
A Multilayered Neural Network
Controller

Demetri Psaltis, Athanasios Sideris, and Alan A. Yamamura

ABSTRACT: A multilayered neural network
processor is used to control a given plant.
Several learning architectures are proposed
for training the neural controller to provide
the appropriate inputs to the plant so that a
desired response is obtained. A modified er-
ror-back propagation algorithm, based on
propagation of the output error through the
plant, is introduced. The properties of the
proposed architectures are studied through a
simulation example.

Introduction
The neural approach to computation has

emerged in recent years [I]-[4] to tackle
problems for which more conventional com-
putational approaches have proven ineffec-
tive. To a large extent, such problems arise
when a computer is asked to interface with
the real world, which is difficult because the
real world cannot be modeled with concise
mathematical expressions. Problems of this
type are machine vision, speech and pattern
recognition, and motor control. Not coinci-
dentally perhaps, these are precisely the types
of problems that humans execute seemingly
without effort. Therefore, people interested
in building computers to tackle these prob-
lems have tried to adopt the existing under-
standing on how the brain computes. There
are three basic features that identify a “neural
computer”: it consists of a very large num-
ber of simple processing elements (the neu-
rons), each neuron is connected to a large
number of others, and the functionality of
the network is determined by modifying the
strengths of the connections during a learn-
ing phase. These general characteristics are
certainly similar to those evident in biolog-
ical neural networks, however, the precise
details of the operation of neural networks
in a brain can be quite different from those

Presented at the 1987 IEEE International Confer-
ence on Neural Networks, San Diego, California,
June 2 1-24, 1987. Dernetri Psaltis, Athanasios
Sideris, and Alan A. Yamamura are with the De-
partment of Electrical Engineering, California In-
stitute of Technology, Pasadena, CA 91125. This
research was funded by DARPA and AFOSR and
also in part by the Caltech President’s Fund. Alan
A. Yarnarnura was supported with a Fellowship
from the Hertz Foundation.

in the abstract models used in the design of
neural computers. Nevertheless, the general
morphological features and the basic ap-
proach to computation are common in both
natural and artificial neural networks. This
can lead to computers that can tackle prob-
lems very effectively for which present ap-
proaches are relatively ineffective but natural
intelligence is very good.

In this paper, we explore the application
of the neural approach to control [5]-[15].
Both humans and machines perform control
functions, however, there are sharp distinc-
tions between machine and human control
systems. For instance, humans make use of
a much greater amount of sensory informa-
tion in planning and executing a control ac-
tion compared to industrial controllers. The
reason for this difference is not as much sen-
sor constraints but rather the inability of man-
made controllers to efficiently absorb and
usefully process such a wealth of informa-
tion. The collective manner in which infor-
mation is processed by neural networks is
another distinction between human and ma-
chine control; it is this collective processing
capability that provides neural networks with
the ability to respond quickly to complex
sensory inputs. Sophisticated control algo-
rithms, on the other hand, are severely lim-
ited by the time it takes to execute them in
electronic hardware. The third distinction,
and perhaps the most important, is that hu-
man control is largely acquired through
learning, whereas the operation of man-made
controllers is specified by an algorithm that
is written a priori. Therefore, in order to im-
plement an effective algorithmic controller,
we must have a thorough understanding of
the plant that is to be controlled, something
that is generally very difficult to achieve in
practice. A neural controller performs a spe-
cific form of adaptive control, with the con-
troller taking the form of a nonlinear multi-
layer network and the adaptable parameters
being the strengths of the interconnections
between the neurons. In summary, a con-
troller that is designed as a neural network
architecture should exhibit three important
characteristics: the utilization of large
amounts of sensory information, collective
processing capability, and adaptation.

