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Abstract

Keyword spotting (KWS) is a critical component for enabling speech based user
interactions on smart devices. It requires real-time response and high accuracy for
good user experience. Recently, neural networks have become an attractive choice
for KWS architecture because of their superior accuracy compared to traditional
speech processing algorithms. Due to its always-on nature, KWS application has
highly constrained power budget and typically runs on tiny microcontrollers with
limited memory and compute capability. The design of neural network architecture
for KWS must consider these constraints. In this work, we perform neural network
architecture evaluation and exploration for running KWS on resource-constrained
microcontrollers. We train various neural network architectures for keyword
spotting published in literature to compare their accuracy and memory/compute
requirements. We show that it is possible to optimize these neural network architec-
tures to fit within the memory and compute constraints of microcontrollers without
sacrificing accuracy. We further explore the depthwise separable convolutional neu-
ral network (DS-CNN) and compare it against other neural network architectures.
DS-CNN achieves an accuracy of 95.4%, which is ~10% higher than the DNN
model with similar number of parameters.

1 Introduction

Deep learning algorithms have evolved to a stage where they have surpassed human accuracies in a
variety of cognitive tasks including image classification [1] and conversational speech recognition
[2]. Motivated by the recent breakthroughs in deep learning based speech recognition technologies,
speech is increasingly becoming a more natural way to interact with consumer electronic devices, for
example, Amazon Echo, Google Home and smart phones. However, always-on speech recognition
is not energy-efficient and may also cause network congestion to transmit continuous audio stream
from billions of these devices to the cloud. Furthermore, such a cloud based solution adds latency
to the application, which hurts user experience. There are also privacy concerns when audio is
continuously transmitted to the cloud. To mitigate these concerns, the devices first detect predefined
keyword(s) such as "Alexa", "Ok Google", "Hey Siri", etc., which is commonly known as keyword
spotting (KWS). Detection of keyword wakes up the device and then activates the full scale speech
recognition either on device [3] or in the cloud. In some applications, the sequence of keywords
can be used as voice commands to a smart device such as a voice-enabled light bulb. Since KWS
system is always-on, it should have very low power consumption to maximize battery life. On the
other hand, the KWS system should detect the keywords with high accuracy and low latency, for
best user experience. These conflicting system requirements make KWS an active area of research
ever since its inception over 50 years ago [4]. Recently, with the renaissance of artificial neural
networks in the form of deep learning algorithms, neural network (NN) based KWS has become very
popular [5, 6, 7, 8].

2Work was done while the author was an intern at Arm.

ar
X

iv
:1

71
1.

07
12

8v
3 

 [
cs

.S
D

] 
 1

4 
Fe

b 
20

18



Low power consumption requirement for keyword spotting systems make microcontrollers an obvious
choice for deploying KWS in an always-on system. Microcontrollers are low-cost energy-efficient
processors that are ubiquitous in our everyday life with their presence in a variety of devices ranging
from home appliances, automobiles and consumer electronics to wearables. However, deployment of
neural network based KWS on microcontrollers comes with following challenges:

Limited memory footprint: Typical microcontroller systems have only tens to few hundred KB of
memory available. The entire neural network model, including input/output, weights and activations,
has to fit within this small memory budget.

Limited compute resources: Since KWS is always-on, the real-time requirement limits the total
number of operations per neural network inference.

These microcontroller resource constraints in conjunction with the high accuracy and low latency
requirements of KWS call for a resource-constrained neural network architecture exploration to find
lean neural network structures suitable for KWS, which is the primary focus of our work. The main
contributions of this work are as follows:

• We first train the popular KWS neural net models from the literature [5, 6, 7, 8] on Google
speech commands dataset [9] and compare them in terms of accuracy, memory footprint
and number of operations per inference.

• In addition, we implement a new KWS model using depth-wise separable convolutions and
point-wise convolutions, inspired by the success of resource-efficient MobileNet [10] in
computer vision. This model outperforms the other prior models in all aspects of accuracy,
model size and number of operations.

• Finally, we perform resource-constrained neural network architecture exploration and present
comprehensive comparison of different network architectures within a set of compute and
memory constraints of typical microcontrollers. The code, model definitions and pretrained
models are available at https://github.com/ARM-software/ML-KWS-for-MCU.

