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ABSTRACT: A multilayered neural network 
processor is used to control a given plant. 
Several learning architectures are proposed 
for training the neural controller to provide 
the appropriate inputs to the plant so that a 
desired response is obtained. A modified er- 
ror-back propagation algorithm, based on 
propagation of the output error through the 
plant, is introduced. The properties of the 
proposed architectures are studied through a 
simulation example. 

Introduction 
The neural approach to computation has 

emerged in recent years [I]-[4] to tackle 
problems for which more conventional com- 
putational approaches have proven ineffec- 
tive. To a large extent, such problems arise 
when a computer is asked to interface with 
the real world, which is difficult because the 
real world cannot be modeled with concise 
mathematical expressions. Problems of this 
type are machine vision, speech and pattern 
recognition, and motor control. Not coinci- 
dentally perhaps, these are precisely the types 
of problems that humans execute seemingly 
without effort. Therefore, people interested 
in building computers to tackle these prob- 
lems have tried to adopt the existing under- 
standing on how the brain computes. There 
are three basic features that identify a “neural 
computer”: it consists of a very large num- 
ber of simple processing elements (the neu- 
rons), each neuron is connected to a large 
number of others, and the functionality of 
the network is determined by modifying the 
strengths of the connections during a learn- 
ing phase. These general characteristics are 
certainly similar to those evident in biolog- 
ical neural networks, however, the precise 
details of the operation of neural networks 
in a brain can be quite different from those 
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in the abstract models used in the design of 
neural computers. Nevertheless, the general 
morphological features and the basic ap- 
proach to computation are common in both 
natural and artificial neural networks. This 
can lead to computers that can tackle prob- 
lems very effectively for which present ap- 
proaches are relatively ineffective but natural 
intelligence is very good. 

In this paper, we explore the application 
of the neural approach to control [5]-[15]. 
Both humans and machines perform control 
functions, however, there are sharp distinc- 
tions between machine and human control 
systems. For instance, humans make use of 
a much greater amount of sensory informa- 
tion in planning and executing a control ac- 
tion compared to industrial controllers. The 
reason for this difference is not as much sen- 
sor constraints but rather the inability of man- 
made controllers to efficiently absorb and 
usefully process such a wealth of informa- 
tion. The collective manner in which infor- 
mation is processed by neural networks is 
another distinction between human and ma- 
chine control; it is this collective processing 
capability that provides neural networks with 
the ability to respond quickly to complex 
sensory inputs. Sophisticated control algo- 
rithms, on the other hand, are severely lim- 
ited by the time it takes to execute them in 
electronic hardware. The third distinction, 
and perhaps the most important, is that hu- 
man control is largely acquired through 
learning, whereas the operation of man-made 
controllers is specified by an algorithm that 
is written a priori. Therefore, in order to im- 
plement an effective algorithmic controller, 
we must have a thorough understanding of 
the plant that is to be controlled, something 
that is generally very difficult to achieve in 
practice. A neural controller performs a spe- 
cific form of adaptive control, with the con- 
troller taking the form of a nonlinear multi- 
layer network and the adaptable parameters 
being the strengths of the interconnections 
between the neurons. In summary, a con- 
troller that is designed as a neural network 
architecture should exhibit three important 
characteristics: the utilization of large 
amounts of sensory information, collective 
processing capability, and adaptation. 

A general diagram for a control system is 

shown in Fig. 1. The feedback and feedfor- 
ward controllers and the prefilter can all be 
implemented as multilayered neural net- 
works. The learning process gradually tunes 
the weights of the neural network so that the 
error signal between the desired and actual 
plant responses is minimized. Since the error 
signal is the input to the feedback controller, 
the training of the network will lead to a 
gradual switching from feedback to feedfor- 
ward action as the error signal becomes 
small. In this paper, we consider imple- 
menting only the feedforward controller as a 
neural network. During training, features of 
the plant that are initially unknown and not 
taken into account by the control algorithm 
are learned. In this manner, some of the 
model uncertainty is eliminated and, thus, 
improved control results. In other words, the 
feedforward controller is modified to com- 
pensate for the characteristics of the plant 
that are discovered during learning. When 
the error becomes small, training has been 
accomplished and only a relatively small 
feedback signal is necessary to compensate 
for random uncertainties that are unpredict- 
able and, thus, cannot be learned. An im- 
mediate consequence of the increased use of 
feedforward control action is to speed up the 
response of the system. 

