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Based on the trajectory prediction error model proposed by Paielli and Erzberger, we
propose nominal and probabilistic conflict detection algorithms using flight mode estimates
as well as the aircraft current state estimates. This is different from previous conflict
detection algorithms which use current state estimates only. Our algorithms are therefore
based on hybrid models of aircraft, which allow for both continuous dynamics and discrete
mode switching. To obtain accurate state and mode estimates, we propose a modified
version of the Interacting Multiple Model (IMM) algorithm designed by Bar-Shalom et
al. called the Residual-Mean Interacting Multiple Model (RMIMM) method. RMIMM
is a multiple-model-based estimation algorithm based on a new likelihood function which
uses the mean of the residual produced by each mode matched filter (usually Kalman
filter), producing better mode estimates, and therefore better state estimates, than in
the IMM case. We demonstrate our algorithm on multiple aircraft scenarios, and in the
latter part of the paper, the probabilistic conflict detection algorithm is combined with
the protocol-based conflict resolution algorithm, designed by the authors in earlier work.
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Introduction

We consider in this paper the problem of accurate
hybrid state estimation for aircraft conflict detection.
The contributions of this paper are: a new variant of
a hybrid state estimation scheme, and the application
of hybrid estimation methods in general to conflict de-
tection. The problem is applicable to both ground
and airborne control scenarios in Air Traffic Control
(ATC), with ground control using radar information,
or airborne using information from Automatic Depen-
dent Surveillance - Broadcast (ADS-B) data.

To the best of our knowledge, all conflict detection
algorithms available are based on aircraft continuous
state information (see Kuchar and Yang! for a com-
prehensive survey). For example, Yang et al.? propose
a conflict alerting logic based on sensor and trajectory
uncertainties, with conflict probability based on Monte
Carlo simulation; Paielli et al.® and Prandini et al.*
propose analytic algorithms for computing probability
of conflict. The performance of the conflict detection
algorithms depends strongly on the accuracy of these
state estimates. A difficulty in aircraft state estima-
tion lies in precision tracking when the aircraft makes
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an unanticipated change of flight mode (e.g., mode
change from the straight flight at constant speed to a
coordinated turn). Thus, a challenge in aircraft track-
ing is to provide high quality state estimates of the
aircraft in such situations. The current algorithms
in use for ATC tracking are based on constant gain
Kalman filters, known as oo — 8 or o — 3 — « filters.> 6

Because a single Kalman filter cannot provide good
estimates for a hybrid system with various modes,
many adaptive state estimation algorithms have been
proposed.” 19 The algorithm considered in this pa-
per is a modified form of the Interacting Multiple
Model (IMM) algorithm.!12  The IMM algorithm
is a multiple-model-based estimation algorithm which
computes the state estimate using a weighted sum of
the estimates from a bank of Kalman filters that are
matched to different modes of the system. The weights
are based on the mode probability, or the probability
that an aircraft is in a given mode, computed from
the mode likelihood function. It is the determination
of this likelihood function that we focus on in this pa-
per. The complexity of IMM has been shown to be
approximately linear in the number of modes.” IMM
and its variants have been applied to single and mul-
tiple aircraft tracking problems.”

Hybrid system state estimation is an area of recent
research activity. Balluchi et al.!3 present the design
for a location observer for discrete state estimation



combined with a Luenberger observer for continuous
state estimation and give a condition for the estima-
tion error to converge exponentially. Vidal et al.'4
derive observability conditions for jump linear systems
based on a rank test inspired by the familiar observ-
ability of linear systems. Hwang et al.'®> propose that
state error covariances may be used to improve these
estimation results.

In this paper, we consider 2D aircraft conflict de-
tection problems in which aircraft are assumed to
fly at the same altitude. We consider two flight
modes: constant heading - constant velocity, and co-
ordinated turn. Thus, an aircraft trajectory is as-
sumed to be composed of straight lines and circular
arcs. For conflict detection, we use the nominal and
probabilistic conflict detection algorithms from Paielli
and Erzberger® (which are based on the continuous
state only) and extend them so that they use both
the continuous state and flight mode estimates. Our
algorithm for state and mode estimation is a modi-
fied IMM, called the Residual-Mean IMM (RMIMM),
which has a likelihood function that uses the mean of
the residual produced by each Kalman filter. Using
the idea, proposed in Hanlon and Maybeck!® that the
residual produced by each Kalman filter in the IMM
algorithm should have a non-zero mean if the Kalman
filter is not the correct one, we design a likelihood
function that gives clearer and sharper differences be-
tween the correct mode and the other modes, so that
the number of false mode estimates decreases rela-
tive to the standard IMM. This property is advanta-
geous since the standard IMM may produce incorrect
mode estimates frequently as the number of modes
in the model increases. We then combine the proba-
bilistic conflict detection algorithm with the protocol-
based conflict resolution algorithm designed by the
authors.!”- 18 We show that, even in cases in which the
turn mode is a small portion of the whole aircraft flight
trajectory, the accuracy of this hybrid conflict detec-
tion algorithm is improved over continuous schemes,
especially in the airspace around waypoints and air-
ports where several airways converge. In addition, the
flight mode estimate could also be used for blunder
detection. That is, aircraft 1 (or a ground controller)
detects a conflict early enough to take (or issue) a safe
resolution maneuver if aircraft 2 (blunderer) starts a
maneuver which might cause a conflict with aircraft 1.