2 Background

2.1 Keyword Spotting (KWS) System

A typical KWS system consists of a feature extractor and a neural network based classifier as shown
in Fig. 1. First, the input speech signal of length L is framed into overlapping frames of length l
with a stride s, giving a total of T = L−l

s + 1 frames. From each frame, F speech features are
extracted, generating a total of T ×F features for the entire input speech signal of length L. Log-mel
filter bank energies (LFBE) and Mel-frequency cepstral coefficients (MFCC) are the commonly
used human-engineered speech features in deep learning based speech-recognition, that are adapted
from traditional speech processing techniques. Feature extraction using LFBE or MFCC involves
translating the time-domain speech signal into a set of frequency-domain spectral coefficients, which
enables dimensionality compression of the input signal. The extracted speech feature matrix is fed
into a classifier module, which generates the probabilities for the output classes. In a real-world
scenario where keywords need to be identified from a continuous audio stream, a posterior handling
module averages the output probabilities of each output class over a period of time, improving the
overall confidence of the prediction.

Figure 1: Keyword spotting pipeline.
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Traditional speech recognition technologies for KWS use Hidden Markov Models (HMMs) and
Viterbi decoding [11, 12]. While these approaches achieve reasonable accuracies, they are hard
to train and are computationally expensive during inference. Other techniques explored for KWS
include discriminative models adopting a large-margin problem formulation [13] or recurrent neural
networks (RNN) [14]. Although these methods significantly outperform HMM based KWS in terms
of accuracy, they suffer from large detection latency. KWS models using deep neural networks (DNN)
based on fully-connected layers with rectified linear unit (ReLU) activation functions are introduced
in [5], which outperforms the HMM models with a very small detection latency. Furthermore,
low-rank approximation techniques are used to compress the DNN model weights achieving similar
accuracy with less hardware resources [15, 16]. The main drawback of DNNs is that they ignore
the local temporal and spectral correlation in the input speech features. In order to exploit these
correlations, different variants of convolutional neural network (CNN) based KWS are explored
in [6], which demonstrate higher accuracy than DNNs. The drawback of CNNs in modeling time
varying signals (e.g. speech) is that they ignore long term temporal dependencies. Combining the
strengths of CNNs and RNNs, convolutional recurrent neural network based KWS is investigated
in [7] and demonstrate the robustness of the model to noise. While all the prior KWS neural networks
are trained with cross entropy loss function, a max-pooling based loss function for training KWS
model with long short-term memory (LSTM) is proposed in [8], which achieves better accuracy than
the DNNs and LSTMs trained with cross entropy loss.

Although many neural network models for KWS are presented in literature, it is difficult to make a
fair comparison between them as they are all trained and evaluated on different proprietary datasets
(e.g. "TalkType" dataset in [7], "Alexa" dataset in [8], etc.) with different input speech features
and audio duration. Also, the primary focus of prior research has been to maximize the accuracy
with a small memory footprint model, without explicit constraints of underlying hardware, such as
limits on number of operations per inference. In contrast, this work is more hardware-centric and
targeted towards neural network architectures that maximize accuracy on microcontroller devices.
The constraints on memory and compute significantly limit the neural network parameters and the
number of operations.

2.2 Microcontroller Systems

A typical microcontroller system consists of a processor core, an on-chip SRAM block and an
on-chip embedded flash. Table 1 shows some commercially available microcontroller development
boards with Arm Cortex-M processor cores with different compute capabilities running at different
frequencies (16 MHz to 216 MHz), consisting of a wide range of on-chip memory (SRAM: 8 KB to
320 KB; Flash: 128 KB to 1 MB). The program binary, usually preloaded into the non-volatile flash,
is loaded into the SRAM at startup and the processor runs the program with the SRAM as the main
data memory. Therefore, the size of the SRAM limits the size of memory that the software can use.