In the remainder of this paper, we con- 
sider specific methods for training neural 
networks to minimize the error signal. In fol- 
lowing sections, we propose three control 
learning methods, describe the error back 
propagation algorithm [16], which is the 
method used here to adapt the weights in the 
neural networks we use as controllers, and 
introduce a modification of the error back 
propagation algorithm that extends its utility 
to problems where the error signal used to 
train the network is not the error measured 
at the output of the network. We also present 
simulations for a very simple plant to dem- 
onstrate the operation of the proposed archi- 
tectures and training methods. 

Learning Control Architectures 
Figure 2 shows the feedforward control- 

ler, implemented as a neural network archi- 
tecture, with its output U driving the plant. 
The desired response of the plant is denoted 
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Fig. 1. General control system diagram. 

Fig. 2. Indirect learning architecture. 

by d and its actual output by y. The neural 
controller should act as the inverse of the 
plant, producing from the desired response 
d a signal U that drives the output of the plant 
to y = d .  The goal of the learning proce- 
dure, therefore, is to select the values of the 
weights of the network so that it produces 
the correct d - U mappings at least over the 
range of d's in which we plan to operate the 
plant. We will consider three different learn- 
ing methods. One possibility is suggested in 
Fig. 2. Suppose that the feedforward con- 
troller is successfully trained so that the plant 
output y = d .  Then the network used as the 
feedforward controller will approximately 
reproduce the plant input from y (i.e., t = 
U ) .  Thus, we might consider training the net- 
work by adapting its weights to minimize the 
error = U - t using the architecture shown 
in Fig. 2, because, if the overall error E = 
d - y goes to zero, so does c l .  The positive 
features of this arrangement would be the 
fact that the network can be trained only in 
the region of interest since we start with the 
desired response d and all other signals are 
generated from it. In addition, as we will see 
in the next section, it is advantageous to 
adapt the weights in order to minimize the 
error directly at the output of the network. 
Unfortunately, this method, as described, is 
not a valid training procedure because min- 
imizing c l  does not necessarily minimize E .  

For instance, simulations with a simple plant 
showed that the network tends to settle to a 
solution that maps all d's to a single U = uo, 
which, in turn, is mapped by the plant to t 
= U,,, for which E, is zero but obviously E is 
not. This training method remains interest- 
ing, however, because it could be used in 

conjunction with one of the procedures de- 
scribed below that minimize E .  

General Learning Architecture 

The architecture shown in Fig. 3 provides 
a method for training the neural controller 
that does minimize the overall error E* .  The 
training sequence is as follows. A plant input 
U is selected and applied to the plant to ob- 
tain a corresponding y .  and the network is 
trained to reproduce U at its output from y .  
The trained network should then be able to 
take a desired response d and produce the 
appropriate U, making the actual plant output 
y approach d .  This will clearly work if the 
input d happens to be sufficiently close to 
one of the y's that were used during the train- 
ing phase. Thus, the success of this method 
is intimately tied to the ability of the neural 
network to generalize or learn to respond 
correctly to inputs it has not specifically been 
trained for. Notice that, in this architecture, 
we cannot selectively train the system to re- 
spond correctly in regions of interest because 
we normally do not know which plant inputs 
U correspond to the desired outputs d .  Thus, 
we typically attempt to uniformly populate 
the input space of the plant with training 
samples so that the network can interpolate 
the intermediate points. In this case, the gen- 
eral procedure may not be efficient since the 
network may have to learn the responses of 
the plant over a larger operational range than 
is actually necessary. One possible solution 
to this problem is to combine the general 

b 
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Fig. 3. General learning architecture. 
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Fig. 4. Specialized learning architecture. 

method with the specialized procedure de- 
scribed below. 

Specialized Learning Architecture 

Figure 4 shows an architecture for training 
the neural controller to operate properly in 
regions of specialization only. Training in- 
volves using the desired response, d ,  as input 
to the network. The network is trained to 
find the plant input, U ,  that drives the system 
output, y ,  to the desired d .  This is accom- 
plished by using the error between the de- 
sired and actual responses of the plant to 
adjust the weights of the network using a 
steepest descent procedure; during each it- 
eration the weights are adjusted to maxi- 
mally decrease the error. This procedure re- 
quires knowledge of the Jacobian of the 
plant. In the following section, we describe 
an iterative procedure for specialized train- 
ing in which the plant derivatives are esti- 
mated continuously. This architecture can 
specifically learn in the region of interest, 
and it may be trained on-line-fine-tuning 
itself while actually performing useful work. 
The general learning architecture, on the 
other hand, must be trained off-line. Feed- 
forward neural networks are nondynamical 
systems and, therefore, input-output stable. 
Consequently, off-line training of the neural 
network presents no stability problem for the 
control system. Intuitively, we expect no 
stability problems also in the case of on-line 
training, as long as the learning rate is suf- 
ficiently slower than the time constants of 
the other components of the control system. 

