the Lips- . STABILITY OF NETWORKED CONTROL SYSTEMS

chitz condition of the differential equations (1), i.e., over a short

period of time the growth in errai(¢) will be bounded by acon-  Two stability theorems for general multiple-packet and
stant/3, which is dependent on the system characteristics aode-packet transmissions are derived in this section. Both
initial conditions. Assume the transmission deadlipeexists theorems are derived based on Lyapunov’s second method and
such that|e;(t + 7,) — e;(¢t)|| < /5. The boundr,, is defined treat the network induced-error term as a vanishing perturbation
as the maximum allowable transfer interval used to guaranfd@®, p. 204].
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We first consider the stability of a general multiple-packedire met. The state vecte(¢) changes discretely, but always
transmission NCS with either a static or dynamic (TOD) schedecreases in magnitude when jumping, so at a transition time
uling algorithm. the bound cannot be jumped over. At tirheeither ||e(f)|| =

Theorem 1 (Stability of a General NCSEBiven an NCS +;|z(to)|| or V(x(£)) = v2||2(t)||* or both. Suppose we have
whose continuous dynamics are described by (1) wittodes the case/ (z(#)) = v2||2(t0)||? and|le(?)|| < 71]|z(to)||, then
operating under TOD, or with integer periodicjiyunder static we havel|z(#)|| > ||=(to)||, and hence
scheduling, and a maximum allowable transfer intervg|, - . . .
which is less than the minimum of V < =lle@®I + 202] Awall =Bl (DIl

[(=llz @Il + 202 (| All ]2t

In(2) 1 < |l=(#)
PIAI aja) (/2 + 1) (o + 1) <llz®Il (-3) ll(to)]l ®)

and ) because

802\ /2 11412 (/2 + 1) p(p + 1)

Then, the NCS is globally exponentially stable.

Proof: Consider any initial time, and the associated ini- Since at time., ||z()|| > ||z(to)||, V is strictly negative. Even
tial statez(to) = (x(to), e(to))™. If |z(to)|| = 0, then for all if { is a transition time||c(#)|| can only reduce instantaneously
t > to we haver(t) = 0ande(t) = 0, evenifthere are no trans-in size hencé” will remain strictly negative.
missions, since we are at an equilibrium point of the system. ForCertainly then at time, V(z(f)) < 72||2(to)||* and there-
this reason, without loss of generality, we assupag)|| > 0. fore||z(t)|| < va||2(to)|| for all t € [to, #] including timef. We
Attime ¢o, nothing is known about the magnitude of the error now consider the remaining possibility that at timyeve have
However, at time, + p7,,,, at leastp transmissions of the net- ||e()|| = v||2(t0)||. We can conclud¥ ¢ € [to, ] not a transi-
work have occurred. For artyin [to, to + p7n], We have from tion time
Bellman-Gronwall||z(¢)|| < el4lrm= ||z(t0)]| < 2||z(to)| )
where|| A|| is the induced norm ofi. Since we have chosen @Il < Al + lleI)

Tm < I0(2)/||Al|p, we haveellP7 < 2. This bound is con- <Al + )2 (Eo)-
servative as it holds even in the case where there are no trans-
missions of data. At any transmission time [to, to + p7,,], NOte that

we have thatle(t7)]| > [le(t™)|| hencellz(t7)[| = [l=(t7)]l. _of [z m (1. [
The notationt~ andt* refers to the limits from the left and (n+73) = o1 5 )< + o1
right, respectively. Because of this bound, we have that for
becauser,,, has been chosen so that < 1/4. We now have

[to, to + me] L. . .
the conditions of Lemma 1 or Lemma 2 applying to the interval
lle® < 1A 1z < 2014 ||z(to)|- [to, £], since the maximum growth ¢&(#)|| in 7,,, Seconds in the
iri}%erval [to + 7, #] is limited by7,,,||¢(#)|| < 3. The lemmas
indicate that||e(t)|| < m||z(t0)]|, manifesting our contradic-
tion. We conclude thel ¢ > ¢ + pr,, [|e(®)|] < ml|2(to)]|-

View the control system as perturbed by the bounded error
signale(t). If we write ®(¢, to + pry,) = et Cotpmm))
cfﬁen the state starting at tindg+ p7,,, evolves according to the
variation of parameters formula:

< ! < !
8oy, /2 ||| Sl Al

Hence the maximum possible growth between transmission
this time interval is strictly bounded by = 27,,,(\/o2/01 +
DI A|||=(to)|| @asy/o2/01 + 1 > 2, whereos /oy is the condi-
tion number ofP.