Other than the memory footprint, performance (i.e., operations per second) is also a constraining factor
for running neural networks on microcontrollers. Most microcontrollers are designed for embedded
applications with low cost and high energy-efficiency as the primary targets, and do not have high
throughput for compute-intensive workloads such as neural networks. Some microcontrollers have
integrated DSP instructions that can be useful for running neural network workloads. For example,
Cortex-M4 and Cortex-M7 have integrated SIMD and MAC instructions that can be used to accelerate
low-precision computation in neural networks.

Arm MbedTM platform Processor Frequency SRAM Flash
Mbed LPC11U24 Cortex-M0 48 MHz 8 KB 32 KB
Nordic nRF51-DK Cortex-M0 16 MHz 32 KB 256 KB

Mbed LPC1768 Cortex-M3 96 MHz 32 KB 512 KB
Nucleo F103RB Cortex-M3 72 MHz 20 KB 128 KB
Nucleo L476RG Cortex-M4 80 MHz 128 KB 1 MB
Nucleo F411RE Cortex-M4 100 MHz 128 KB 512 KB

FRDM-K64F Cortex-M4 120 MHz 256 KB 1 MB
Nucleo F746ZG Cortex M7 216 MHz 320 KB 1 MB

Table 1: Typical off the shelf Arm Cortex-M based microcontroller development platforms.
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3 Neural Network Architectures for KWS

This section gives an overview of all the different neural network architectures explored in this
work including the deep neural network (DNN), convolutional neural network (CNN), recurrent
neural network (RNN), convolutional recurrent neural network (CRNN) and depthwise separable
convolutional neural network (DS-CNN).

3.1 Deep Neural Network (DNN)

The DNN is a standard feed-forward neural network made of a stack of fully-connected layers and
non-linear activation layers. The input to the DNN is the flattened feature matrix, which feeds into a
stack of d hidden fully-connected layers each with n neurons. Typically, each fully-connected layer
is followed by a rectified linear unit (ReLU) based activation function. At the output is a linear layer
followed by a softmax layer generating the output probabilities of the k keywords, which are used for
further posterior handling.

3.2 Convolutional Neural Network (CNN)

One main drawback of DNN based KWS is that they fail to efficiently model the local temporal
and spectral correlation in the speech features. CNNs exploit this correlation by treating the input
time-domain and spectral-domain features as an image and performing 2-D convolution operations
over it. The convolution layers are typically followed by batch normalization [17], ReLU based
activation functions and optional max/average pooling layers, which reduce the dimensionality of
the features. During inference, the parameters of batch normalization can be folded into the weights
of the convolution layers. In some cases, a linear low-rank layer, which is simply a fully-connected
layer without non-linear activation, is added in between the convolution layers and dense layers for
the purpose of reducing parameters and accelerating training [18, 19].

3.3 Recurrent Neural Network (RNN)

RNNs have shown superior performance in many sequence modeling tasks, especially speech recogni-
tion [20], language modeling [21], translation [22], etc. RNNs not only exploit the temporal relation
between the input signal, but also capture the long-term dependencies using "gating" mechanism.
Unlike CNNs where input features are treated as 2-D image, RNNs operate for T time steps, where
at each time step t the corresponding spectral feature vector ft ∈ RF concatenated with the previous
time step output ht−1 is used as input to the RNN. Figure 2 shows the model architecture of a typical
RNN model, where the RNN cell could be an LSTM cell [23, 24] or a gated recurrent unit (GRU)
cell [25, 26]. Since the weights are reused across all the T time steps, the RNN models tend to have
less number of parameters compared to the CNNs. Similar to batch normalization in CNNs, research
show that applying layer normalization can be beneficial for training RNNs [27], in which the hidden
states are normalized during each time step.

3.4 Convolutional Recurrent Neural Network (CRNN)

Convolution recurrent neural network [7] is a hybrid of CNN and RNN, which takes advantages of
both. It exploits the local temporal/spatial correlation using convolution layers and global temporal
dependencies in the speech features using recurrent layers. As shown in Fig. 3, a CRNN model

Figure 2: Model architecture of RNN.
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Figure 3: Model Architecture of CRNN.

starts with a convolution layer, followed by an RNN to encode the signal and a dense fully-connected
layer to map the information. Here, the recurrent layer is bi-directional [28] and has multiple stages,
increasing the network learning capability. Gated recurrent units (GRU) [25] is used as the base
cell for recurrent layers, as it uses fewer parameters than LSTMs and gave better convergence in our
experiments.

