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Abstract. Convergence of a generalized version of the modified SMO algorithms given by Keerthi et al. for SVM
classifier design is proved. The convergence results are also extended to modified SMO algorithms for solving
ν-SVM classifier problems.
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1. Introduction

Platt’s Sequential Minimization Algorithm (SMO) (Platt, 1998) is a simple and efficient
algorithm for solving the quadratic programming problem arising in support vector ma-
chines. Recently Keerthi et al. (1999) pointed out a problem caused by the way SMO
maintains and updates a single threshold value and suggested two modified versions of
SMO that overcome this problem. Their comparison on benchmark datasets showed that
the modified algorithms performed significantly faster than the original SMO in most sit-
uations. But convergence results have not been established for these algorithms, thus far.
The general convergence results for asymptotic algorithms proved by Chang, Hsu, and Lin
(1999) do not apply to SMO. This is because, for SMO, the choice of the working set at
each iteration is simply based on the ‘rate of change’ of the objective function, whereas the
choice in Chang et al.’s algorithm is more complicated due to the inclusion of the ‘extent of
movement to the actual constraint set boundary’. In this paper we prove convergence of a
generalized SMO algorithm, which includes Keerthi et al.’s modified algorithms as special
cases.

The paper is organized as follows. In Section 2 we formulate the quadratic program-
ming problem, give the generalized SMO algorithm and state the main convergence result.
In Section 3, details associated with the main minimization step of the algorithm are dis-
cussed. They form the basis for the proof of convergence, which is given in Section 4. The
generalized SMO algorithm and convergence proof can be easily extended to the ν-SVM
formulations of Schölkopf et al. (1998, 1999). These extensions are discussed in Section 5.
Some concluding remarks are given in Section 6.
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2. Generalized SMO and its convergence

Consider the convex quadratic programming problem,

min f (α) = 1

2
αT Qα + pT α

(QP)
s.t. ai ≤ αi ≤ bi ∀i;

∑
i

yiαi = c

where T denotes transpose, Q is symmetric and positive semi definite, ai < bi∀i(ai = −∞
and/or bi = ∞ are allowed) and yi 
= 0 ∀i . Let F denote the feasible set of QP. We will
assume that F is non-empty and f is bounded below on F . These assumptions imply that
QP has an optimal solution.

The dual problem arising in SVM classifier design is a special case of QP in which ai = 0,
bi = C , C > 0, yi ∈ {+1, −1}, c = 0, pi = −1 ∀i and Qi j = yi y j K (xi , x j ) ∀i, j where xk

is the k-th input training pattern and K is the kernel function satisfying Mercer’s condition.
Clearly, for this QP, F is non-empty. Since F is compact, f is bounded below. Hence the
required assumptions hold.

For QP the KKT conditions are both necessary and sufficient. To write down the KKT
conditions, let us define the lagrangian

L = 1

2
αT Qα + pT α −

∑
i

δi (αi − ai ) +
∑

i

µi (αi − bi ) − β

( ∑
i

αi yi − c

)

Define

Fi (α) = ([Qα]i + pi )/yi

where [Qα]i denotes the i-th element of Qα. The KKT conditions for QP are:

∂L

∂αi
= (Fi − β)yi − δi + µi = 0, δi ≥ 0, δi (αi − ai ) = 0, µi ≥ 0,

µi (αi − bi ) = 0 ∀i

These conditions can be simplified by considering three cases for each i .

Case 1. αi = ai

(Fi − β)yi ≥ 0 (1a)

Case 2. ai < αi < bi

(Fi − β)yi = 0 (1b)
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Case 3. αi = bi

(Fi − β)yi ≤ 0 (1c)

Define the following index sets: I0(α) = {i : ai < αi < bi }; I1(α) = {i : yi > 0, αi = ai };
I2(α) = {i : yi < 0, αi = bi }; I3(α) = {i : yi > 0, αi = bi }; and, I4(α) = {i : yi < 0,

αi = ai }. Let us also define:

Iup(α) = I0(α) ∪ I1(α) ∪ I2(α); Ilow(α) = I0(α) ∪ I3(α) ∪ I4(α)

Then the conditions in (1a)–(1c) can be rewritten as

β ≤ Fi (α) ∀i ∈ Iup(α); β ≥ Fi (α) ∀i ∈ Ilow(α) (2)

It is easily seen that KKT conditions will hold at α ∈ F iff there exists a β satisfying (2).
We will say that (i, j) is a violating pair at α if one of the following two sets of conditions

holds:

i ∈ Iup(α), j ∈ Ilow(α) and Fi (α) < Fj (α) (3a)

i ∈ Ilow(α), j ∈ Iup(α) and Fi (α) > Fj (α) (3b)