The paper is organized as follows: Section 2 presents
the Residual-Mean Interacting Multiple Model algo-
rithm. In Section 3, we derive the aircraft models for
tracking and show the performance of the Residual-
Mean Interacting Multiple Model algorithm through
an example. In Section 4, nominal and probabilis-
tic conflict detection algorithms and conflict detection
and resolution examples are presented. Conclusions
are presented in Section 5.

Residual-Mean Interacting Multiple
Model Algorithm

In this section, we describe the general structure
of the IMM algorithm and propose a modified IMM
algorithm which uses information about the mean of
the residual. We call this modified IMM algorithm the
Residual-Mean IMM (RMIMM).

We consider a stochastic linear hybrid system with
discrete-time, continuous-state dynamics:

Ajx(k) 4+ w;(k)

z(k+1) =
Ca(k) + vy (k) )

z(k) =

and a Markov transition of the discrete state (mode)
given by:

Plj(k+1)|i(k))=H;; i,j€ M={1,2,---,N} (2)

where € R™ and z € RP are the state and the output
respectively. M is the set of discrete states. The terms
w and v are respectively the mode-dependent, uncorre-
lated, white Gaussian process noise and measurement
noise with zero means and covariances Q; and R;. H;;
is the Markov mode transition probability from mode @
to mode j. Thus, given the above system parameters,
hybrid estimation estimates both the continuous state
and the discrete state at time k from the measurement
sequence up to time k—1 (k=1,2,---).
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Fig. 1 Structure of the IMM algorithm (for two
modes).'?

The IMM algorithm is a multiple-model-based state
estimation algorithm which computes the state esti-
mate using a weighted sum of estimates from a bank
of Kalman filters matched to different modes of the
system. The general structure of the IMM algorithm
as shown in Figure 1 is as follows:

1. Mixing probability: This is the probability
that the system is in mode i at time k — 1, given
that it is in mode j at time k:

piglh =1k = 1) = “Hypu(k—1) (3

J



where c; is a normalization constant, and where
i (k) is the mode probability of mode ¢ at time k,
i.e., a measure of how probable it is that the sys-
tem is in mode ¢ at time k. The initial condition
1:(0) is assumed given, and is usually obtained
from properties of the system.

. New initial states and covariances: The in-
put to each Kalman filter is adjusted by weighting
the output of each Kalman filter with the mixing
probability as the weight:
Zoj(k — 1k —1)
= 3k 1k = g = 1k~ 1)
i
Poj(k— 1]k — 1)
= D {P(k—1k-1)+[2
—&oj(k — 1k = D][#:(k — 1]k — 1)
—&oj(k — 1|k — 1)) hpgg (k — 1|k — 1)

iW(k—1k—=1)

where Z;(k — 1|k — 1) and P;(k — 1|k — 1) are
the state estimate and its covariance produced by
Kalman filter 7 at time k — 1 after the measure-
ment update.

. Kalman Filter: N Kalman filters run in parallel
(multiple-model-based (hybrid) estimation).

. Mode likelihood functions: The likelihood
function of mode j is a measure of how likely it
is that the model used in Kalman filter j is the
correct one; it is computed with the residual and
its covariance produced by Kalman filter j:

Aj(k) = N(r;(k); 0,55 (k)) (4)

where (k) := z(k) — C;Z;(k|k—1) is the residual
of Kalman filter j, &;(k|k — 1) is a state estimate
by Kalman filter j at time k£ before the measure-
ment update, and S (k) is its covariance.

. Mode probabilities: The probability of mode j
is a measure of how probable it is that the system
is in mode j:

g (k Z Hijpi(k — 1) =

S (R ()
(5)

where ¢ is a normalization constant. The proba-
bility of each mode is updated using the likelihood
function.

. Combination (output of the IMM): The
state estimate is a weighted sum of the estimates
from N Kalman filters and the mode estimate is

the mode which has the highest mode probability:

T(k[k) = ij(klk)uj(k)

P(klk) = Z{Pj(k\k) + [ (k[k) — 2(k|F)]
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m(klk) = arg max i (k)

where 1 (k|k) is the mode estimate at time k.

