Geoff Gerffh
Vyas Venkataraman

CUDA Debugging Solutions

CuDA-GDB
(Linux & Mac) N
DDT
CUDA-MEMCHECK
(Linux, Mac, & Windows)
Rogue Wave
TotalView

NVIDIA® Parallel Nsight™
Eclipse Edition (NEW!)
Visual Studio Edition

CUDA-GDB Overview

= What is it? What does it let you do?

— Source and Assembly (SASS) Level Debugger
— Simultaneous CPU and GPU debugging

= Set Breakpoints and Conditional Breakpoints
= Dump stack frames for thousands of CUDA threads
= |[nspect memory, registers, local/shared/global variables
— Runtime Error Detection (stack overflow,...)
= Can’t figure out why your kernel launch is failing? Run cuda-gdb!

= Integrated cuda-memcheck support for increased precision

— Supports multiple GPUs, multiple contexts, multiple kernels

CUDA-GDB Overview

= Which hardware does it support?
- All CUDA-capable GPUs SM1.1 and beyond
- Compatible with NVIDIA Optimus laptops

- Which platforms does it support?
- All CUDA-supported Linux distributions
- Mac OS X
- 32-bit and 64-bit platforms

NVIDIA® NSIGHT™ ECLIPSE EDITION

® ™ Debug - Findmax/src/findmax.cu - Nsight

File Edit Source Refactor Navigate Search Project Run Window Help

L

running

Nsight Eclipse Edition oA Thrend 000 sock 0y ¥ 2 e
Debug View is powered by [t (o200 oo cu59
cuda-gdb lock (0,0,0) [sm: 0] (256 Activ | e SLanes | ondm

extElement;
i = firstElementIndex + threadsCount;

< ARRAY SIZE; i += threadsCount) {
Element = array[i];
if (nextElement > max) {
ment;

- Supported on Linux/Mac

Live demo Wed. @ 9am!
S0420 - Room A5

CUDA 101: Threads, Blocks, Grids

7

\.

= Threads are grouped into blocks
= Blocks are grouped into a grid

= A kernel is executed as a grid of blocks of threads

CUDA 101: Synchronization

7

1. First set of threads arrive

2. Second set of threads arrive

3. All threads resume (((
_

= syncthreads() enforces synchronization within a block
— Threads wait until all other threads in the same block have arrived

Execution Control

= Execution Control is identical to host debugging:

» launch the application
run

» resume the application (all host threads and device threads)
continue

= Kill the application
kill

= interrupt the application: CTRL-C

Execution Control
» Single-Stepping

Over function calls

Into function calls

= Behavior varies when stepping __syncthreads()

All threads in the current block. Required to step
over the barrier.

Active threads in the current warp.

Breakpoints

* By hame
break my_kernel
break _Z6kernelIfiEvPT PTO

» By file name and line number

break acos.cu:380

» By address

break *0x3e840a8
break *$pc

= At every kernel launch

set cuda break on_launch application

10

Conditional Breakpoints

= Only reports hit breakpoint if condition is met
— All breakpoints are still hit
— Condition is evaluated every time for all the threads

= Condition

— C/C++ syntax
— supports built-in variables (blockldx, threadldx, ...)

11

Thread Focus

= Some commands apply only to the thread in focus
— Print local or shared variables
— Print registers
— Print stack contents

= Components
— Kernel : unique, assigned at kernel launch time
— Block : the application blockIdx
— Thread : the application threadIdx

12

Thread Focus

» To switch focus to any currently running thread

cuda kernel 2 block 1,0,0 thread 3,0,0
[Switching focus to CUDA kernel 2 block (1,0,0), thread (3,0,0)

cuda kernel 2 block 2 thread 4
[Switching focus to CUDA kernel 2 block (2,0,0), thread (4,0,0)

cuda thread 5
[Switching focus to CUDA kernel 2 block (2,0,0), thread (5,0,0)

13

Thread Focus

= To obtain the current focus:

cuda kernel block thread
kernel 2 block (2,0,0), thread (5,0,0)

cuda thread
thread (5,0,0)

14

Devices

» To obtain the list of devices in the system:

info cuda devices

Dev Desc Type SMs Wps/SM Lns/Wp Regs/Ln Active SMs Mask
* @ gflee sm 20 14 48 32 64 Oxfff
1 gt200 sm_13 30 32 32 128 Ox0

» The * indicates the device of the kernel currently in focus

15

Kernels

* To obtain the list of running kernels:

info cuda kernels

Kernel Dev Grid SMs Mask GridDim BlockDim Name Args
* 1 © p ox3fff (240,1,1) (128,1,1) acos parms=...
2 0 3 0x4000 (240,1,1) (128,1,1) asin parms=...