Depending on the type of protocol utilized, either Lemma 1
Lemma 2 may be applied to verify that at timye+pr,,., the error
is bounded byf|e(to + p7m)|| < 711]]2(t0)|| where the constant
18y = Tm(/02/01+1)||Allp(p+1). We have selected,,  ||z(#)|| < ||®(t, to + pro)|l [|2(to + p7)l|
so thaty; is smaller than both /4 and1/(8a2+/c2 /a1 ]| Al]). t
Furthermore, we have that at tim@+ pr,,., ||#(to + prm)|| < +‘ / ®(t, w)Arze(w) de :
lz(to + prm)ll < 2]|2(t0)||. Consequently, using;||z||* < fot P
V(z) < ogljz|? for V(z) = 27 Pz we have thal/(z(t, + 1he zero state term is the solution of the differential equation
PTm)) < 40a||2(t0)||2 < v2||2(to)||? With v2 = 4. Certainly  #=(t) = Aniz.(t) + Aize(t) with zero initial conditions, that
Vi € [to, to+pmm], V(2(t)) < 72||2(to)||%. If at any timet we 1S, 2=(to + p7) = 0. At time to + pr,,, we haveV.(z.(t)) =
haveV (z(t)) < a||2(to)||%, then||z(t)|| < ysl|z(to)|| with the  [|z=(£)[| = 0. We know that for all time||e(t)|| < ~1([2(%0)]],
constantys equal toys = 2+/02/07. consequentlyy. (z(t)) < 4o3||A[*+2|l2(to)||?, since if we

Attime t = to 4 pr,,, we have both/ (z(t)) < ya||z(to)]|? had equality, then|z.(¢)|| = 20s||Alln|z(%0)]| and by (3),
and ||e(t)|| < y1l|z(to)]|. We now prove by contradiction thatV= < 0. As V.(z.(t)) is bounded, then
these two conditions imply that for all> ¢y + p,,., both con- os
ditions hold. If at any time > o + p7,,, any of these two con- lz- ()] < 202\/0,j (| Al[v1l|z(to)]]-
ditions fail, then there exists a time > ¢, + pr,,, which is !
the first time either one or both conditions have failed. In inBy choice of7,,, we havey, < (8aa+/02/a1]|Al)~t and
terval [to, £], of minimum lengthpr,, seconds, both conditionstherefore the zero state term is strictly less tham)||z(to)||.
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Given A;1 Hurwitz, there exists a timé, > p7,,, such that b)

@ (t1 +to, to+prm)|| < 1/4. Finally, [le(t)]| < 1]|2(to)]| < o P
1/4||2(t0)|| and 1—|[D|| - [ 411 + D] (c 1) >0

where
[2(t1 +to)ll < [l + le@)] < pllz(to)ll B B [ C, 0 } .
with 0 < p < 3/4. Then by induction|z(kt; + to)|| < T2, 7 P|De, c,
p*||z(to)||. The closed-loop NCS is then exponentially stéble. then the origin is a globally exponentially stable equilib-

One-packet transmission is a special case of multiple-packet  rium point of the NCS.
transmission. In the following, a general sufficient stability con-  prgof: Whent e [ti, tiz1), definee, () = (t) — k),
dition of an NCS with one-packet transmission is derived ina (¢,) = 0. The system equatiai(t) = A1 x(t) + D[x(t) —
way different from the above proof. This derivation gives a lesgy,)] can be written as

conservative bound on,,.
In the one-packet transmission case, forc [t;, t;11), & () = i(t) = (Ann + D)x(t) — Dx(ti)

i =0,1,2 ..., 0(t) = y(t:) = Cpap(ts), Ut) = u(t;) = =(A11 + D)e(t) + Arrz(ty)
Cezo(t:) + D Cpa:p( ;). The system equation can be written "

asi(t) = Apa(t) + glz, #) whereg(z, 2) = Ap[ Sy, 51 Mence(t) = [ [(Au + D)ea(w) + Ana(ti)] dw and
(z(t) — z(¢;)). Under normal operation, as — 0, g(a: ) |lez(®)] < |A 11|| el - (= t)

~

will go to zero becausg will track = closely. Two lemmas are /\‘(;)
introduced to prove the theorem. It should be noted that Lemma .
3 is a variation of the commonly used Bellman—-Gronwall +/ | A1z + D|| ||es(w)|| dw
Lemma. The proof of Lemma 4 follows that of Lemma 3.  S——

Lemma 3 (Bellman—-Gronwall Lemma [7])Given A(¢) and k(w)
k(t) nonnegative, piecewise continuous and dlfferentlable funehere|| - || stands for vector norm or induced matrix norm.
tions of timet. If the functiony(¢) satisfiesy(t) )+ ft Using Bellman—Gronwall Lemma 3, we get

( ) s t t
k(s)y(s)ds, ¥t > to > 0 theny(t) < A(to)efto + Jlea(®)]] < Mt:)exp </ ||A11+D||ds>+/ | A1yl
t; t;

jtto )‘\(s)efs’k(T)dT dsVt >ty > 0.