As can be seen from the standard IMM algorithm,
the mode probability in (5) depends on the likelihood
function A;. Thus, if the likelihoods of the modes are
close to each other, the mode estimate may be inaccu-
rate. Inaccurate mode estimates could produce poor
state estimates, thus degrading the tracking accuracy.
Because we are interested in using this for conflict
detection, we propose a method which reduces false
mode estimation by increasing the difference between
the likelihood of the correct mode and the likelihoods
of the other modes, using the fact that if the Kalman
filter corresponding to mode j is the correct one, then
the residual in (4) should be a white Gaussian process
with a zero mean. Otherwise, its mean should not be
zero. We review from!'® the mean and covariance of
the residual. The mean of the residual is

Elrj(k)|Z*7'] = Elz(k) — Cja;(k|k — 1)|Z"1]

= BElz(k)|ZF'] -

(6)

where Z*~! is the measurement sequence up to time

k — 1. If the measurement sequence is given, the state
estimates are not random. So, (6) becomes

Elrj(k)| 2" = E[2(k)| 2" -
The covariance of the residual is

Covlr; (k)\Zk o
Elr;(k)r;(k)*|2%1] -
= Elz(k)z;(k)T1 2" -
=: Cov[zj(k)|Zk o

Ciz(klk—1) (7)

(8)
As outlined in Hanlon and Maybeck,® the conditional
covariance matrix of the residual is not dependent on
the Kalman filter model. It is only dependent on
the covariance of the measurements. Thus, all of the
Kalman filter residuals have the same covariance since
they all use the same measurement. The following no-
tation is used:!'6
AA]' = At - A]‘, AC] = Ct - Cj (9)
where the subscript ¢ denotes the true (or correct)
model. The dimensions of the model in (1) for all j are
assumed to be the same. If the model for Kalman fil-
ter j is not matched with the true model, the residual

E(Cja(klk — 1)| Z2%1]

Elrj(k)|Z* 1 Er; (k)| 21T
Elz; (k)| 2" 1Bl (k)| 21T
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(10)
where e;(k— 1|k —1)=a,(k—1) - 2;(k— 1|k —1) is
the state estimation error. The detailed derivation is
in Hanlon and Maybeck.'® The mean of the residual is

Elr;(k)|2"]
= C’tAtE[ej(k — 1|]€ — 1)|Zk_1] + (CtAA]
FAC,A, — AC;AA G (k — 1k — 1)
()

To compute the mean of the residual, we first compute
the expectation of the state estimation error:

Ble; (klk)| 2]
= E[xt(k:—1)—£](k—1|k—1)|Zk_1]
= (I -K;(k)Cy)AElej(k — 1|k — 1)|Z%1]
+(( = K;(k)Cr)AA, — K;(k)AC;Aj)
xZp(k— 1)k —1)
(12)
where K is the Kalman filter gain for Kalman filter j.
This is a recursive equation with respect to the state
estimation error. Thus, the mean of the residual is
computed from (11) and (12).

To the best of our knowledge, all multiple-model-
based estimation and learning algorithms including
various IMM algorithms use a likelihood function
whose mean is zero to determine the current mode in
which the system lies.” %19 We propose the RMIMM,
which uses the mean of the residual to increase the
difference between the likelihood of the correct mode
and those of the other modes, thereby decreasing the
number of false mode estimates. Since in the IMM
framework there is no true model for sure, i.e., with
probability 1, we propose a new definition of the mean
of the residual: a weighted sum of the mean of the
residual computed by each Kalman filter with the
mode probability estimate in (5) as the weight. Simi-
larly, a new definition of the mean of the state estima-
tion error is proposed as a weighted sum of the mean
of the state estimation error corresponding to Kalman
filter j with the same weight.
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(13)
If the mode probability of mode j is large, the mean
of the residual becomes small (i.e., close to zero) be-
cause the other mode probabilities y; (k) for Vi # j are

small. This corresponds to the fact that the residual
has a zero mean if the Kalman filter is the correct one.
Since the proposed mean of the residual is small if the
mode probability of the corresponding Kalman filter is
small, and large if the mode probability of the corre-
sponding Kalman filter is big, we can use the mean of
the residual in (13) to make the likelihood of the cor-
rect mode more distinct from those of the other modes.
Therefore, using the mean of the residual provided by
each Kalman filter, we propose a new likelihood func-
tion:

| E[r; (k)| Z5 11~ A (k)
SN B (R) [ ZF ]| =1 A (k)
Aj(k)

AT () = {

otherwise
(14)

Proposition 1 The differences between the new like-
lihood function (14) for the correct mode and those for
the incorrect mode, is greater than the corresponding
differences using the previous likelihood function from

(4)-

Proof: If the model in Kalman filter j is incorrect,
the mean of residual is not zero and the likelihood of
mode j from the new likelihood function in (14) is
less than that of the standard likelihood function in
(4). If the model in Kalman filter j is correct, the
likelihood of mode j from the new likelihood function
is the same as that of the standard likelihood function
in (4). Thus, the differences between the likelihood
of the correct mode and those of incorrect modes are
greater and the result follows. n