» The * indicates the kernel currently in focus

16

Threads

= To obtain the list of running threads for kernel 2:

info cuda threads kernel 2

Block Thread To Block Thread Cnt PC Filename Line
* (0,0,0) (0,0,0) (3,0,0) (7,0,0) 32 Ox7fae70 acos.cu 380
(4,0,0) (0,0,0) (7,0,0) (7,0,0) 32 Ox7fae60 acos.cu 377

» Threads are displayed in (block,thread) ranges
» Divergent threads are in separate ranges

* The * indicates the range where the thread in focus resides
17

Stack Trace
= Applies to the thread in focus

#O
#1
H2
#3
#4
#5

info stack

fibo aux
Ox7bbda®
Ox7bbda®
©x7bbda®
©x7bbda®
Ox7cfdb8

(n=

in
in
in
in
in

6) at fibo.cu:88

fibo aux (n=7) at fibo.cu:90

fibo aux (n=8) at fibo.cu:90

fibo aux (n=9) at fibo.cu:90

fibo aux (n=10) at fibo.cu:90

fibo main<<<(1,1,1),(1,1,1)>>> (...) at fibo.cu:95

18

Accessing variables and memory
= Read a source variable

print my_variable

A
=
I
w

print &my variable
$2 = (@global int *) ©0x200200020

= Write a source variable

print my variable = 5

= Access any GPU memory segment using storage specifiers

— @global, @shared, ®@local, @generic, @texture, @parameter

19

Hardware Registers

= CUDA Registers

— virtual PC: Spc (read-only)
— SASS registers: SR0O, SR1,...

= Show a list of registers (blank for all)

info registers RO R1 R4

RO Ox6 6
R1 Oxfffc68 16776296
R4 Ox6 6

= Modify one register

print $R3 = 3

20

Code Disassembly

0x123830a8
©x123830b0O
©x123830b8
©x123830cH
©x123830c8
©x123830d0
©x123830d8
0x123830e0
0x123830e8
0x123830f0

x/10i $pc
<_Z9my kernell@params+8>:

<_Z9my kernell@params+16>:
<_Z9my kernell@params+24>:
< _Z9my kernell@params+32>:
<_Z9my_ kernell@params+40>:
<_Z9my kernell@params+48>:
<_Z9my kernell@params+56>:
<_Z9my kernell@params+64>:
<_Z9my kernell@params+72>:
<_Z9my kernell@params+80>:

MOV RO, c [06x0] [0x8]
MOV R2, c [0x0] [0x14]
IMUL.U32.U32 RO, RO, R2
MOV R2, RO

S2R RO, SR_CTAid X

MOV RO, RO

MOV R3, c [0x0] [0x8]
IMUL.U32.U32 RO, RO, R3
MOV RO, RO

MOV RO, RO

21

CUDA-GDB 5.0 Features

= Attach to a running CUDA process (SM 2.0 and beyond)
= Attach upon GPU exceptions (SM 2.0 and beyond)

= Separate Compilation Support (SM 2.0 and beyond)

* [nlined Subroutine Debugging (SM 2.0 and beyond)

= CUDA API error reporting

» Enhanced interoperation with cuda-memcheck

22

CUDA-GDB 5.0 Features - Attach

CPU threads

GPU kernels, blocks, threads
CPU + GPU memory state
CPU + GPU register state

CPU

Attach at any point in time!

23

CUDA-GDB 5.0 Features - Attach

= Run your program at full speed, then attach with cuda-gdb
= No environment variables required!

= [nspect CPU and GPU state at any point in time
— List all resident CUDA kernels
— Utilize all existing CUDA-GDB commands

» Attach to CUDA programs forked by your application
= Detach and resume CPU and GPU execution

24

Attaching to a running CUDA process

1. Run your program, as usual

myCudaApplication

2. Attach with cuda-gdb, and see what’s going on

cuda-gdb myCudaApplication PID

Program received signal SIGTRAP, Trace/breakpoint trap.
[Switching focus to CUDA kernel 0, grid 2, block (0,0,0), thread (0,0,0),
device 0, sm 11, warp 1, lane 0]

0xae6688 in acos main<<<(240,1,1), (128,1,1)>>> (parms=...) at acos.cu:383
383 while (!'flag);

p flag
$1 =0

25

Attaching on GPU Exceptions

1. Run your program, asking the GPU to wait on exceptions

CUDA_DEVICE_WAITS_ON_EXCEPTION=1 myCudaApplication

2. Upon hitting a fault, the following message is printed

The application encountered a device error and CUDA_DEVICE_WAITS_ON_EXCEPTION is
set. You can now attach a debugger to the application for inspection.