Note that optimality conditions will hold at α iff there does not exist a violating pair at α.
Since SMO algorithms generally do not provide an exact solution in a finite number of

steps, there is need to define approximate optimality conditions. The condition (2) can be
replaced by

β ≤ Fi (α) + τ

2
∀i ∈ Iup(α); β ≥ Fi (α) − τ

2
∀i ∈ Ilow(α) (4)

where τ is a positive tolerance parameter. If (4) holds we say α is a τ -optimal solution. The
approximate optimality conditions in (4) are closely related to the stopping conditions used
by Platt (1998); see Keerthi et al. (1999) for details.

Let α be a τ -optimal solution and f ∗ be the optimal objective function value of QP. Then,
for the QP arising from SVM classifier design it can be shown (using duality gap ideas) that
f (α) − f ∗ is bounded above by ψ(τ) where ψ is a continuous function with the property
that ψ(τ) → 0 as τ → 0. Hence, by choosing τ small enough, desired closeness between
f (α) and f ∗ can be achieved.

Corresponding to (4), the definition of violation can be altered by replacing (3a) and (3b)
by:

i ∈ Iup(α), j ∈ Ilow(α) and Fi (α) < Fj (α) − τ (5a)

i ∈ Ilow(α), j ∈ Iup(α) and Fi (α) > Fj (α) + τ (5b)
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If one of (5a) or (5b) holds we will say that (i, j) is a τ -violating pair at α. Clearly, α is
τ -optimal iff there is no τ -violating pair at α. An easy way of checking (4) is:

min
i∈Iup(α)

Fi (α) ≥ max
i∈Ilow(α)

Fi (α) − τ (6)

Using this background let us give a general algorithm for solving QP.

Algorithm GSMO. Let τ > 0 be given.

0. Choose some α ∈ F . Set k = 0, α(0) = α.
1. If α(k) satisfies (6) stop.
2. Choose (i(k), j (k)), a τ -violating pair at α(k). Minimize f on F while varying only

αi(k) and α j (k). Let α(k + 1) be the point thus obtained. Set k := k + 1 and go to Step 1.

Let us now briefly discuss the two modified SMO algorithms given by Keerthi et al.
(1999). Since the αi ’s that take bound values (i.e., αi ∈ {ai , bi }) at optimality are usually
identified easily, the main effort of the solution is associated with choosing correct values
for αi , i ∈ I0. Hence the algorithms choose {i(k), j (k)} to be a subset of I0 in a large
fraction of the iterations.1 The two modified algorithms differ in the way i(k) and j (k) are
chosen in those iterations. The first modification sequentially runs through indices in I0 to
choose i(k); then, given i(k) it chooses j (k) greedily by maximizing |Fi(k) − Fj (k)|. On
the other hand, the second modification chooses both i(k) and j (k) greedily to maximize
|Fi(k) − Fj (k)|. After a stage is reached when no τ -violating pair can be chosen from I0,
all indices are involved in choosing a τ -violating pair. This is done by sequentially going
through all indices for choosing i(k) and then choosing j (k) greedily for each given i(k).
The whole process is repeated until no τ -violating pair exists. The implementation, which
is done carefully and efficiently using a cache for Fi , i ∈ I0, is fully explained in Keerthi
et al. (1999). The key point to be noted here is that the two modified SMO algorithms are
special instances of the GSMO algorithm.

The main result of this paper concerns the convergence of the GSMO algorithm.

Theorem 1. Algorithm GSMO stops at step 1 after a finite k.

To simplify the proof of the theorem we assume hereafter that yi > 0 for all i . This
represents no loss of generality. Problem QP satisfies this assumption when it is modified
by reversing the signs of both αi and yi when yi < 0. Moreover, when GSMO is applied to
the original QP and the modified QP it produces equivalent steps.

3. The minimization step

In this section we describe what happens in step 2 of GSMO. The required minimization
takes place in the rectangle S = [ai , bi ]×[a j , b j ] along paths where αi yi +α j y j is constant.
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Figure 1. Minimization steps in S = [ai , bi ] × [a j , b j ].