Aircraft model for tracking

In this section, we derive aircraft models for aircraft
tracking and conflict detection in the plane. Since our
conflict detection is based on both current state and
flight mode, the conflict detection algorithm needs the
aircraft’s current position, velocity, and yaw rate. If
an aircraft is in the coordinated turn mode, the fu-
ture trajectory of the aircraft for conflict detection
is constructed along a circular arc. Thus, the air-
craft’s yaw rate should be estimated accurately. We
found that the coordinated turn model with known
yaw rates could not estimate the actual yaw rate and
flight mode accurately if the aircraft’s actual yaw rate
is not matched to those used in the model. This is
because the yaw rate estimate comes from the finite
set of predetermined yaw rates. To solve this prob-
lem, the yaw rate is included as a state component, to
be estimated. Thus, a new model has an additional
equation for the yaw rate w:

wk+1) =wk) +w,(k) (15)
where w, (k) is a zero-mean white Gaussian noise.
This model is nonlinear, so the extended Kalman filter

it Elry (241 £ 0
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Fig. 2 100 times Monte Carlo simulation results using the IMM and the RMIMM for the aircraft tracking
example. (left) Likelihood of each mode. (right) Mode probability of each mode. (The RMIMM gives
more distinct likelihoods of modes than those of the IMM.)

is used for state estimation.% 2 However, the accu-
racy of yaw rate estimates is sensitive to the design
parameters used for state estimation. The estimate
of yaw rate oscillates severely around the true rate at
the starting of a maneuver. This model has been used
for aircraft tracking widely,% 1219 however, because it
produces good position and velocity estimates.% 1219

In order to obtain accurate yaw rate estimates, we
use the Wiener-sequence acceleration model®® as the
aircraft model for the coordinated turn mode. It
assumes that the acceleration increment is an inde-
pendent, zero-mean, white Gaussian noise process, i.e.
a(k) —a(k — 1) = w(k) (where a is an acceleration
and w is a zero-mean, white Gaussian noise). Stan-
dard Kalman filters are used for state estimation be-
cause this model is linear. Since ADS-B information
is assumed to be used for measurements, we use both
aircraft’s position and velocity information in ADS-B
to increase the estimation accuracy. However, there
is no restriction in using the aircraft’s position infor-
mation only to estimate the aircraft’s current states
with the RMIMM. If the state of an aircraft is defined
as & = [z23yyy]’, the aircraft model for constant
velocity (CV) mode is

1 7T 00 00
0100 0 0
0000 0 0

S = 1900171 o|FD
0000 10
00000 0
/2 T 0 0 0 0]"
oo 00T2/2T0]w“’(k)

(16)
z(k) = C&(k) + veo(k) (17)

For the coordinated turn (CT) mode, the aircraft
model (Wiener-sequence acceleration model) is

1 T T%/2 0 0 0
0 1 T 0 0 0
0 0 1 0 0 0
0 0 0 0 1 T
0 0 0 0 0 1
/2 T 1 0 0 0]"
oo 0 0 2o 1| Wk
(18)
z(k) = C&k) + ve(k) (19)
10 0 0 0O
01000 0],
where C' = 0007100133 the output ma-
0000 1O

trix, T is the sampling interval, and w¢,, Wet, Vey, and
Vet are zero-mean, uncorrelated, white Gaussian pro-
cess noise and measurement noise for CV mode and
CT mode, respectively. The yaw rate estimate @ is
computed with a state estimate from (18) as follows:

(k)2 + §i(k)?
(k) + (k)

(20)
To get the smooth estimate of w, we design a first-
order, low-pass filter. Therefore, we use a two-mode
stochastic linear hybrid system model for aircraft
tracking.

(k) = sign(a(k)i(k) — &(k)g(k))

Example: Tracking a single aircraft

We show the performance of the proposed RMIMM
through an aircraft tracking example, using (16)-(17)
and (18)-(19) and assuming a 1 Hz ADS-B update.
The RMS error of position and velocity measurements
of the Global Positioning System (GPS) and Inertial
Navigation System (INS) combined are assumed to
be 50m and 3m/sec respectively.>?! The following
Markov discrete state (mode) transition matrix de-



fined in (2) was used
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Fig. 3 A simulation result using the IMM for the
aircraft tracking example.
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Fig. 4 A simulation result using the RMIMM for
the aircraft tracking example.