3. Attach with cuda-gdb, and see which kernel faulted

cuda-gdb myCudaApplication PID

Program received signal CUDA EXCEPTION 10, Device Illegal Address.

info cuda kernels
Kernel Dev Grid SMs Mask GridDim BlockDim Name Args
0] 0] 1 0x00000800 (1,1,1) (1,1,1) exception kernel data=...

26

CUDA-GDB 5.0 Features - Error Reporting

= CUDA API error reporting (three modes)
1. Trace all CUDA APIs that return an error code (default)

warning: CUDA API error detected: cudaMalloc returned (0xb)

2. Stop in the debugger when any CUDA API fails
3. Hide all CUDA API errors (do not print them)

set cuda api failures [ignore | stop | hide]
» Enhanced interoperation with cuda-memcheck

— Display faulting address and memory segment
Memcheck detected an illegal access to address (@global)0x500200028

27

CUDA-MEMCHECK

A

What is CUDA-MEMCHECK ?

* “Why did my kernel fail ?”
» Lightweight tool
= Run time error checker

— Precise errors : Memory access
— Imprecise errors : Hardware reported (SM 2.0+)

» Cross platform : Linux, Mac, Windows
» [ntegrated into cuda-gdb (Linux / Mac Only)

29

Running CUDA-MEMCHECK

= Standalone

cuda-memcheck [options] <my app> <my app_options>

» Misaligned and Out of bound access in global memory

Invalid @ global read of size 4
at Ox000000b8 in basic.cu:27:kernel2
by thread (5,0,0) in block (3,0,0)
Address Ox05500015 is misaligned

30

Running CUDA-MEMCHECK

» [mprecise errors

Out-of-range Shared or Local Address
at 0x00000798 in kernell
by thread (0,0,0) in block (0,0,0)

= Multiple precise errors using continue mode

» | eak checking of cudaMalloc() allocations
— Allocation that has not been cudaFree()’d at context destroy

» Integrated mode in CUDA-GDB

set cuda memcheck on

31

New features in 5.0

» Shared memory hazard detection (racecheck)

» Improved precise detection in address spaces

= Device side malloc()/free() error checking

» Device heap allocation leak checking

= Stack back traces

= CUDA API error checking

» Better reporting inside cuda-gdb

» Improved precision for device heap checks

= Name demangling (with parameters) for kernels

32

Threads revisited

7

\.

= Threads are grouped into blocks
= Blocks are grouped into a grid
= A kernel is executed as a grid of blocks of threads

33

Memory hierarchy

» Thread:
— Registers

— Local memory

= Block of threads:

— Shared memory

% = All blocks:

— Global memory

2300000 2400020 £09008

Global

34

Memory hierarchy

2300020 2690320 99026

— Local memory EEEEEES EEEEEEE EEEEEEE

= Block of threads:

— Shared memory

» = All blocks:

— Global memory

35

Memory hierarchy

» Thread:
— Registers

— Local memory

= Block of threads:

— Shared memory

= All blocks:

— Global memory

2300020 2690320 99026

RRNEARE RRRERRE RENANNE
il 1 I I}

36

Memory hierarchy

» Thread:
— Registers

— Local memory

= Block of threads:

— Shared memory

“S = All blocks:

— Global memory

37

Shared memory
Allocated per thread block
Same lifetime as the block

Accessible by any thread in the block

Low latency

High aggregate bandwidth

Several uses:

— Sharing data among threads in a
block

— User-managed cache (reducing
global memory accesses)

38

Sharing data between threads

Broadcast a value

One writer thread

Multiple reader threads

Value is scoped to the grid

39

Sharing data between threads

Broadcast a value
One writer thread

Multiple reader threads

Value is scoped to the grid

40

Sharing data between threads

Broadcast a value
One writer thread

Multiple reader threads

Value is scoped to the grid

41

Sharing data between threads

Broadcast a value

One writer thread

Multiple reader threads

Value is scoped to the grid

Shared

§\§‘§“

42

Broadcast Implementation

__global int bcast(void) {
int x;
__shared___ int a;
if (threadIdx.x == WRITER)
a = threadIdx.x;
X = a;

// do some work

s

43

Sharing data between threads

T~

44

Sharing data between threads

K
-,

» Data access hazard
« Data being read in thread 2 can be stale
* Need ordering

45

Racecheck : Overview

= Mutations
— Inconsistent data

= Detect three types of hazards
— Write after Write (WAW)
— Read after Write (RAW)
— Write after Read (WAR)