3.5 Depthwise Separable Convolutional Neural Network (DS-CNN)

Recently, depthwise separable convolution has been proposed as an efficient alternative to the standard
3-D convolution operation [29] and has been used to achieve compact network architectures in the
area of computer vision [10, 30]. DS-CNN first convolves each channel in the input feature map
with a separate 2-D filter and then uses pointwise convolutions (i.e. 1x1) to combine the outputs
in the depth dimension. By decomposing the standard 3-D convolutions into 2-D convolutions
followed by 1-D convolutions, depthwise separable convolutions are more efficient both in number
of parameters and operations, which makes deeper and wider architecture possible even in the
resource-constrained microcontroller devices. In this work, we adopt a depthwise separable CNN
based on the implementation of MobileNet [10] as shown in Fig. 4. An average pooling followed by
a fully-connected layer is used at the end to provide global interaction and reduce the total number of
parameters in the final layer.

4 Experiments and Results

We use the Google speech commands dataset [9] for the neural network architecture exploration
experiments. The dataset consists of 65K 1-second long audio clips of 30 keywords, by thousands
of different people, with each clip consisting of only one keyword. The neural network models are
trained to classify the incoming audio into one of the 10 keywords - "Yes", "No", "Up", "Down",
"Left", "Right", "On", "Off", "Stop", "Go", along with "silence" (i.e. no word spoken) and "unknown"
word, which is the remaining 20 keywords from the dataset. The dataset is split into training,
validation and test set in the ratio of 80:10:10 while making sure that the audio clips from the same
person stays in the same set. All models are trained in Google Tensorflow framework [31] using
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Figure 4: Depthwise separable CNN architecture.

the standard cross-entropy loss and Adam optimizer [32]. With a batch size of 100, the models are
trained for 20K iterations with initial learning rate of 5× 10−4, and reduced to 10−4 after first 10K
iterations. The training data is augmented with background noise and random time shift of up to
100ms. The trained models are evaluated based on the classification accuracy on the test set.

4.1 Training Results

Table 2 summarizes the accuracy, memory requirement and operations per inference for the network
architectures for KWS from literature [5, 6, 7, 8] trained on Google speech commands dataset [9].
For all the models, we use 40 MFCC features extracted from a speech frame of length 40ms with
a stride of 20ms, which gives 1960 (49×40) features for 1 second of audio. The accuracy shown
in the table is the accuracy on test set. The memory shown in the table assumes 8-bit weights and
activations, which is sufficient to achieve same accuracy as that from a full-precision network.

NN Architecture Accuracy Memory Operations
DNN [5] 84.3% 288 KB 0.57 MOps

CNN-1 [6] 90.7% 556 KB 76.02 MOps
CNN-2 [6] 84.6% 149 KB 1.46 MOps
LSTM [8] 88.8% 26 KB 2.06 MOps
CRNN [7] 87.8% 298 KB 5.85 MOps

Table 2: Neural network model accuracy. CNN-1, CNN-2 are (cnn-trad-fpool3, cnn-one-fstride4)
architectures from [6].

Also, we assume that the memory for activations is reused across different layers and hence memory
requirement for the activations uses the maximum of two consecutive layers. The operations in
the table counts the total number of multiplications and additions in the matrix-multiplication
operations in each layer in the network, which is representative of the execution time of the entire
network. The models from the existing literature are optimized for different datasets and use different
memory/compute resources, hence a direct comparison of accuracy is unfair. That said, these results
still provide useful insights on the different neural network architectures for KWS:

• Although DNNs do not achieve the best accuracy and tend to be memory intensive, they have
less number of operations/inference and hence suit well to systems that have limited compute
capability (e.g. systems running at low operating frequencies for energy-efficiency).

• CNNs, on the other hand, achieve higher accuracy than DNNs but at the cost of large number
of operations and/or memory requirement.
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• LSTMs and CRNNs achieve a balance between memory and operations while still achieving
good accuracy.