Neural Net Training 
The training method chosen may greatly 

affect the final operation of the system, its 
ability to adapt, and the time it takes to learn. 
Although neural networks come in many 
shapes and sizes, we consider here only net- 
works that fit the form of Fig. 5. In this 
layered architecture, neurons in the same 
layer, m, perform the same function, fm, on 
pm, where the p r ' s  are the weighted sums of 
the outputs, q;"-I's, of the previous layer. 
Training adjusts the connection strengths be- 
tween the neurons, thus modifying the func- 
tional character of the network with the ob- 
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tq; = f :" (p?) ,  P:" = E, w;qr"- '1.  

Fig. 5. Layered neural net. 

jective of minimizing the training error, E = 
t - 0, between the actual output, o, and 
target output, t ,  of the network. 

Indirect Learning and General Learning 
Network Training 

Training the first two proposed architec- 
tures is accomplished by error back propa- 
gation, a widely used algorithm for training 
feedforward neural networks. Error back 
propagation attempts to minimize the squared 
error for training sample input-output pairs; 
for every training sample, it modifies each 
weight using the partial derivative of the 
squared error with respect to that weight. 
Since error back propagation adjusts weights 
in the local direction of greatest error reduc- 
tion, it is a gradient descent algorithm. For 
the network in Fig. 5, error back propagation 
would modify the weight, wrb, between neu- 
rons a and b of the mth and m - 1st layers, 
respectively, as follows: 

p is an acceleration constant that relates to 
the step size of the simulation; larger accel- 
eration constants lead to lower accuracy but 
faster training. In the preceding equation, the 
output of the kth neuron is qk, its input is p k ,  
and 6L is the back-propagated error given for 
the final layer, n ,  by 

6: = f " ' ( P 3  (U, - t , )  

and for all other layers by 

6:" = f " ' ( p : : )  c 6 ? + ' w ; + '  , 
For the general learning network, we iden- 
tify o = U ,  where U is the output of the 
network to input y ,  and t = U which, when 
fed to the plant, produces y (see Figs. 2 and 
3). 

Specialized Learning Network Training 

We cannot apply error back propagation 
directly to the specialized learning architec- 
ture because of the location of the plant. Re- 
femng to Fig. 4, the plant can be thought of 
as an additional, although unmodifiable, 
layer. Then the total error, E = d - y ,  is 
propagated back through the plant using the 
partial derivatives of the plant at its operating 
point: 

6: = d,  - yo 

where Pi(@ denotes the ith element of the 
plant output for plant input U. The previously 
described error back propagation algorithm 
can then be applied. Therefore, error back 
propagation through the plant again amounts 
to a gradient descent search for weight com- 
binations that minimize true total error. 

If the plant is a function of unknown form, 
we can approximate its partial derivatives as 

ap, Pi(U + 6uj';) - P,(U) 
-I I 

auj 6 U j  

This approximate derivative can be deter- 
mined either by changing each input to the 
plant slightly at the operating point and mea- 
suring the change at the output or by com- 
paring changes with previous iterations. The 
latter can be likened to a person comparing 
past and present experiences to determine 
how a system's behavior changes as its pa- 
rameters change. 

Generalized and Specialized Learning 

A possible method for combining the two 
methods is to first perform general training 
to learn the approximate behavior of the plant 
followed by specialized training to fine-tune 
the network in the operating regime of the 
system. General training will have a ten- 

dency to create better initial weights for spe- 
cialized training. Thus, starting with general 
training can speed the learning process by 
reducing the number of iterations of the en- 
suing specialized training. Another advan- 
tage of preliminary general learning is that 
it may result in networks that can adapt more 
easily if the operating points of the system 
change or new ones are added. 

The distinction between general and spe- 
cialized learning arises from the fact that dif- 
ferent error functions are minimized. As a 
result, the general and specialized learning 
procedure will follow different paths to min- 
ima. Intuitively, we expect the general learn- 
ing procedure to produce a network that ap- 
proximates the inverse of the plant better over 
the entire state space but not as well in the 
regions as specialization as one produced by 
the specialized procedure. By adopting the 
strategy of switching back and forth between 
the two training methods, we can sometimes 
get out of local minima of one method by 
training with the other. Specifically, by per- 
forming general learning prior to specialized 
learning, we generally provide a better initial 
condition to the specialized procedure in that 
it has lower initial error. Switching from one 
training method to the other can also result 
in sudden changes of direction in weight 
space. This is clearly evident in the sirnu- 
lations presented in the next section. 