= [nternal heuristics
— Reduce false positives
— Prioritize hazards

46

Racecheck : Usage

= Built into cuda-memcheck

— Use option --tool racecheck

~ cuda-memcheck --tool racecheck <my_app> <my app_options>
» Byte accurate
= Can provide source file and line

» Other useful options :
— save to save output to a disk
— print-level to control output

47

Racecheck : Internal Heuristic Filters

» Each report is assigned a priority
— Error
= Highest priority
— Warning
= Usually hit only by advanced users

— Information
= Same data for a Write After Write conflict (WAW)

» Hazard visibility can be controlled using --print-level option

48

Racecheck : Broadcast

__global int bcast(void) {
int x;
__shared___ int a;
if (threadIdx.x == WRITER)

a = threadIdx.x;

= Launch of 64 threads
= Ran app with Racecheck

49

Racecheck : Broadcast

= Ona16 SM GF100
= 4 errors found (1 report per byte)
= RAW (Read after Write) hazards
» Based on executed interleaving
= |dentified bad accesses to shared memory

ERROR: Potential RAW hazard detected at _ shared ©0x3 in block
(0, 0, 0) :
Write Thread (0, 9, 0) at 0x000000d8 in race.cu:25:bcast(void)
Read Thread (35, 0, ©) at 0x000000e8 in race.cu:27:bcast(void)
Current Value : ©

50

Racecheck : Anatomy of a report

ERROR: Potential RAW hazard detected at _ shared ©x3 in block
(0, 0, 0) :
Write Thread (0, 0, 0) at 0x000000d8 in race.cu:25:bcast(void)
Read Thread (35, 0, 0) at 0x000000e8 in race.cu:27:bcast(void)
Current Value : ©

51

Racecheck : Anatomy of a report

ERROR: Potential RAW hazard detected at _ shared ©x3 in block
(0, 0, 0) :
Write Thread (0, 9, 0) at 0x000000d8 in race.cu:25:bcast(void)
Read Thread (35, 0, 0) at Ox000000e8 in race.cu:27:bcast(void)
Current Value : ©

= Priority level of report

52

Racecheck : Anatomy of a report

ERROR: Potential RAW hazard detected at _ shared ©x3 in block
(0, 0, 0) :
Write Thread (0, 0, 0) at 0x000000d8 in race.cu:25:bcast(void)
Read Thread (35, 0, 0) at 0x000000e8 in race.cu:27:bcast(void)
Current Value : ©

= Priority level of report
= Type of hazard

53

Racecheck : Anatomy of a report

ERROR: Potential RAW hazard detected at shared ©6x3 in block
(0, 90, 9) :
Write Thread (0, 0, 0) at 0x000000d8 in race.cu:25:bcast(void)
Read Thread (35, 0, 0) at 0x000000e8 in race.cu:27:bcast(void)
Current Value : ©
= Priority level of report

= Type of hazard
= Location of hazard

54

Racecheck : Anatomy of a report

ERROR: Potential RAW hazard detected at _ shared ©x3 in block
(6, 0, 0) :
Write Thread (0, 0, 0) at 0x000000d8 in race.cu:25:bcast(void)
Read Thread (35, 0, 0) at 0x000000e8 in race.cu:27:bcast(void)
Current Value : ©
= Priority level of report
= Type of hazard

= Location of hazard
= Block index (x, Y, z)

55

Racecheck : Anatomy of a report

ERROR: Potential RAW hazard detected at _ shared ©x3 in block
(0, 0, 0) :
Write Thread (0, 0, 0) at 0x000000d8 in race.cu:25:bcast(void)
Read Thread (35, 0, ©) at 0x000000e8 in race.cu:27:bcast(void)
Current Value : ©

Priority level of report
Type of hazard
Location of hazard
Block index (x, v, z)
Per thread

= Access type

Racecheck : Anatomy of a report

ERROR: Potential RAW hazard detected at _ shared ©x3 in block
(0, 0, 0) :
Write Thread (0, 0, 0) at 0x000000d8 in race.cu:25:bcast(void)
Read Thread (35, 0, 0) at 0x000000e8 in race.cu:27:bcast(void)
Current Value : ©

Priority level of report
Type of hazard
Location of hazard
Block index (x, v, z)
Per thread
= Access type
= Thread index (x, Y, z)