4.2 Classifying Neural Networks for KWS based on Resource Requirements

As discussed in section 2.2, memory footprint and execution time are the two important considerations
in being able to run keyword spotting on microcontrollers. These should be considered when designing
and optimizing neural networks for running keyword spotting. Based on typical microcontroller
system configurations (as described in Table 1), we derive three sets of constraints for the neural
networks in Table 3, targeting small, medium and large microcontroller systems. Both memory and
compute limit are derived with assumptions that some amount of resources will be allocated for
running other tasks such as OS, I/O, network communication, etc. The operations per inference limit
assumes that the system is running 10 inferences per second.

NN size NN memory limit Ops/inference limit
Small (S) 80 KB 6 MOps

Medium (M) 200 KB 20 MOps
Large (L) 500 KB 80 MOps

Table 3: Neural network (NN) classes for KWS models considered in this work, assuming 10
inferences per second and 8-bit weights/activations.

4.3 Resource Constrained Neural Network Architecture Exploration

Figure 5 shows the number of operations per inference, memory requirement and test accuracy of
neural network models from prior work [5, 6, 7, 8] trained on Google speech commands dataset
overlayed with the memory and compute bounding boxes for the neural network classes from
section 4.2. An ideal model would have high accuracy, small memory footprint and lower number
of computations, i.e., close to the origin in Fig. 5. Apart from the LSTM model, the other models
are too memory/compute resource heavy and do not fit into the bounding box S with 80KB/6MOps
memory/compute limits. CNN-2, CRNN and DNN models fit in the M and L bounding boxes, but
have lower accuracies as compared to the CNN-1 model, which does not fit in any of the boxes at
all. The rest of this section discusses different hyperparameters of the feature extraction and neural
network architectures that can be tuned in order to bring the models close to the origin and still
achieve high accuracy.

DNN:84.3%

CNN-1:90.7%

CNN-2:84.6%LSTM:88.8%

CRNN:87.8%
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Figure 5: Number of operations vs. memory vs. test accuracy of NN models from prior work [5, 6, 7,
8] trained on the speech commands dataset [9].

As shown in Fig. 1, from each input speech signal, T × F features are extracted and the number
of these features impact the model size, number of operations and accuracy. The key parameters
in the feature extraction step that impact the model size, number of operations and accuracy are
(1) number of MFCC features per frame (F) and (2) the frame stride (S). The number of MFCC
features per audio frame (F) impacts the number of weights in fully-connected and recurrent layers,
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but not in convolution layers as weights are reused in convolution layers. The frame stride (S), which
determines the number of frames to be processed per inference (i.e. T), impacts the number of
weights in fully-connected layers but not in recurrent and convolution layers because of the weight
reuse. Both F and S impact the number of operations per inference. An efficient model would
maximize accuracy using small T × F , i.e., small F and/or large S.

The neural network architectures and the corresponding hyperparameters explored in this work are
summarized in Table 4. The LSTM model mentioned in the table includes peephole connections
and output projection layer similar to that in [8], whereas basic LSTM model does not include those.
CRNN uses one convolution layer followed by multi-layer GRU for the recurrent layers. We also use
batch normalization for convolutional/fully-connected layers and layer normalization for recurrent
layers. During inference, the parameters of batch normalization and layer normalization can be
folded into the weights of the convolution or recurrent layers and hence these layers are ignored in
memory/Ops computation.

NN model Model hyperparameters
DNN Number of fully-connected (FC) layers and size of each FC layer
CNN Number of Conv layers: features/kernel size/stride, linear layer dim., FC layer size
Basic LSTM Number of memory cells
LSTM Number of memory cells, projection layer size
GRU Number of memory cells
CRNN Conv features/kernel size/stride, Number of GRU and memory cells, FC layer size
DS-CNN Number of DS-Conv layers, DS-Conv features/kernel size/stride

Table 4: Neural network hyperparameters used in this study.