Lemma 4: Given A(¢) andk(¢) nonnegative piecewise con- et exp </t sy 4 D] dw> W
tinuous functions of tlme W|th )\( ) d|fferent|able If the func- 5
tion y(t) satisfiesy(t) f s)ds,Vits >t >0, SinceA(t;) = 0
ft k(s)ds_ ty f k(T)dr . -1
theny(t) < A(ts)els J; A ‘ ds, ¥ty 2 lea(®)]| < [|Aunall - [|[ A0 + D]
t 20 A MAnEDPIC=t) 1) 1t
Proof: Let z(t) = \(¥) + [ k(s)y(s) ds, thenz(t) is (C 1) l=Cl- ()
differentiable anc:(t) > y(t) BecauseDz(t,) is a constant vector it € [¢;, t;+1), as-
S _ sumeFE = —Duz(t;), theni(t) = (411 + D)a(t) — Dx(t;) =
Ht) = AE) = k(B)y(®),  #(tg) = Alty). (A11 + D)x(t)+ E. In order to derive the relation betwee(r)
Let v(t) = z(t) — y(t) > 0, thenz(t) = —k(t)z(t) + andxz(t;), we fix the final timet; and let the initial timet be
A(t) + k(t)u(t), whose state transition matrix @(t, 7) = changeable, i.et; <t < t; < tiy1. Sox(t) = a(tf) + f:f
ols M s _ T MO Therefore [(A11 + D)a(w) + E] dw
t : @Il < l=E)ll + 1] - (£ — )
z(t) = ®(t, tp)z(ty) -l—/ O, TA(T) + k(r)v(r)] dr. ~ NS
tr
tr
Sinceftt[ O(t, T)k(r)v(r)dr < 0,Vty > t, thenz(t) < +/ |A11 + D|| -||=(w)]| duw.
O(t, tr)2(tr)+ [}, Ot TIN(T) dr. LD

Substitute (¢, 7), then =(¢) A#g)ed: M4 Using Lemma 4, we get

<
tr s k() dr ffksds tr
—ftfk(s)ef: D9 gs. Thus y(t) < )\(tf)@f* © x| < [Jz(ts)]| exp </ ||A11+D||ds>
Y As)el MO s vty > > 0. t

. - - ty s

Theorem 2 (Single-Packet Transmission Stabilityt = = +/ |E|| exp </ | A1z + D|| dw) ds
0 be a globally exponentially stable equilibrium point of the t t
nonnetworked system. If the maximum transmission intetyal — ollAu+DI(t ) Nzt + 1Bl - || Ay + D||7*
satisfies: _ (e||A11+D||'(tf*t) _ 1)

a) ’
ID|| - |AwL]l - || A + Dt ( lAL+D|l7m _ 1) AL+ D7 Lett =¢;, t; = t. Since||E|| < ||D|| - ||=(¢:)]], then

1—||D|| - [|A11 + D||=2 (ell4n+Pllmm — 1) l(t)]| < MAutPIE=E0 Yo @)]] + D] - [l ()|

<k Ay + D[ (P )
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Letr,, =t —t;. Since between dynamic and static scheduling are explored in a simula-
_ tion of an automotive gas turbine, because the analysis also does
1Dl - A+, + DI~ - ( lAr 4Dl 1) ) . , !
121 [ Aw + D] ¢ >0 not differentiate between the approaches. Atoken ring scheduler

then alternating access between the two nodes and the dynamic TOD
scheduling algorithm are compared, using a Poisson packet ar-

()l :

, rival model.
el 4Dl 7
< 1 A +D|l= ) ||$(t)||
1—||D|| - ||Awy + D|| 71 - (elAuntPllmm — 1) A. Unstable Batch Reactor
Using this and inequalities (4), we derive The first example, an unstable batch reactor [3, p. 62], is a
llea(®)]] coupled two-input—-two-output NCS. Based on the linearized

sl 4ss + Dl (e 2 — 1) e, PrOCEsS model

1.38 —0.2077 6.715 —5.676
= L DI [As £ DT (APl 1) C
—0.5814 —4.29 0 0.675
=@l i= . x
Sincex = 0 is a globally exponentially stable equilibrium 1067 4273 —6652 5893
point of the nonnetworked systeit) = A;;z(t), there exists 0.048 4.273 1.343 —2.104
a unique symmetric positive definite matrik, satisfying the 0 0

Lyapunov equationPA;; + AL P = —1.