In this section we shift our usuage of α and α(·); the initial τ -violating α(k) is denoted by
α and the parametric change in α is given by α(t). Thus

αi (t) = αi + t/yi , α j (t) = α j − t/y j , αk(t) = αk ∀k 
= i, j

To further simplify notations let (αi , α j ) = αi j . The objective is to minimize φ(t) = f (α(t))
subject to αi j (t) ∈ S. It is easy to confirm that φ(t) = φ(0) + φ′(0)t + φ′′(0)t2/2 where
φ′(0) = Fi (α) − Fj (α) and φ′′(0) = qii

y2
i

+ q j j

y2
j

− 2 qi j

yi y j
. By the positive semi definiteness of

Q it follows that φ′′(0) ≥ 0.
Figure 1 illustrates the main possibilities. We use the word “edge” to denote the set of

boundary points of S that lie between corner points of S.2 The t-paths in S have a negative
slope. The ± signs designate the sign of t required for αi j (t) ∈ S. Descent takes place in the
directions indicated by the arrows. Since i, j ∈ I3(α) for αi j at B and i, j ∈ I1(α) for αi j at
C , the corner points B and C cannot be τ -violating. Everywhere else in S, τ -violation is
possible. Specifically, (5a) can only occur in the interior of S, on edges AB and AC or at
corner point A; (5b) can only occur in the interior of S, on edges BD and CD or at corner
point D.

Consider, for example, the case where αi j is in the edge AC . It follows that i ∈ I1(α) ⊂
Iup(α), j ∈ I0(α) ⊂ Ilow(α) and φ′(0) < −τ . The minimum of φ(t) is reached at t∗ > 0
where either αi j (t∗) ∈ int S or αi j (t∗) ∈ bd S. The first alternative implies Fi (α(t∗)) −
Fj (α(t∗)) = 0; the second alternative implies Fi (α(t∗)) − Fj (α(t∗)) ≤ 0 and, because the
slope of the path is negative, αi j (t∗) is in the set defined by the union of edges BD and
CD and corner D. Thus, after the minimization step the pair (i, j) satisfies j ∈ Iup(α(t∗)),
i ∈ Ilow(α(t∗)) and it is no longer τ -violating. Of course, αi j (t∗) ∈ int S implies φ′(t∗) = 0.

Lemma 1. Let α ∈ F and (i, j) be a τ -violating pair at α. Let αnew be the solution
obtained during the minimization step. Then after the minimization step the following
results hold: (a) αnew 
= α; (b) (i, j) is not a τ -violating pair at αnew; (c) if αi j new ∈ int S,
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then Fi (αnew) − Fj (αnew) = 0; (d)

f (α) − f (αnew) ≥ τ

2γi j
‖αnew − α‖ (7)

where γi j = √
(yi )−2 + (y j )−2 and ‖·‖ is the euclidean norm.

Proof: Parts (a), (b) and (c) are obvious consequences of the preceding discussion. To
prove part (d) we first we show that

φ(t∗) ≤ φ(0) + 1

2
φ′(0)t∗ (8)

Assume t∗ > 0 and φ′(0) < 0; essentially the same argument applies if t∗ < 0 and φ′(0) > 0.
Suppose φ′′(0) = 0. Then t∗ is determined by the point at which the parametric path reaches
the boundary of S. Further, (8) holds trivially since φ(t) is linear with slope φ′(0). Sup-
pose φ′′(0) > 0. Let tQ = −φ′(0)/φ′′(0) be the unconstrained minimum of φ(t). Clearly,
0 < t∗ < tQ . This, together with the fact that the line joining the points (0, φ(0)) and
(tQ, φ(tQ)) in the (t, φ) coordinate system is an upper bound for φ(t) in the interval [0, tQ],
yields (8). Since ‖α − αnew‖ = ‖αi j − αi j (t∗)‖ = |t∗|γi j , f (α) = φ(0) and f (αnew) = φ(t∗),
result (8) yields (7). ✷

4. Proof of the convergence theorem

We assume that algorithm GSMO proceeds indefinitely, i.e., the pair (i(k), j (k)) is τ -
violating at α(k) for all k ≥ 0. We will show that this leads to a contradiction. Since f (α(k))

is a decreasing sequence that is bounded from below, there exists f̄ such that f (α(k)) → f̄ .
By (7)

2γ

τ
[ f (α(k)) − f (α(k + 1))] ≥ ‖α(k) − α(k + 1)‖ ∀k ≥ 0

where γ = max{γi j : i 
= j}. By repeated application of the triangle inequality we get

2γ

τ
[ f (α(k)) − f (α(k + l))] ≥ ‖α(k) − α(k + l)‖ ∀k, l ≥ 0

Thus {α(k)} is a cauchy sequence. Since F is closed, {α(k)} converges to some ᾱ ∈ F .
In what follows we use notations such as {kt } to denote sequences of integers that have

the form {kt : kt+1 > kt ≥ 0, t ≥ 0}. Let

I∞ = {(µ, ν) : ∃{kt } � (i(kt ), j (kt )) = (µ, ν) ∀t ≥ 0} (9)

Clearly, I∞ is the set of all index pairs that are encountered infinitely many times.
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Figure 2. Possible minimization steps in B̄ε ∩ S for cases (1) to (4) corresponding to different placements of
ᾱµν .