57

Racecheck : Anatomy of a report

ERROR: Potential RAW hazard detected at _ shared ©x3 in block
(0, 0, 0) :
Write Thread (0, 0, 0) at 0x000000d8 in race.cu:25:bcast(void)
Read Thread (35, 0, ©) at 9x000000e8 in race.cu:27:bcast(void)
Current Value : ©

Priority level of report
Type of hazard
Location of hazard
Block index (x, v, z)
Per thread
= Access type
= Thread index (X, Y, z)
= |nstruction offset in kernel

58

Racecheck : Anatomy of a report

ERROR: Potential RAW hazard detected at _ shared ©x3 in block
(6, 0, 0) :
Write Thread (0, 0, 0) at 0x000000d8 in race.cu:25:bcast(void)
Read Thread (35, 0, ©) at 0x000000e8 in race.cu:27:bcast(void)
Current Value : ©

Priority level of report
Type of hazard
Location of hazard
Block index (x, v, z)
Per thread
= Access type
= Thread index (X, Y, z)
= |nstruction offset in kernel
= File name and line humber (if available)

59

Racecheck : Anatomy of a report

ERROR: Potential RAW hazard detected at _ shared ©x3 in block
(6, 0, 0) :
Write Thread (0, 0, 0) at 0x000000d8 in race.cu:25:bcast(void)

Read Thread (35, 0, 9) at 0x000000e8 in race.cu:27:bcast(void)
Current Value : ©

Priority level of report
Type of hazard
Location of hazard
Block index (x, v, z)
Per thread
= Access type
= Thread index (X, Y, z)
= |nstruction offset in kernel
= File name and line number (if available)
= Kernel name

Broadcast Implementation Revisited

__global int kernel(void) {
int x;
__shared___ int a;
if (threadIdx.x == WRITER)
a = threadIdx.x; A
X = a; € Read

// do some work

« Unsafe read, write skipped for some threads
« Fix by forcing an order

61

Fixed Broadcast Implementation

__global int kernel(void) {
int x;
__shared___ int a;
if (threadIdx.x == WRITER)
a = threadIdx.x; Z//!E!\\\ﬁ
__syncthreads();
X = a;

// do some work

62

Stack Back Traces

» Saved host back trace at call site

— Precise errors : Kernel launch site

— Global Leaks : cudaMalloc site
— CUDA API errors : CUDA API call site

= Device function call
» Supported host OS :
= Supported devices :

back trace at error
_inux, Mac, Windows

Fermi+

— Only in non blocking launch mode

» Enabled by default

63

Sample Back Trace

Invalid @ local write of size 4
at 0x000000e8 in localRecursive.cu:24:recursive(int*)
by thread (6,0,0) in block (0,0,0)
Address ox00fffbfc is out of bounds
Device Frame:recursive(int*) (fibonacci(int, int) : ©xe0)
Device Frame:recursive(int*) (fibonacci(int, int) : ©xe0)
Device Frame:recursive(int*) (fibonacci(int, int) : ©xe0)
Device Frame:recursive(int*) (recursive(int*) : 0x28)
Saved host

Host
Host
Host
Host
Host
Host
Host

Frame

Frame

Frame

backtrace up to driver entry point at kernel launch time

:libcuda.so (cuLaunchKernel + 0x3ae) [©Oxcb8ae]
Frame:
Frame:

libcudart.so.5.0 [0x11dd4]
libcudart.so.5.0 (cudaLaunch + 0x182) [©x3ad82]

:localRecursive (_Z28 device stub_Z9recursivePiPi + 0x33) [©xfa3]
Frame:
Frame:

localRecursive (main + ©x2cd) [©x12ad]
/1ib64/1ibc.so.6 (__libc_start main + Oxfd) [Oxlebld]

:localRecursive [©xdc9]

64

CUDA API Error Checking

» Checks all CUDA API calls

» Message when call will return an error
= Application will not terminate

» Standalone only

» Enable using --report-api-errors yes

65

Improved Precise Checking

= [mproved precise error reporting
— Shared loads and stores
— Local loads and stores
— Global atomics and reductions

» Error messages now have an address space qualifier
» Enabled in both integrated and standalone modes
» Enabled on all supported architectures

66

Summary
» CUDA-GDB

— Usage
— Attach
— APl error checking

* CUDA-MEMCHECK
— Usage
— Shared memory data access hazard detection (race check)
— Stack back traces
— API error checking

67

Thank You

= Availability:
— CUDA toolkit : http://www.nvdia.com/getcuda
= CUDA experts table
= For more questions, come to our booth on the demo floor
» Repeat session on Wednesday @ 2 pm

68

http://www.nvdia.com/getcuda
http://www.nvdia.com/getcuda