Let V(z) = x(t)* Pz(¢) be a Lyapunov function of the non- + 5.679 0
networked system satisfying the following inequalities: 1.136 —3.146
o1ll2l* < V(z) < ool 11360
y _ T 2 1 0 1 -1
V(@) =2z < ||z Y= { } .
v 0 1 0 0
Tl = |22 PT| < 200|«||. a proportional-plus-integral controller
o : . 25 +2
The derivative oV’ (x) along the trajectories of the perturbed 0 i
system satisfie¥ (z) < —||z||* + 202||z|- ||g(z, 2)]|. K(s) = 55— 8 5
Since the equation shown at the bottom of the page is true, _ 0

S
is designed in advance to stabilize the feedback system and

achieve good performance.

Only the system outputg andy» need to be transmitted to
he controller via the network, each with its associated node. In
the simulations, the network model is placed between the output
of the plant and the input of the controller. A Poisson process
with mean1/7 is used to model the packet arrival events. In

We explore the application of networking technology to twanit time, the probability ofi transmission events occurring
example systems, an unstable batch reactor and an automdtivB(k) = p*c=#/k!, wherey stands for the expectation of
gas turbine. The network is considered transparent for the poamber of events occurring in unit time. Its inverse= 1/,
pose of controller design. The two models are taken from the lis-the average transfer interval length.
erature and the reported controller is used without modification. The system remains stable foraround 0.06 s. The theoret-
The bounds on the maximum allowable transfer interval derivézhl bound ofr,, on the linearized system from Theorem 2 is
in the theorems are very conservative, as both examples demanmound 16° s. This discrepancy is due to the conservative na-
strate. The simulations explore not only better estimates for thee of the Bellman—Gronwall Lemma. In Fig. 3, we show both
bound but also the impact of different packet arrival models @nstable trajectory of the system, fore= 0.08 s, and an unstable
the system performance. Our experience suggests that the ctrajectory forr = 0.12 s.
monly used Poisson packet arrival model is unlikely to accu- The transmission intervals in an NCS were modeled as
rately reflect the traffic on a control network, as most packets at@ndom variables because of the effect of bursty traffic on the
relatively short and frequent, and because TOD control traffieetwork. In our former simulation, the access to the network
does not use queues. Alternate packet arrival models are camas modeled as the Poisson process. Two other models are
pared in the unstable batch reactor simulation. The differengeeposed. The first, which we refer to as the spiked Poisson,

thenV(z) < —{1—2v- o9 }|z||*> < 0fory < 1/205 = k. So,
whenr,, satisfies the inequalities a) and Bj(x) < 0 in any
transmission interval/ (z) = 0 only whenz(¢) = 0.

The originis a globally exponentially stable equilibrium poin{
of the NCS.

IV. SIMULATION RESULTS AND DISCUSSION

DI sl [ Avs + DI~ - (el tPlim — 1) - el st Pl

DS - e <

@l = Al=@)]
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Stable Batch Reactor, T = 0.08 sec

Step Response

500

-500

Step Response

-1000

—-1500
0
t (Sec)

Fig. 3. Resulting trajectories of the batch reactor system with one-packet transmission. Note the different magnitude scales.

disallows any packets arrivals beforg2, and places half of Comparison of Different Event Arrival Models
the transmission interval times at exactlythe others, spread T
like a Poisson process. This emulates the controllers receivir
access half of the time after a precise time interval, and o : , , :
occasion being interrupted by other traffic on the network %038 : : e R SRR 4
Arbitrarily long delays are possible. The second model, whicl ;| : ; : 5 '
we refer to as the MATI (maximum allowable transfer interval) @ 3
model, disallows arbitrarily long delays. Some mechanism i1 % 06p ; : : :
the network ensures that a deadlineof/7 is always met. %05 ““““““ o ARG B

[OR] SRTPRTTRPIRPIONNE M 01@ “““““““““ ““““““ Lo

Such a model is more consistent with the theorems. Zoal| > ;g?::gg‘;';m" : ]
Fig. 4 compares the three different packet arrival models £ o SpikePoisson . ;