A general diagram for a control system is

shown in Fig. 1. The feedback and feedfor-
ward controllers and the prefilter can all be
implemented as multilayered neural net-
works. The learning process gradually tunes
the weights of the neural network so that the
error signal between the desired and actual
plant responses is minimized. Since the error
signal is the input to the feedback controller,
the training of the network will lead to a
gradual switching from feedback to feedfor-
ward action as the error signal becomes
small. In this paper, we consider imple-
menting only the feedforward controller as a
neural network. During training, features of
the plant that are initially unknown and not
taken into account by the control algorithm
are learned. In this manner, some of the
model uncertainty is eliminated and, thus,
improved control results. In other words, the
feedforward controller is modified to com-
pensate for the characteristics of the plant
that are discovered during learning. When
the error becomes small, training has been
accomplished and only a relatively small
feedback signal is necessary to compensate
for random uncertainties that are unpredict-
able and, thus, cannot be learned. An im-
mediate consequence of the increased use of
feedforward control action is to speed up the
response of the system.

In the remainder of this paper, we con-
sider specific methods for training neural
networks to minimize the error signal. In fol-
lowing sections, we propose three control
learning methods, describe the error back
propagation algorithm [16], which is the
method used here to adapt the weights in the
neural networks we use as controllers, and
introduce a modification of the error back
propagation algorithm that extends its utility
to problems where the error signal used to
train the network is not the error measured
at the output of the network. We also present
simulations for a very simple plant to dem-
onstrate the operation of the proposed archi-
tectures and training methods.

Learning Control Architectures
Figure 2 shows the feedforward control-

ler, implemented as a neural network archi-
tecture, with its output U driving the plant.
The desired response of the plant is denoted

0272-170818810400-0017 $01 00 0 1988 IEEE

April 1988 17

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on August 27, 2009 at 11:13 from IEEE Xplore. Restrictions apply.

I ~ Additional

response/

Fig. 1. General control system diagram.

Fig. 2. Indirect learning architecture.

by d and its actual output by y. The neural
controller should act as the inverse of the
plant, producing from the desired response
d a signal U that drives the output of the plant
to y = d . The goal of the learning proce-
dure, therefore, is to select the values of the
weights of the network so that it produces
the correct d - U mappings at least over the
range of d's in which we plan to operate the
plant. We will consider three different learn-
ing methods. One possibility is suggested in
Fig. 2. Suppose that the feedforward con-
troller is successfully trained so that the plant
output y = d . Then the network used as the
feedforward controller will approximately
reproduce the plant input from y (i.e., t =
U) . Thus, we might consider training the net-
work by adapting its weights to minimize the
error = U - t using the architecture shown
in Fig. 2, because, if the overall error E =
d - y goes to zero, so does c l . The positive
features of this arrangement would be the
fact that the network can be trained only in
the region of interest since we start with the
desired response d and all other signals are
generated from it. In addition, as we will see
in the next section, it is advantageous to
adapt the weights in order to minimize the
error directly at the output of the network.
Unfortunately, this method, as described, is
not a valid training procedure because min-
imizing c l does not necessarily minimize E .

For instance, simulations with a simple plant
showed that the network tends to settle to a
solution that maps all d's to a single U = uo,
which, in turn, is mapped by the plant to t
= U,,, for which E, is zero but obviously E is
not. This training method remains interest-
ing, however, because it could be used in

conjunction with one of the procedures de-
scribed below that minimize E .

General Learning Architecture

The architecture shown in Fig. 3 provides
a method for training the neural controller
that does minimize the overall error E* . The
training sequence is as follows. A plant input
U is selected and applied to the plant to ob-
tain a corresponding y . and the network is
trained to reproduce U at its output from y .
The trained network should then be able to
take a desired response d and produce the
appropriate U, making the actual plant output
y approach d . This will clearly work if the
input d happens to be sufficiently close to
one of the y's that were used during the train-
ing phase. Thus, the success of this method
is intimately tied to the ability of the neural
network to generalize or learn to respond
correctly to inputs it has not specifically been
trained for. Notice that, in this architecture,
we cannot selectively train the system to re-
spond correctly in regions of interest because
we normally do not know which plant inputs
U correspond to the desired outputs d . Thus,
we typically attempt to uniformly populate
the input space of the plant with training
samples so that the network can interpolate
the intermediate points. In this case, the gen-
eral procedure may not be efficient since the
network may have to learn the responses of
the plant over a larger operational range than
is actually necessary. One possible solution
to this problem is to combine the general

b

\
Fig. 3. General learning architecture.