Lemma 2. Assume (µ, ν) ∈ I∞ and let {kt } be the sequence of all those indices k that sat-
isfy (i(k), j (k)) = (µ, ν). Then, the following results hold: (a) given any ε > 0 there exists a t̂
such that ‖αµν(kt ) − ᾱµν‖ < ε and ‖αµν(kt +1) − ᾱµν‖ < ε ∀t ≥ t̂; (b) |Fµ(ᾱ) − Fν(ᾱ)| ≥ τ .

Proof: Since {kt } is an infinite sequence, it is possible to choose t̂ so that kt̂ is as large
as we please. Choose it so that ‖α(k) − ᾱ‖ ≤ ε for all k ≥ kt̂ . This implies (a) is satisfied.
Result (b) follows from (5), the continuity of Fµ and Fν and α(kt ) → ᾱ as t → ∞. ✷

Figure 2 shows the set S = [αµ, bµ] × [αν, bν] and illustrates some possibilities that
represent the behavior of the minimization step at large k. Below we will refer to A and D
as τ -violating corners, and B and C as non τ -violating corners. There are four cases for
the location of ᾱµν : (1) ᾱµν ∈ int S; (2) ᾱµν ∈ edge of S; (3) ᾱµν ∈ τ -violating corner of S;
(4) ᾱµν ∈ non τ -violating corner of S. Let B̄ε = {αµν : ‖αµν − ᾱµν‖ < ε}. For each case we
assume ε is chosen sufficiently small so that B̄ε ∩ S includes only the geometric features
(interior points, edges, corner points) of S that are associated with ᾱµν . The minimization
step generates transitions from αµν(kt ) ∈ B̄ε ∩ S to αµν(kt + 1) ∈ B̄ε ∩ S. The possible
transitions for each case are indicated in figure 2 by directed line segments. We use a
simplifying locution to describe how the transitions take place between the sets int S and
bd S. For example, “kt is int → bd” means αµν(kt ) ∈ int S, αµν(kt + 1) ∈ bd S.

Lemma 3. Let (µ, ν), {kt }, t̄, S and ε > 0 be determined as described in Lemma 2 and the
preceding paragraph. Then, there exists a t̃ ≥ t̂ such that for each t ≥ t̃ , kt is either int → bd
or bd → bd.

Proof: Using the results of figure 2 we consider, for each case of αµν , all possible tran-
sitions and their implications. In case (1), kt is int → int for all t ≥ t̂ . Thus, by part (c) of
Lemma 1 and α(kt + 1) → ᾱ, it follows that Fµ(ᾱ) − Fν(ᾱ) = 0. This contradicts part (b) of
Lemma 2. Hence, case (1) can not occur. In cases (2) and (3) there are three alternatives for
each t ≥ t̂ : kt is either int → int, bd → int, or int → bd. Suppose there exists a subsequence
{ls} ⊂ {kt : t ≥ t̂} such that either ls is int → int for all s ≥ 0 or ls is bd → int for all s ≥ 0.
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Repeating the argument used in case (1), with {ls} replacing {kt }, leads to a contradiction.
Thus, cases (2) and (3) can only occur if there exists a t̃ ≥ t̂ such that kt is int → bd for all
t ≥ t̃ . The argument in case (4) proceeds as the one in cases (2) and (3), except we are left
with the additional possibility that kt is bd → bd. ✷

We are now in a position to complete the proof of Theorem 1. There exists a k̂ such that
for all k ≥ k̂, (i(k), j (k)) ∈ I∞ and, by Lemma 3, the minimization transitions are either
int → bd or bd → bd. The transition int → bd causes the number of components of α(k)

that are active (on a constraint boundary) to increase by one or two. The transition bd → bd
occurs only in case (4) and it moves from one edge of S to another edge S. Hence, the
transition bd → bd causes the number of components of α(k) that are active to remain
constant. Since the number of active constraints can not increase without bound, it follows
that int → bd transitions cannot occur infinitely many times. Let (µ, ν) be any pair in I∞.
From the preceding result and Lemma 3, there exists t̄ ≥ t̃ such that kt is bd → bd for all
t ≥ t̄ . Since bd → bd transitions occur only when ᾱµν is at a non τ -violating corner of S,
α(kt ) alternates between the two edges of S that are adjacent to ᾱµν . Hence, there exist
subsequences {la

s } ⊂ {kt : t ≥ t̄} and {lb
s } ⊂ {kt : t ≥ t̄} such that: for all s ≥ 0, α = α(la

s )

satisfies (5a) and α = α(lb
s ) satisfies (5b) . Letting s → ∞ in these two results provides our

contradiction: Fµ(ᾱ) − Fν(ᾱ) ≤ −τ , Fµ(ᾱ) − Fν(ᾱ) ≥ τ .