Monte Carlo simulation is used because of the random natu §0'3 : : : : 7
of the network traffic. For each, a number of simulations ~ 0.2f SR freed AN AN
were run and for each we checked if the control specification ... Now ®Rumspers NN N
(such as overshoot, rise time and settling time) were met. . b o - S N
constant transfer interval simulation was also run as a point ¢ 006 007 008 009 o1 01l 012
comparison. Notice that using the popular constant transfer i T{(Sec)

terval (constant delay) network model would delude the control _ o ,

system designer into believing he or she need less network bﬁgi_otor(;r%r%panson of differing packet arrival models. Plant: Batch reactor,
width than is actually required to meet control specifications. Of

the three probabilistic models chosen, the plain Poisson arrival

model shows the worst behavior, while the spiked Poisson a@@d nozzle actuator excitation. The linearized plant mét{e)

the MATI model are of comparable performance, close to bigshown in the equation at the bottom of the next page. The con-
more conservative than the constant delay model. The simul@ller is designed in advance to reduce cross-channel interac-
tion results reveal that the theoretical bound, on the order of tif (or to realize “diagonal dominant”), to remove steady-state
of nanoseconds, is conservative since with average transferéfor and increase the system response speed without consid-
tervalT < 50 ms, all simulation results pass the test. ering the network effects

B. Automotive Gas Turbine K(s) =

3+1{ 0.361 0.450}

s —1.130 1.00

The two-shaft automotive gas turbine is basically a coupled
two-input two-output system [15, p. 249]. The two system out- The controller for a two-shaft gas turbine has many functions,
puts to be controlled are gas generator speed and inlet-turbioeexample, engine health monitoring (EHM) is currently of
temperature. The two input variables are fuel pump excitatigmeat interest. In the simulation, we show that the performance
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Convergence of Probability Curve Dynamic Scheduler vs. Static Scheduler
1 fgw_" T T T T T T T T T T
s + 100 runs per t 1} gL Do : * TOD (200 runs per 1) | ]
0.9 Ko UNUUE e * 200 runs per T [ e o+ Token (206&3?}!?@1%) :
: : : - - ook N \f . - - &
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Fig. 5. Each point in this figure is the ratio of the number of simulationfig. 6. The difference between a dynamic scheduler (using TOD) and a
meeting the control specifications over the total number of simulations for fixegatic scheduler (using a token ring) is shown. This simulation illustrates
7. The total number of simulations was either 100 or 200, and the differengg advantage of our new TOD scheduling algorithm over the popular static
between these resulting data points allows us to quantify our confidence in gateduling algorithm.

data obtained using 100 simulations.

of the steady-state operation control system is maintained wHipamically allocating network resources to those information
it is closed via a serial network, which is shared with other mofources with critical information. Second, it provides for the
itor and alarm nodes (like the flame detector and the lubricatidfSt time an analytic proof of stability for both the new protocol
monitor). and the more common statically scheduled protocols. Finally,
A study similar to that of the batch reactor was conductef, Proof of stability for the noncompetitive single packet case
For eachr, a number of simulations were run and for each wé 9!ven.
checked if the control specifications were met. Fig. 5 shows theTNereé are many important questions yet to be answered
simulation results for the same system using the TOD schétout the design of NCS. For example, the bounds provided
uling algorithm. The difference is in the number of simulation8Y the theorems are based on perturbation theory and are
used to approximate the probability of success. The graph gigg)wn to be conservative in the simulation studies. Finding
us reason to be confident in a data point obtained even after o@jiteér bounds on the required network speed is an area of
100 simulations. great interest to the system designer. Also of importance to
Two hundred simulations were used for each point to geﬂ‘-e system designer is the relative weights of errors between
erate Fig. 6, which compares the performance of the dynanffeannels. Finding the best set of relative weights is an im-
TOD scheduler and the static scheduler. With enough effgP@rtant question. In addition, we assume continuous priority
a static scheduling plan matching the performance of the d§vels as CAN Il uses 29 bits in the identifier. A system de-
namic scheduler can be found, but the best static schedule woti@'€r Mmay wish to allocate only a small subset of these bits
mostlikely depend on initial conditions and perturbations. Cori the competition, so generating the best mapping from error
pared with the simulation results (all runs pass the test whighdiscrete identifier (priority level) is also a subject of further
7 < 300 milliseconds), Theorem 1 again returns a bound in tff§S€arch. Furthermore, output smoothing (or filtering) is an-

nanosecond range, because itis worst-case analysis and sui@ig" important application problem since the TOD protocol
for any kind of traffic distribution. iS more sensitive to sensor noise than static scheduler.

V. CONCLUSION
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0.806s + 0.264 —(15.0s 4 1.42)
s2 4+ 1.155 + 0.202 3+ 12.852 4 13.65 + 2.36
1.9582 4+ 2.12s + 0.49 7.145% + 25.85 + 9.35

$34+9.155%2 +9.39s + 1.62  s* 4 20.85% +116.4s? + 111.6s 4 18.8
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