T)wGTq network T)wGTq network

Fig. 4. Specialized learning architecture.

method with the specialized procedure de-
scribed below.

Specialized Learning Architecture

Figure 4 shows an architecture for training
the neural controller to operate properly in
regions of specialization only. Training in-
volves using the desired response, d , as input
to the network. The network is trained to
find the plant input, U , that drives the system
output, y , to the desired d . This is accom-
plished by using the error between the de-
sired and actual responses of the plant to
adjust the weights of the network using a
steepest descent procedure; during each it-
eration the weights are adjusted to maxi-
mally decrease the error. This procedure re-
quires knowledge of the Jacobian of the
plant. In the following section, we describe
an iterative procedure for specialized train-
ing in which the plant derivatives are esti-
mated continuously. This architecture can
specifically learn in the region of interest,
and it may be trained on-line-fine-tuning
itself while actually performing useful work.
The general learning architecture, on the
other hand, must be trained off-line. Feed-
forward neural networks are nondynamical
systems and, therefore, input-output stable.
Consequently, off-line training of the neural
network presents no stability problem for the
control system. Intuitively, we expect no
stability problems also in the case of on-line
training, as long as the learning rate is suf-
ficiently slower than the time constants of
the other components of the control system.

Neural Net Training
The training method chosen may greatly

affect the final operation of the system, its
ability to adapt, and the time it takes to learn.
Although neural networks come in many
shapes and sizes, we consider here only net-
works that fit the form of Fig. 5. In this
layered architecture, neurons in the same
layer, m, perform the same function, fm, on
pm, where the p r ' s are the weighted sums of
the outputs, q;"-I's, of the previous layer.
Training adjusts the connection strengths be-
tween the neurons, thus modifying the func-
tional character of the network with the ob-

18 I E E E Control Systems hlogozrne

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on August 27, 2009 at 11:13 from IEEE Xplore. Restrictions apply.

pL.9:

tq; = f :" (p?) , P:" = E, w;qr"- '1.

Fig. 5. Layered neural net.

jective of minimizing the training error, E =
t - 0, between the actual output, o, and
target output, t , of the network.

Indirect Learning and General Learning
Network Training

Training the first two proposed architec-
tures is accomplished by error back propa-
gation, a widely used algorithm for training
feedforward neural networks. Error back
propagation attempts to minimize the squared
error for training sample input-output pairs;
for every training sample, it modifies each
weight using the partial derivative of the
squared error with respect to that weight.
Since error back propagation adjusts weights
in the local direction of greatest error reduc-
tion, it is a gradient descent algorithm. For
the network in Fig. 5, error back propagation
would modify the weight, wrb, between neu-
rons a and b of the mth and m - 1st layers,
respectively, as follows:

p is an acceleration constant that relates to
the step size of the simulation; larger accel-
eration constants lead to lower accuracy but
faster training. In the preceding equation, the
output of the kth neuron is qk, its input is p k ,
and 6L is the back-propagated error given for
the final layer, n , by

6: = f " ' (P 3 (U, - t ,)

and for all other layers by

6:" = f " ' (p : :) c 6 ? + ' w ; + ' ,
For the general learning network, we iden-
tify o = U , where U is the output of the
network to input y , and t = U which, when
fed to the plant, produces y (see Figs. 2 and
3).

Specialized Learning Network Training

We cannot apply error back propagation
directly to the specialized learning architec-
ture because of the location of the plant. Re-
femng to Fig. 4, the plant can be thought of
as an additional, although unmodifiable,
layer. Then the total error, E = d - y , is
propagated back through the plant using the
partial derivatives of the plant at its operating
point:

6: = d, - yo

where Pi(@ denotes the ith element of the
plant output for plant input U. The previously
described error back propagation algorithm
can then be applied. Therefore, error back
propagation through the plant again amounts
to a gradient descent search for weight com-
binations that minimize true total error.