We design a test flight trajectory with constant air-
craft speed v = 480 knots (kn), composed of seven
segments: straight flight from 0 to 30 seconds, a coor-
dinated turn with w = 3°/sec from 31 to 50 seconds,
straight flight from 51 to 70 seconds, a coordinated
turn with w = 1.5°/sec from 71 to 90 seconds, straight
flight from 91 to 110 seconds, a coordinated turn with
w = —4.5°/sec from 111 to 130 seconds, and straight
flight from 131 to 150 seconds. 100-trial Monte Carlo
simulation results in Figure 2 show that the RMIMM
gives more distinct likelihoods of modes than those of
the standard IMM. In addition, a single simulation re-
sult in Figure 3 and Figure 4 shows how the RMIMM
reduces the number of false mode estimates. The RMS
estimation errors of position and velocity using the
RMIMM are 15m and 2.1m/sec. The RMS estima-
tion errors of position and velocity using the IMM are
18m and 2.3m/sec. The RMS estimation errors of the
RMIMM are slightly better than those of the IMM, yet
both algorithms give smaller RMS errors than those of

the raw measurements. Thus, the main advantage of
the RMIMM, that it gives better mode estimates than
the IMM, is demonstrated.

Conflict detection

In this section, we use the RMIMM to estimate cur-
rent states and flight mode with the aircraft models
derived in Section 3. Then, we predict conflicts within
a look-ahead time (T4 < 00) using these estimates. A
conflict is defined as an event in which the relative sep-
aration of two aircraft becomes less than a predefined
safety distance (R). We set R £ 5 nautical miles (nm)
in this paper. For conflict detection, we project each
aircraft’s current state into the future in two ways:
a nominal state projection which constructs a single
trajectory based on the current state vector without
prediction uncertainties, and a probabilistic state pro-
jection in which uncertainties in the model are used
to construct a set of possible future trajectories, each
weighted by its probability of occurring. In this pa-
per, the nominal state projection method is used for
comparison only.

Nominal conflict detection

We perform conflict detection by projecting the
aircraft’s current velocity estimate, obtained by the
RMIMM, into the future. We project along a single
trajectory which is a straight line if the current flight
mode estimate is CV mode or a circular arc if it is CT
mode. To validate the nominal conflict detection al-
gorithm, we use the prediction uncertainty model in.3
The trajectory prediction error is modelled as normally
distributed with a zero mean, and a covariance with
eigenvectors in the along-track and cross-track direc-
tions, as shown in Figure 5. The along-track error
is modelled as a 15kn standard deviation speed un-
certainty. The cross-track error grows from its initial
uncertainty of 15m at the aircraft’s current position
(which is the position estimation error bound of the
RMIMM) to a steady-state error with a standard devi-
ation of 1nm. The growth rate is gznm/min (where v
is the aircraft’s speed). This growth rate is equivalent
to a lateral deviation error with a standard deviation
of 1°.2 Thus, the prediction error covariance matrix in
the body-fixed frame aligned with the aircraft heading
is a diagonal matrix.

Probabilistic conflict detection

For probabilistic conflict detection, we should com-
pute the conflict probabilities of all possible conflicts.
In this paper, we use the conflict prediction model
in Paielli and Erzberger® to compute conflict proba-
bility. The trajectory prediction errors are modelled
as Gaussian random variables with zero means and
time-varying covariances. Through coordinate trans-
formation, an analytical solution for conflict probabil-
ity is derived based on the assumption that aircraft
fly straight with constant velocity.®> Since our con-



path-crossing Pa‘h crossing path-crossing
angle angle ) angle
velocity vector at
velocity vector at the time when a
the time when a conflict is detected
conflict is detected i
prediction
error ellipse
‘/—predlctlon o
error ellipse ‘/_pred'm.m
error ellipse
prediction GB along-track prediction ( a\ong-track prediction
time * cross-track time ¥ time
i y ¥ i ¢ Cross track

(a) (b)

(©)

Fig. 5 Trajectory prediction error ellipses. (a) Both aircraft are in the constant velocity mode. (b) An
aircraft is in constant velocity mode and the other is in the coordinated turn mode. (c) Both aircraft are

in the coordinated turn mode.

flict detection algorithm allows aircraft to be in CT
mode, we suggest a modified conflict probability com-
putation when aircraft are in CT mode. First, we
summarize the conflict detection algorithm in Paielli
and Erzberger® (in which the authors considered only
the case in which both aircraft are in CV mode).
The trajectory prediction error is modelled as a zero-
mean normal distribution, with diagonal covariance
matrix S in the body-fixed frame aligned with the air-
craft heading. If a rotation matrix R,,; transforms
the heading-aligned body-fixed frame to the reference
frame, the transformed covariance matrix is

Q = RyotSRL, (22)
Two error covariances for an aircraft pair can be com-
bined into a single equivalent covariance which is as-
signed to one of the aircraft called the “stochastic
aircraft”. The other aircraft called the “reference
aircraft” is assumed to have no position uncertainty.
Then, the combined prediction error covariance is

MéQs‘}’QT*er

where Qs and @, are the covariance of the stochastic
aircraft and the covariance of the reference aircraft,
respectively. @, is the cross-correlation between the
two aircraft.