Simulation Example 
We considered as a simple example a plant 

that converts polar coordinates ( r ,  0) to 
Cartesian coordinates (x, y). The control net- 
work should convert Cartesian to polar co- 
ordinates. Desirable characteristics of this 
system include a well-behaved plant and a 
simple mathematical form for the desired 
network so that the performance of the neural 
network may be checked easily. 

We chose a two-layer architecture with 
two inputs plus a fixed-unity input, IO hid- 
den neurons plus a fixed-unity hidden neu- 
ron, and two output neurons (see Fig. 5 ) .  
The fixed units allow each neuron to find its 
own threshold value through the training 
procedure. The hidden neurons have a sig- 
moid transfer function, f ( x )  = 1/[1 + exp 
(-41. We chose linear neurons, f ( x )  = x, 
for the output so that they have unlimited 
range. Initial weights were selected ran- 
domly as &. 

General Learning 

The general learning proceeded under the 
assumption that the region of specialization 
had unknown ( r ,  0) values, except that the 
input magnitude r is between 0 and 10 and 
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the input angle t9 is between 0 and 90 deg so 
that the input values lie in a circular wedge 
in the first quadrant. The training samples 
were chosen as a 10-point grid spanning the 
known input space. Every training sample 
was presented once in each iteration of gen- 
eralized learning. We used an acceleration 
constant of 0.1. 

The diagrams in Fig. 6 are contour plots 
of e2 = \\E - t 1)’ plotted as a function of the 
inputs to the network x and y .  The points 
marked by a circled “g” are the training 
samples used for generalized training, 
whereas the three rectangular regions were 
selected for specialized learning. Figure 6(a) 

1000 iterations general 

@- + 
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@ 

- - 1  

X X t  

i t * *  

Region and points of 
specialized learning 

0 
Points of 

general learning 

Fig. 6. 
general learning. 

Squared total error maps during 

shows the error contour before training with 
the weights chosen randomly. Figure 6(b) is 
the error contour after lo00 iterations of gen- 
eral learning. The error has been suppressed 
at and around the training points. Increasing 
the number of iterations reduces the error at 
the training points, but, in general, we ob- 
serve regions in which the error increases as 
the iterations increase. Since, with this train- 
ing method, we cannot place the training 
samples in the regions of interest, we cannot 
guarantee what the error will be in these re- 
gions. 

Specialized Learning 

For each of the three specialization re- 
gions, we chose nine points spanning the do- 
main of specialization. We then trained the 
network to specialize in each region alone, 
starting with the weight matrices after a 
varying number of iterations of general 
learning. We used an acceleration constant 
of 0.01. 

I[’, aver- 
aged over the second region of specializa- 
tion, versus the number of total iterations. 
Three separate curves are superimposed on 
the same diagram. The solid curve is for 
general learning only, the dashed curve spe- 
cialized only, and the dash-dot curve is 10 
iterations of general followed by specialized 
training. In this example, there seems to be 

Figure 7 is a plot of e2 = 11 2 - 

ISE versus total iterations in region 

I I I I 

log 10 (total iterations) 

1 2 3 4 

Iterations 

-General (G) 

--- Specialized (S) 

-.-lo G + S 
Fig. 7. Squared error versus total 
iterations. 

a definite advantage to the hybrid learning 
method. However, in our simulations, with 
this simple plant, we were unable to deter- 
mine conditions under which we could con- 
sistently observe improvement by perform- 
ing general learning prior to specialized 
learning. An important topic for future re- 
search is to find ways to determine the prop- 
erties of the plants that will allow us to spec- 
ify the appropriate sequence of general and 
specialized learning. 

Conclusions 
We have begun to explore the idea of using 

neural networks for controlling physical sys- 
tems. Specifically, we proposed three differ- 
ent methods for using error back propagation 
to train a feedforward neural network con- 
troller to act as the inverse of the plant. The 
general learning method attempts to produce 
the inverse of the plant over the entire state 
space, but it can be very difficult to use it 
alone to provide adequate performance in a 
practical control application. In order to cir- 
cumvent this problem, we introduced the 
method of error propagation backwards 
through the plant, which allows us to train 
the network exactly on the operational range 
of the plant. Finally, we proposed using gen- 
eralized training in conjunction with spe- 
cialized training to gain their advantages and 
to avoid their potential disadvantages. 
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