If the plant is a function of unknown form,
we can approximate its partial derivatives as

ap, Pi(U + 6uj';) - P,(U)
-I I

auj 6 U j

This approximate derivative can be deter-
mined either by changing each input to the
plant slightly at the operating point and mea-
suring the change at the output or by com-
paring changes with previous iterations. The
latter can be likened to a person comparing
past and present experiences to determine
how a system's behavior changes as its pa-
rameters change.

Generalized and Specialized Learning

A possible method for combining the two
methods is to first perform general training
to learn the approximate behavior of the plant
followed by specialized training to fine-tune
the network in the operating regime of the
system. General training will have a ten-

dency to create better initial weights for spe-
cialized training. Thus, starting with general
training can speed the learning process by
reducing the number of iterations of the en-
suing specialized training. Another advan-
tage of preliminary general learning is that
it may result in networks that can adapt more
easily if the operating points of the system
change or new ones are added.

The distinction between general and spe-
cialized learning arises from the fact that dif-
ferent error functions are minimized. As a
result, the general and specialized learning
procedure will follow different paths to min-
ima. Intuitively, we expect the general learn-
ing procedure to produce a network that ap-
proximates the inverse of the plant better over
the entire state space but not as well in the
regions as specialization as one produced by
the specialized procedure. By adopting the
strategy of switching back and forth between
the two training methods, we can sometimes
get out of local minima of one method by
training with the other. Specifically, by per-
forming general learning prior to specialized
learning, we generally provide a better initial
condition to the specialized procedure in that
it has lower initial error. Switching from one
training method to the other can also result
in sudden changes of direction in weight
space. This is clearly evident in the sirnu-
lations presented in the next section.

Simulation Example
We considered as a simple example a plant

that converts polar coordinates (r , 0) to
Cartesian coordinates (x, y). The control net-
work should convert Cartesian to polar co-
ordinates. Desirable characteristics of this
system include a well-behaved plant and a
simple mathematical form for the desired
network so that the performance of the neural
network may be checked easily.

We chose a two-layer architecture with
two inputs plus a fixed-unity input, IO hid-
den neurons plus a fixed-unity hidden neu-
ron, and two output neurons (see Fig. 5) .
The fixed units allow each neuron to find its
own threshold value through the training
procedure. The hidden neurons have a sig-
moid transfer function, f (x) = 1/[1 + exp
(-41. We chose linear neurons, f (x) = x,
for the output so that they have unlimited
range. Initial weights were selected ran-
domly as &.

General Learning

The general learning proceeded under the
assumption that the region of specialization
had unknown (r , 0) values, except that the
input magnitude r is between 0 and 10 and

April 1988 19

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on August 27, 2009 at 11:13 from IEEE Xplore. Restrictions apply.

the input angle t9 is between 0 and 90 deg so
that the input values lie in a circular wedge
in the first quadrant. The training samples
were chosen as a 10-point grid spanning the
known input space. Every training sample
was presented once in each iteration of gen-
eralized learning. We used an acceleration
constant of 0.1.

The diagrams in Fig. 6 are contour plots
of e2 = \\E - t 1)’ plotted as a function of the
inputs to the network x and y . The points
marked by a circled “g” are the training
samples used for generalized training,
whereas the three rectangular regions were
selected for specialized learning. Figure 6(a)

1000 iterations general

@- +

2 - -

@

- - 1

X X t

i t * *

Region and points of
specialized learning

0
Points of

general learning

Fig. 6.
general learning.