(23)
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Fig. 6 Transformed conflict geometry.?

Through coordinate transformation, we make the
combined covariance ellipse centered on the stochastic
aircraft a unit circle and the relative velocity vector
aligned in the z-direction as shown in Figure 6. The

elliptical conflict zone is centered on the reference air-
craft. If the relative heading angle of two aircraft is
constant during the conflict, the total conflict proba-
bility is the volume of the probability density function
over the shaded area. Since the combined error co-
variance ellipse is a unit circle, the two dimensional
Gaussian probability density function decouples into
the product of two identical one-dimensional functions:
p(z,y) = p(x)p(y) where p(z) = exp(—22/2)/V/2n.
Thus, the conflict probability P, is®

Ay—Ay.
Pc = f—AAyy+AAyy f;: p(.’)37y)dl’dy
= f A;JJFAyyC y)dy f;o p(x)dx (24)
- y_ yc
= I Ayt+ay, P (y)dy

(24) is valid only in the case in which both aircraft are
in CV mode (Figure 5-(a)). Therefore, for the conflict
cases in Figure 5-(b) and Figure 5-(c), we change the
prediction model (i.e., prediction error covariance ).
If an aircraft is in CT mode, both the along-track error
and the cross-track error are modelled as a 15 kn stan-
dard deviation speed uncertainty because the aircraft’s
acceleration is composed of tangential (along-track)
acceleration and centripetal (cross-track) acceleration.
The relative heading is assumed to be constant during
the conflict. We use the relative heading angle at time
tmd, when the predicted minimum distance between
aircraft is achieved, as the pass-crossing angle. The
latter assumption is coarse, but since typical civilian
aircraft yaw rates are not large (=~ 3°/sec) and of short
duration, the computation error may be small. So, it
would be reasonable to use the analytical solution in
(24) instead of a numerical one which is computation-
ally intensive. However, to reduce the error in conflict
probability computation, we introduce a time inter-
val around the time ¢,,4 such as [t;ng — 0, timd, tmd + 9]
(6 > 0), compute the conflict probability within this
interval, and choose the maximum as the conflict prob-
ability.

Two main points about this algorithm warrant ad-
ditional conditions for conflict detection. First, the
conflict probability computation algorithm in Paielli
and Erzberger? is based on the conflict geometry, and



uses the extended conflict zone as shown in Figure 6
to compute the conflict probability. Thus, the conflict
probability when the relative velocity of the reference
aircraft is pointing towards the stochastic aircraft (case
1) is the same as that of the case in which the rela-
tive velocity of the reference aircraft is pointing away
from the stochastic aircraft (case 2). Second, the pro-
posed conflict resolution algorithms can be applied to
both on-board applications and ground control appli-
cations. If the conflict detection algorithms are applied
in ground control applications, they may handle large
numbers of aircraft at a time. Thus, to eliminate the
above error and to reduce the number of aircraft pairs
for conflict detection computation, we propose the fol-
lowing conditions:

(Conditions for Conflict Detection Computa-
tion)

1. (a) The conflict detection algorithm is executed
every 7 (0 < 7 < 00) seconds.

(b) If mode changes are observed within the time
interval 7, the conflict detection algorithm
is executed instantly for the corresponding
aircraft pairs.

(c) For the aircraft pairs with conflicts with
P, > P, the conflict detection is executed
every 7. (0 < 7. < 7) seconds (where P is a
threshold for conflict detection and a design

parameter).

2. (a) The conflict detection algorithm is executed
for aircraft pairs satisfying (Vi, 7)

i. CASE I: Two aircraft fly towards each
other.
(73 (k) - (k) = 0) A (755(k) - U5(k) <
0)] Afsign(Fss (k) x 7 (k)) # sign(7:(k) x
v (k)]

ii. CASE II: An aircraft follows the other

aircraft.
(7ij (k) - U;(k) >

]
A ](ﬁj(k) - Uj(k) <

where 7j; is a relative position vector
from aircraft i to aircraft j and o; is a
velocity vector of aircraft i.

(b) The conflict probability is computed only
when the above Condition 2-(a) is satisfied
and the predicted minimum distance within
the look-ahead time is less than the test

safety distance (R := aR, a > 1).

In this paper, we set 7 = 20sec and 7. = 5Hsec for
simulation. Condition 1-(b) comes from event-driven
simulation in which simulation (or computation) is
triggered not by a time instant but by an event (mode
change in this case).???® For safety, even though there

is no mode change, we perform conflict detection in
every T seconds because measurements contain noise.
Therefore, conflict detection may have prediction er-
rors. We also pay more attention to aircraft pairs
which have conflict probabilities over the threshold for
safety. Condition 2 tests whether an aircraft pair may
have a conflict based on the current aircraft’s state and
mode estimates. We can then filter out many aircraft
pairs before applying the conflict detection algorithms.
Since the predicted minimum distance is not exact due
to prediction uncertainties and current state estima-
tion errors, we compute conflict probability when it is
less than the “test safety distance” (R > R) so that
we do not miss possible conflicts. In this paper, we set
a = 1.5.