We iteratively perform exhaustive search of feature extraction hyperparameters and NN model
hyperparameters followed by manual selection to narrow down the search space. The final best
performing models for each neural network architecture along with their memory requirements
and operations are summarized in Table 5 and Fig. 6. The hyperparameters of these networks
are summarized in Appendix A. From the results we can see that DNNs are memory-bound and
achieve less accuracies and saturate at ~87% even when the model is scaled up. CNNs achieve better
accuracies than DNN, but are limited by the weights in the final fully-connected layers. RNN models
(i.e. Basic LSTM, LSTM and GRU) achieve better accuracies than CNNs and yield even smaller
models with less Ops in some cases, demonstrating that exploiting temporal dependencies maximizes
accuracy within the same resource budget. CRNN models, which combine the best properties of
CNNs and RNNs, achieve better accuracies than both CNNs and RNNs, even with less Ops. CRNN
architecture also scales up well when more memory/compute resources are available. DS-CNN
achieves the best accuracies and demonstrate good scalability owing to their deeper architecture
enabled by depthwise separable convolution layers, which are less compute/memory intensive.

NN model S(80KB, 6MOps) M(200KB, 20MOps) L(500KB, 80MOps)
Acc. Mem. Ops Acc. Mem. Ops Acc. Mem. Ops

DNN 84.6% 80.0KB 158.8K 86.4% 199.4KB 397.0K 86.7% 496.6KB 990.2K
CNN 91.6% 79.0KB 5.0M 92.2% 199.4KB 17.3M 92.7% 497.8KB 25.3M
Basic LSTM 92.0% 63.3KB 5.9M 93.0% 196.5KB 18.9M 93.4% 494.5KB 47.9M
LSTM 92.9% 79.5KB 3.9M 93.9% 198.6KB 19.2M 94.8% 498.8KB 48.4M
GRU 93.5% 78.8KB 3.8M 94.2% 200.0KB 19.2M 94.7% 499.7KB 48.4M
CRNN 94.0% 79.7KB 3.0M 94.4% 199.8KB 7.6M 95.0% 499.5KB 19.3M
DS-CNN 94.4% 38.6KB 5.4M 94.9% 189.2KB 19.8M 95.4% 497.6KB 56.9M

Table 5: Summary of best neural networks from the hyperparameter search. The memory required
for storing the 8-bit weights and activations is shown in the table.

To study the scalability of the models for smaller microcontroller systems with memory as low as
8KB, we expand the search space for DS-CNN models. Figure 7 shows the accuracy, memory/Ops
requirements of the DS-CNN models targeted for such constrained devices. It shows that scaled-down
DS-CNN models achieve better accuracies than DNN models with similar number of Ops, but with
>10x reduction in memory requirement.
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Figure 6: Memory vs. Ops/inference of the best models described in Table 5.
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Figure 7: Accuracy vs. memory and Ops of different DS-CNN models demonstrating the scalability
of DS-CNN models down to <8KB memory footprint and <500K operations.

4.4 Neural Network Quantization

Neural networks are typically trained with floating point weights and activations. Previous re-
search [33, 34, 35] have shown that fixed-point weights is sufficient to run neural networks with
minimal loss in accuracy. Microcontroller systems have limited memory, which motivates the quan-
tization of 32-bit floating point weights to 8-bit fixed point weights for deployment, thus reducing
the model size by 4×. Moreover, fixed-point integer operations run much faster than floating point
operations in typical microcontrollers, which is another reason for executing quantized model during
deployment.

In this work, we use the quantization flow described in [34] using 8-bits to represent all the weights
and activations. For a given signed 2’s complement 8-bit fixed-point number, its value (v) can be
expressed as v = −B7.2

7−N +
∑6

i=0 Bi.2
i−N , where N is the fractional length, which can also be

negative. N is fixed for a given layer, but can be different in other layers. For example, N = 0 can
represent the range [−128, 127] with a step of 1, N = 7 can represent the range [−1, 1 − (1/27)]
with a step of 1/27 and N = −2 can represent the range [−512, 508] with a step of 22.

The weights are quantized to 8-bits progressively one layer at a time by finding the optimal N for
each layer that minimizes the loss in accuracy because of quantization. After all the weights are
quantized, the activations are also quantized in a similar way to find the appropriate fractional length
N for each layer. Table 6 shows the accuracies of representative 8-bit networks quantized using this
method and compared with those of the original full-precision networks. The table shows that the
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accuracy of the quantized network is either same or marginally better than the full-precision network,
possibly due to better regularization because of quantization. We believe that the same conclusion
will hold for the other neural network models explored in this work.