Squared total error maps during

shows the error contour before training with
the weights chosen randomly. Figure 6(b) is
the error contour after lo00 iterations of gen-
eral learning. The error has been suppressed
at and around the training points. Increasing
the number of iterations reduces the error at
the training points, but, in general, we ob-
serve regions in which the error increases as
the iterations increase. Since, with this train-
ing method, we cannot place the training
samples in the regions of interest, we cannot
guarantee what the error will be in these re-
gions.

Specialized Learning

For each of the three specialization re-
gions, we chose nine points spanning the do-
main of specialization. We then trained the
network to specialize in each region alone,
starting with the weight matrices after a
varying number of iterations of general
learning. We used an acceleration constant
of 0.01.

I[’, aver-
aged over the second region of specializa-
tion, versus the number of total iterations.
Three separate curves are superimposed on
the same diagram. The solid curve is for
general learning only, the dashed curve spe-
cialized only, and the dash-dot curve is 10
iterations of general followed by specialized
training. In this example, there seems to be

Figure 7 is a plot of e2 = 11 2 -

ISE versus total iterations in region

I I I I

log 10 (total iterations)

1 2 3 4

Iterations

-General (G)

--- Specialized (S)

-.-lo G + S
Fig. 7. Squared error versus total
iterations.

a definite advantage to the hybrid learning
method. However, in our simulations, with
this simple plant, we were unable to deter-
mine conditions under which we could con-
sistently observe improvement by perform-
ing general learning prior to specialized
learning. An important topic for future re-
search is to find ways to determine the prop-
erties of the plants that will allow us to spec-
ify the appropriate sequence of general and
specialized learning.

Conclusions
We have begun to explore the idea of using

neural networks for controlling physical sys-
tems. Specifically, we proposed three differ-
ent methods for using error back propagation
to train a feedforward neural network con-
troller to act as the inverse of the plant. The
general learning method attempts to produce
the inverse of the plant over the entire state
space, but it can be very difficult to use it
alone to provide adequate performance in a
practical control application. In order to cir-
cumvent this problem, we introduced the
method of error propagation backwards
through the plant, which allows us to train
the network exactly on the operational range
of the plant. Finally, we proposed using gen-
eralized training in conjunction with spe-
cialized training to gain their advantages and
to avoid their potential disadvantages.

References
[l] J. Denker, ed., AIP Con5 Proc. Neural

Networks for Computing, American Insti-
tute of Physics, New York, 1986.

[2] J. Hopfield, “Neural Networks and Physi-
cal Systems with Emergent Collective
Computational Abilities,” Proc. Nut. Acad.
Sci. U.S . , vol. 79, pp. 2554-2558, 1982.

[3] T. Kohonen, SelfOrganization and Asso-
ciative Memory, New York: Springer-Ver-
lag, 1984.

141 D. Rumelhart and J . McClelland, Parallel
Distributed Processing, Cambridge, MA:
MIT Press, 1986.

[5] A. G. Barto, R. S . Sutton, and C. W. An-
derson, “Synthesis of Nonlinear Control
Surfaces by a Layered Associative Search
Network,” Biol. Cybern., vol. 43, pp. 175-
185, 1982.

[6] D. Bullock and S. Grossberg, “A Neural
Network Architecture for Automatic Tra-
jectory Formation and Coordination of Mul-
tiple Effectors During Variable-Speed Arm
Movements,” presented at 1987 IEEE In-
ternational Conference on Neural Net-
works.
S . Grossberg and M. Kuperstein, Neural
Dynamics of Adaptive Sensow-Motor Con-
trol: Ballistic Eye Movements, Amsterdam:
Elsevier/North Holland. 1986.

[7]

20 I € € € Control Systems Magazine

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on August 27, 2009 at 11:13 from IEEE Xplore. Restrictions apply.