Numerical examples

We apply these conflict detection algorithms to the
scenarios of Figure 5, through many simulations. The
RMIMM is used to estimate the aircraft’s current state
and flight mode. We assume the aircraft speed is con-
stant at v = 480kn for all simulations unless otherwise
stated. The predefined safety distance is 5nm. For
prediction, the along-track and the cross-track RMS
errors grow linearly with the rate of 0.25nm/min and
g=nm/min from the initial uncertainty 15m. Yet, the
cross-track RMS error saturates when it reaches 1nm.?
The RMS errors of position and velocity measure-
ments are assumed to be 50m and 3m/sec respectively.
Wind-error cross-correlation between aircraft (Qs,) in
(23) is assumed to be zero. The first-order low-pass
filter G(s) = is used for smoothing the yaw
rate estimate.

1
11.9s5+1

In Figure 7, the deterministic conflict detection
probability refers to the probability of successful con-
flict detection. In Figure 7-(a), both aircraft are in
CV mode. The top graph shows the conflict geome-
try with the path-crossing angle at 90°. Middle and
bottom plots show the average conflict probability as
a function of the average time required to get to the
predicted minimum separation point, where the min-
imum separation is 0 (collision) and 3 nautical miles
respectively. The conflict probability of the probabilis-
tic prediction is close to that of Paielli and Erzberger’s
algorithm.® Thus, we conclude that the RMIMM used
in the proposed probabilistic conflict detection algo-
rithm produces good state estimates since the conflict
probability of Paielli and Erzberger’s algorithm as-
sumes that there is no uncertainty in the current state.

In Figure 7-(b), only one aircraft is in CV mode,
with a heading angle of 210°. The other aircraft be-
gins in CV mode for a little bit and then switches to
CT mode for most of its trajectory. The turn rate of
the aircraft in CT mode is 1.5°/sec. There is an ex-
act collision at the origin. The bottom plot shows the
computed conflict probability versus the average time
to minimum separation. The computation starts af-
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algorithms. (a) Both aircraft are in the constant velocity mode. (b) An aircraft is in constant velocity
mode and the other is in the coordinated turn mode. (c) Both aircraft are in the coordinated turn mode.

ter the second aircraft switches to CT mode so that
both aircraft predict that there is some conflict in
the future. At 6 regularly spaced points on the tra-
jectory, we project the current state estimate to find
a predicted minimum separation point and compute
the conflict probability using the deterministic and
probabilistic method. The dotted line represents the
conflict probability at the predicted minimum separa-
tion. The continuous line comes from the maximum
conflict probability in an interval with half width 5
seconds (i.e., d = 5) around the time of predicted min-
imum separation. The difference is small, but we can
reduce the conflict probability computation error due
to the assumption that the heading angle of aircraft
is constant during the conflict. In Figure 7-(c), both
aircraft are in C'T mode and the plots are analogous to
those in Figure 7-(b). Figure 7 shows the probabilistic
conflict detection is more accurate than the determin-
istic one, especially when the look-ahead time is long.

We can interpret the conflict scenarios in Figure 5-
(b) and in Figure 5-(c) as blunder detection because
two aircraft are close to each other and the conflict
time is very short compared to the look-ahead time. If
an aircraft can detect that another aircraft (blunderer)
starts a sudden maneuver that may cause a conflict
within a short time, the aircraft can take a safe resolu-
tion maneuver. Blunder detection could be useful for
conflict detection in congested airspace such as around
waypoints and airports, and for parallel landings.?*
This is one of the advantages of using flight mode in-
formation for conflict detection over existing conflict
detection methods. Figure 8 shows a blunder detec-
tion scenario for two aircraft. Initially two aircraft fly
in parallel. Then one aircraft (blunderer) changes its
heading. The trajectory interval in which the aircraft

An Exact Blunder Scenario
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Fig. 8 Blunder detection scenario for two aircraft.
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violate the bnm safety zone is shown by the thick black
lines. On the right figure, we plot the conflict prob-
ability as a function of the time of trajectory. The
circles here correspond to the same time instants as
the circles in the left figure. Thus, we can see how the
conflict probability changes at points along the trajec-
tory. This result was obtained with 200 simulations.
One of the problems we observed was that even though
the aircraft are no longer in conflict and heading away
from each other at the end of the trajectory, the con-
flict probability algorithm in Paielli and Erzberger?
still returns a conflict probability of one. Thus, we
use Condition 2-(b) to eliminate this phenomenon and
the continuous line in Figure 8 shows this correction.
Figure 9 shows multiple-aircraft conflict detection sce-
narios. We set the look-ahead time 20 minutes and the
conflict probability threshold (P) to 0.7. The condi-
tions for conflict detection computation are applied to
reduce the number of aircraft pairs for conflict detec-
tion. We perform conflict detection every 20 seconds