NN model 32-bit floating point model accuracy 8-bit quantized model accuracy
Train Val. Test Train Val. Test

DNN 97.77% 88.04% 86.66% 97.99% 88.91% 87.60%
Basic LSTM 98.38% 92.69% 93.41% 98.21% 92.53% 93.51%
GRU 99.23% 93.92% 94.68% 99.21% 93.66% 94.68%
CRNN 98.34% 93.99% 95.00% 98.43% 94.08% 95.03%

Table 6: Accuracy comparison of representative 8-bit quantized networks with full-precision networks.

4.5 KWS Deployment on Microcontroller

We deployed the KWS application on Cortex-M7 based STM32F746G-DISCO development board
using CMSIS-NN kernels [36]. A picture of the board performing KWS is shown in Fig. 8. The
deployed model is a DNN model with 8-bit weights and 8-bit activations and KWS is running at
10 inferences per second. Each inference, including memory copying, MFCC feature extraction
and DNN execution, takes about 12 ms. The microcontroller can be put into Wait-for-Interrupt
(WFI) mode for the remaining time for power saving. The entire KWS application occupies ~70 KB
memory, including ~66 KB for weights, ~1 KB for activations and ~ 2 KB for audio I/O and MFCC
features.

Figure 8: Deployment of KWS on Cortex-M7 development board.

5 Conclusions

Hardware optimized neural network architecture is key to get efficient results on memory and compute
constrained microcontrollers. We trained various neural network architectures for keyword spotting
published in literature on Google speech commands dataset to compare their accuracy and memory
requirements vs. operations per inference, from the perspective of deployment on microcontroller
systems. We quantized representative trained 32-bit floating-point KWS models into 8-bit fixed-point
versions demonstrating that these models can easily be quantized for deployment without any loss
in accuracy, even without retraining. Furthermore, we trained a new KWS model using depthwise
separable convolution layers, inspired from MobileNet. Based on typical microcontroller systems,
we derived three sets of memory/compute constraints for the neural networks and performed resource
constrained neural network architecture exploration to find the best networks achieving maximum
accuracy within these constraints. In all three sets of memory/compute constraints, depthwise
separable CNN model (DS-CNN) achieves the best accuracies of 94.4%, 94.9% and 95.4% compared
to the other model architectures within those constraints, which shows good scalability of the DS-CNN
model. The code, model definitions and pretrained models are available at https://github.com/ARM-
software/ML-KWS-for-MCU.

10

https://github.com/ARM-software/ML-KWS-for-MCU
https://github.com/ARM-software/ML-KWS-for-MCU


Acknowledgements

We would like to thank Matt Mattina from Arm Research and Ian Bratt from Arm ML technology
group for their help and support. We would also like to thank Pete Warden from Google’s TensorFlow
team for his valuable inputs and feedback on this project.

References

[1] Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan, and Jiashi Feng. Dual path
networks. arXiv preprint arXiv:1707.01629, 2017.

[2] W. Xiong, L. Wu, F. Alleva, Jasha Droppo, X. Huang, and Andreas Stolcke. The microsoft
2017 conversational speech recognition system. CoRR, abs/1708.06073, 2017.

[3] Ian McGraw, Rohit Prabhavalkar, Raziel Alvarez, Montse Gonzalez Arenas, Kanishka Rao,
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A Appendix: Neural Network Hyperparameters

Table 7 shows the summary of the hyperparameters of the best neural networks described in Table 5,
along with their memory, number of operations and accuracy on training, validation and test sets.
All the models use 10 MFCC features, with a frame length (L) of 40ms, where as the frame stride
(S) is shown in the table. FC stands for fully-connected layer and the number in the parentheses
shows the number of neurons in the fully-connected layer. C stands for convolution layer and the
numbers in parentheses correspond to the number of convolution features, kernel sizes in time and
frequency axes, strides in time and frequency axes. Although not shown, all the convolution and
fully connected layers have a ReLU as activation function. L stands for low-rank linear layer with
the number of elements shown in parentheses. The number in the parentheses for LSTM and GRU
models correspond to the number of memory elements in those models. DSC is depthwise separable
convolution layer (DSConv in Fig. 4) and the number in the parentheses correspond to the number of
features, kernel size and stride in both time and frequency axes.