A. Guez, J. Eilbert, and M. Kam, “Neu-
romorphic Architecture for Fast Adaptive
Robot Control,” presented at 1987 IEEE
International Conference on Neural Net-
works.
M. Kawato, K. Furukawa, and R. Suzuki,
“A Hierarchical Neural-Network Model for
Control and Learning of Voluntary Move-
ment,” Biol. Cybern., vol. 57, pp. 169-
185, Feb. 1987.
A. J. Pellionisz, “Tensor Network Theory
and Its Applications in Computer Modeling
of the Metaorganization of Sensorimotor
Hierarchies of Gaze,” in AIf Conf: froc. nod of three years as

Demetri Psaltis received
the B.Sc. degree in elec-
trical engineering and
economics in 1974 and the
M.Sc. and Ph.D. degrees
in electrical engineering
in 1975 and 1977, respec-
tively, all from Carnegie-
Mellon University, Pitts-
burgh, Pennsylvania.
After the completion of
the Ph.D., he remained at
Carnegie-Mellon for a pe-
a Research Associate and

Neural Networks for Computmg, American later as a Visiting Assistant Professor. In 1980,
Institute of Physics, New York, pp. 339- he joined the faculty of the Electrical Engineering
344, 1986. Department at the California Institute of Technol-

[l l] A. Pellionisz, “Sensorimotor Operations: ogy, Pasadena, where he is now Associate Pro-
A Ground for the Co-Evolution of Brain fessor and consultant to Industry. His research in-
Theory with Neurobotics and Neurocom- terests are in the areas of optical information
puters,” presented at 1987 IEEE Intema- processing, acousto-optics, image processing, pat-
tional Conference on Neural Networks. tern recognition, neural network models of com-

[I21 D. Psaltis, A. Sidens, and A. Yamamiira, putation, and optical devices He has over 130
“Neural Controllers,” presented at 1987 technical publications in these areas Dr. Psaltis
IEEE International Conference on Neural IS a Fellow of the Optical Society of Amenca and
Networks. Vice President of the International Neural Net-

[I31 D E Rumelhart, presentation at the Cali- works Society
fornia Institute of Technology, Spnng 1987

[14] A Sidens, A. Yamamura, and D. Psaltis,
“Dynamical Neural Networks and Their
Application to Robot Control,” presented
at the IEEE Conference on Neural Infor- Athanasios Sideris re-
mation Processing Systems Natural and ceived the diploma in
Synthetic, 1987. electncal engineenng
K. Tsutsumi and H. Matsumoto, “Neural from the National Tech-
Computation and Learning Strategy for Ma- nical University of Ath-
nipulator Position Control,” presented at ens, Athens, Greece, in
1987 IEEE International Conference on 1980, the M.S degree in
Neural Networks. mathematics in 1986, and

[I61 D. E. Rumelhart, G E. Hinton, and R. J. the M S and Ph D de-
Williams, Parallel Distributed Processing, grees in electncal engi-
Chapter 8, “Learning Internal Representa- neering in 1981 and 1985,
tions by Error Propagation,” vol. 1, Cam- respectively, from the
bndge, MA. MIT Press, 1986. University of Southern

[15]

Out of Control

California. From September 1980 until May 1986,
he was a Teaching/Research Assistant and, from
September 1985 until December 1986, a Lecturer
with the Electrical Engineering Department at the
University of Southern California. Since June
1986, he has been at the Department of Electrical
Engineering at the California Institute of Tech-
nology, where he is an Assistant Professor. His
general area of interest is control and systems the-
ory; his current research interests include robust
control theory, system optimization, and, in par-
ticular, L, optimal control, nonlinear control sys-
tems, and applications of neural networks in con-
trol.

Alan A. Yamamura was
barn in Hampton, Vir-
ginia, in 1965. He re-
ceived the S.B. degree in
electrical engineering, the
S.M. degree in electrical
engineering and computer
science, and the S.B. de-
gree in physics from the
Massachusetts Institute of
Technology, Cambridge,
Massachusetts, in 1986.
He is currently a graduate

student in the Department of Electrical Engineer-
ing at the California Institute of Technology, Pas-
adena, California.

“His defection is certain to have a destabilizing effect.”

April 1988 21

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on August 27, 2009 at 11:13 from IEEE Xplore. Restrictions apply.