5. Extensions

The GSMO algorithm as well as the convergence result in Theorem 1 can be easily ex-
tended to other SVM classification formulations. First consider the ν-SVM formulation for
estimating the support of a distribution, as given by Schölkopf et al. (1999). Since the dual
formulations given in Eqs. (12) and (15)–(16) of Schölkopf et al. (1999) are directly in the
form of QP, GSMO and Theorem 1 apply to them. It is easy to give an efficient practical
algorithm for this special QP, along the lines of the modified SMO algorithms in Keerthi
et al. (1999). Such an algorithm is expected to perform even better than the SMO algorithm
implemented in Schölkopf et al. (1999).

Now consider the ν-SVM classification formulation given in Schölkopf et al. (1998). The
problem can be written as (see Crisp and Burges (1999))

min
1

2
αT Qα

(QP1)
s.t. 0 ≤ αi ≤ γ,

∑
i∈L

αi = 1,
∑
i∈M

αi = 1

where γ > 0, and, L and M are disjoint index sets with L ∪ M = {1, . . . , m}. (Here m is the
number of αi variables, i.e., α ∈ Rm). Q is symmetric and positive semi definite, as usual.
We will briefly explain how GSMO can be extended for this problem.

The lagrangian is

L = 1

2
αT Qα −

∑
i

δiαi +
∑

i

µi (αi − γ ) − µL

( ∑
i∈L

αi − 1

)
− µM

( ∑
i∈M

αi − 1

)
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Define: Fi (α) = [Qα]i ; L0(α) = {i ∈ L : 0 < αi < γ }; L1(α) = {i ∈ L : αi = 0}; L2(α) =
{i ∈ L : αi = γ }; M0(α) = {i ∈ M : 0 < αi < γ }; M1(α) = {i ∈ M : αi = 0}; M2(α) = {i ∈ M :
αi = γ }; Lup(α) = L0(α) ∪ L1(α); L low(α) = L0(α) ∪ L2(α); Mup(α) = M0(α) ∪ M1(α);
and Mlow(α) = M0(α) ∪ M2(α).

Let us say that α is τ -optimal if

min
i∈Lup(α)

Fi (α) ≥ max
i∈L low(α)

Fi (α) − τ and min
i∈Mup(α)

Fi (α) ≥ max
i∈Mlow(α)

Fi (α) − τ (10)

As in Section 2 it is easily checked that KKT conditions hold at α iff (10) holds for τ = 0.
Hence, for τ > 0, (10) is relaxation of the KKT conditions. We will say (i, j) is a τ -violating
pair at α if the following conditions hold: (1) either (i ∈ L and j ∈ L) or (i ∈ M and j ∈ M);
and (ii) either (5a) or (5b) holds with the Ip sets replaced by the corresponding L p or Mp

sets. Clearly, α is τ -optimal iff there is no τ -violating pair at α.
With these definitions in place, we can use algorithm GSMO to solve QP1. (In step 1,

(10) should be used instead of (6).) Theorem 1 holds for this GSMO algorithm too. Except
for some rewriting associated with replacing the Ip sets by the Mp and L p sets the proof
of this result is very much similar to that in Sections 3 and 4. The key factor that makes
the proof go through easily is the disjointness of L and M . For efficiency GSMO can be
implemented in a way similar to the algorithms in Keerthi et al. (1999). We are currently
implementing and testing this algorithm.

6. Conclusion

In this paper we have established convergence results for the modified SMO algorithms
related to classification. We believe that extension of the ideas to similar algorithms for
regression problems (Shevade et al., 1999; Schölkopf et al., 1998) is possible. We are
currently working on the details.

Apart from SMO, the decomposition algorithm of Joachims (1998) is another very effi-
cient algorithm for SVMs. Recently Lin (2000) has used ideas similar to those in this paper
to prove asymptotic convergence of Joachims’ algorithm.
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Notes

1. This important heuristic is due to Platt (1998). The updates are efficiently done using cache for Fi , i ∈ I0.
2. Although figure 1 has been drawn assuming that ai , bi , a j and b j are finite, all elements of proof given in this

section and the next section also apply to the case where one or more of these four values is not finite.
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