Probabilistic Conflict Detection
T T T T

a0t B : B 4

20 el i
o //e’ L
N — -
o

y (nautical miles)

I | | | I | | I I |
-60 -40 -20 0 20 40 60 80 100 120
X (nautical miles)

(a)

Probabilistic Conflict Detection
T T T

50

y (nautical miles)

100

0
x (nautical miles)

(b)

Fig. 9 Simulations for multiple-aircraft conflict detection. (a) Structured airspace scenario (four aircraft).

(b) Free Flight scenario (ten aircraft).

(T = 20sec) even if there is no flight mode change. For
the aircraft pairs where conflict probability is greater
than or equal to P = 0.7, conflict detection is per-
formed every 5 seconds (7. = 5sec).

There are 4 aircraft in the multiple-aircraft conflict
scenario for structured airspace in Figure 9-(a). The
circles correspond to positions that are 100 seconds
away from each other. All the aircraft fly at 8nm/min
and have turn rates of 1.5°/sec. The grey regions in-
dicate where the aircraft detect conflict. The black
regions are where the aircraft are actually in conflict.
The Free Flight scenario in Figure 9-(b) has the same
parameters except that there are ten aircraft. Proba-
bilistic methods are used for both scenarios. Here the
circles are spaced 200 seconds apart for clarity. We
also validate the probabilistic conflict detection algo-
rithm through simulations with real air traffic data,
called Enhanced Traffic Management System (ETMS)
data, for air traffic in several sectors of Oakland Cen-
ter airspace. In these simulations, the conflict de-
tection and resolution algorithm is implemented in
a centralized way that it performs aircraft tracking,
conflict detection, and conflict resolution for all the
aircraft. Since computational efficiency is important
for real-time air traffic control, we compute average
time required for state estimation and conflict prob-
ability computation. Average computation times for
two aircraft tracking using the IMM and the RMIMM
are 0.01 seconds and 0.013 seconds respectively. Aver-
age computation time for conflict probability for two
aircraft conflict is 0.0041 seconds. These values are
obtained using MATLAB on a 500 MHz Pentium IIT
PC.

Finally, we combine the probabilistic conflict detec-
tion algorithm with the protocol-based conflict reso-
lution algorithm.'”>'® For the protocol-based conflict
resolution algorithm for multiple aircraft, aircraft are
assumed to cruise at the same altitude with varying
velocities. Each aircraft’s position and velocity are as-
sumed to be available to all aircraft which are involved

in the conflict through an ADS-B data link. A conflict
resolution maneuver is composed of a heading change
with a possible velocity change, which are based on
a closed-form analytic solution. We then construct
a finite partition of the airspace around the conflict.
Using the analytic solution, we derive a protocol for
resolving the worst-case conflict within each partition.
Since the protocol is based on the closed-form analytic
solution, it can be implemented in airborne system for
real-time conflict resolution, as well as in ATC ground
systems, with guarantees of safety of the protocol (to
within the limits of the models used). We provide
guarantees of safety of the protocol. For details of the
algorithm, see.!”'® We perform simulations for the
symmetric and asymmetric conflict scenarios as shown
in Figure 10. Here, the look-ahead time is 20 minutes.
Figure 10 illustrates that the combined conflict detec-
tion and resolution algorithm successfully detects and
resolves the conflicts.

Conclusions

In this paper, we proposed conflict detection algo-
rithms which are based on both the aircraft continuous
state and flight mode estimates. These algorithms can
also be used for blunder detection in which an air-
craft (blunderer) makes a sudden maneuver which may
cause a conflict. To obtain both the current state and
flight mode estimates at the same time, we proposed
the Residual-Mean Interacting Multiple Model algo-
rithm (RMIMM), which uses the mean of the residual
produced by each Kalman filter to reduce the num-
ber of false mode estimates. We validated the conflict
detection algorithms through examples. Finally, we
combined the probabilistic conflict detection algorithm
with a protocol-based conflict resolution algorithm and
illustrate it through multiple-aircraft conflict exam-
ples. The proposed conflict detection algorithms can
be applied to other applications. For example, these
can be useful for conflict detection or blunder detection
for formation flying of the unmanned aerial vehicles
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Fig. 10 Simulation for multiple-aircraft conflict detection and resolution using the probabilistic conflict

detection and the protocol-based conflict resolution.
(right) Asymmetric conflict scenario (eight aircraft).

(UAVs). Since in the formation flying of the UAVs,
the distance between the UAVs could be small, it is
important to detect sudden maneuvers for safety.
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