Model S NN model hyperparameters Memory Ops Train Val. Test
DNN 40 FC(144)-FC(144)-FC(144) 80.0KB 158.8K 91.5% 85.6% 84.6%
DNN 40 FC(256)-FC(256)-FC(256) 199.4KB 397.1K 95.4% 86.7% 86.4%
DNN 40 FC(436)-FC(436)-FC(436) 496.6KB 990.2K 97.8% 88.0% 86.7%

CNN 20 C(28,10,4,1,1)-C(30,10,4,2,1)-
L(16)-FC(128) 79.0KB 5.0M 96.9% 91.1% 91.6%

CNN 20 C(64,10,4,1,1)-C(48,10,4,2,1)-
L(16)-FC(128) 199.4KB 17.3M 98.6% 92.2% 92.2%

CNN 20 C(60,10,4,1,1)-C(76,10,4,2,1)-
L(58)-FC(128) 497.8KB 25.3M 99.0% 92.4% 92.7%

Basic LSTM 20 LSTM(118) 63.3KB 5.9M 98.2% 91.5% 92.0%
Basic LSTM 20 LSTM(214) 196.5KB 18.9M 98.9% 92.0% 93.0%
Basic LSTM 20 LSTM(344) 494.5KB 47.9M 99.1% 93.0% 93.4%

LSTM 40 LSTM(144), Projection(98) 79.5KB 3.9M 98.5% 92.3% 92.9%
LSTM 20 LSTM(280), Projection(130) 198.6KB 19.2M 98.8% 92.9% 93.9%
LSTM 20 LSTM(500), Projection(188) 498.8KB 4.8M 98.9% 93.5% 94.8%
GRU 40 GRU(154) 78.8KB 3.8M 98.4% 92.7% 93.5%
GRU 20 GRU(250) 200.0KB 19.2M 98.9% 93.6% 94.2%
GRU 20 GRU(400) 499.7KB 48.4M 99.2% 93.9% 93.7%

CRNN 20 C(48,10,4,2,2)-GRU(60)-
GRU(60)-FC(84) 79.8KB 3.0M 98.4% 93.6% 94.1%

CRNN 20 C(128,10,4,2,2)-GRU(76)-
GRU(76)-FC(164) 199.8KB 7.6M 98.7% 93.2% 94.4%

CRNN 20 C(100,10,4,2,1)-GRU(136)-
GRU(136)-FC(188) 499.5KB 19.3M 99.1% 94.4% 95.0%

DS-CNN 20
C(64,10,4,2,2)-DSC(64,3,1)-
DSC(64,3,1)-DSC(64,3,1)-

DSC(64,3,1)-AvgPool
38.6KB 5.4M 98.2% 93.6% 94.4%

DS-CNN 20
C(172,10,4,2,1)-DSC(172,3,2)-
DSC(172,3,1)-DSC(172,3,1)-

DSC(172,3,1)-AvgPool
189.2KB 19.8M 99.3% 94.2% 94.9%

DS-CNN 20

C(276,10,4,2,1)-DSC(276,3,2)-
DSC(276,3,1)-DSC(276,3,1)-
DSC(276,3,1)-DSC(276,3,1)-

AvgPool

497.6KB 56.9M 99.3% 94.3% 95.4%

Table 7: Summary of hyperparameters of the best models described in Table 5.

Figures 9(a), 9(b), 9(c), 9(d) show the hyperparameter search of DNN, basic LSTM, LSTM and
CRNN architectures depicting the model accuracy vs. number of operations. The model size is
depicted by the size of the circle.
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Figure 9: Hyperparameter search for (a) DNN, (b) basic LSTM, (c) LSTM and (d) CRNN showing
the model accuracy vs. operations, with the number of parameters depicted by the size of the circle.
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