
Debugging Experience
with CUDA-GDB and CUDA-MEMCHECK

Geoff Gerfin
Vyas Venkataraman

2

CUDA Debugging Solutions

 CUDA-GDB

(Linux & Mac)

CUDA-MEMCHECK

(Linux, Mac, & Windows)

NVIDIA® Parallel Nsight™

Eclipse Edition (NEW!)

Visual Studio Edition

Allinea

DDT

Rogue Wave

TotalView

3

CUDA-GDB Overview

 What is it? What does it let you do?

— Source and Assembly (SASS) Level Debugger

— Simultaneous CPU and GPU debugging

 Set Breakpoints and Conditional Breakpoints

 Dump stack frames for thousands of CUDA threads

 Inspect memory, registers, local/shared/global variables

— Runtime Error Detection (stack overflow,...)

 Can’t figure out why your kernel launch is failing? Run cuda-gdb!

 Integrated cuda-memcheck support for increased precision

— Supports multiple GPUs, multiple contexts, multiple kernels

4

CUDA-GDB Overview

 Which hardware does it support?

- All CUDA-capable GPUs SM1.1 and beyond

- Compatible with NVIDIA Optimus laptops

- Which platforms does it support?

- All CUDA-supported Linux distributions

- Mac OS X

- 32-bit and 64-bit platforms

5

NVIDIA® NSIGHT™ ECLIPSE EDITION

Nsight Eclipse Edition

Debug View is powered by

cuda-gdb

- Visualize device state

- Edit/Build/Debug/Profile

- Supported on Linux/Mac

Live demo Wed. @ 9am!

S0420 – Room A5

6

CUDA 101: Threads, Blocks, Grids

 Threads are grouped into blocks

 Blocks are grouped into a grid

 A kernel is executed as a grid of blocks of threads

7

CUDA 101: Synchronization

 __syncthreads() enforces synchronization within a block

— Threads wait until all other threads in the same block have arrived

__syncthreads()

__syncthreads() 1. First set of threads arrive

2. Second set of threads arrive

3. All threads resume

8

Execution Control

 Execution Control is identical to host debugging:

 launch the application

 resume the application (all host threads and device threads)

 kill the application

 interrupt the application: CTRL-C

(cuda-gdb) run

(cuda-gdb) continue

(cuda-gdb) kill

9

Execution Control

 Single-Stepping

 Behavior varies when stepping __syncthreads()

Single-Stepping At the source level At the assembly level

Over function calls next nexti

Into function calls step stepi

PC at a barrier? Single-stepping applies to Notes

Yes All threads in the current block. Required to step

over the barrier.

No Active threads in the current warp.

10

Breakpoints

 By name

 By file name and line number

 By address

 At every kernel launch

(cuda-gdb) break my_kernel
(cuda-gdb) break _Z6kernelIfiEvPT_PT0

(cuda-gdb) break acos.cu:380

(cuda-gdb) break *0x3e840a8
(cuda-gdb) break *$pc

(cuda-gdb) set cuda break_on_launch application

11

Conditional Breakpoints

 Only reports hit breakpoint if condition is met

— All breakpoints are still hit

— Condition is evaluated every time for all the threads

 Condition

— C/C++ syntax

— supports built-in variables (blockIdx, threadIdx, ...)

12

Thread Focus

 Some commands apply only to the thread in focus

— Print local or shared variables

— Print registers

— Print stack contents

 Components

— Kernel : unique, assigned at kernel launch time

— Block : the application blockIdx

— Thread : the application threadIdx

13

Thread Focus

 To switch focus to any currently running thread

(cuda-gdb) cuda kernel 2 block 1,0,0 thread 3,0,0

[Switching focus to CUDA kernel 2 block (1,0,0), thread (3,0,0)

(cuda-gdb) cuda kernel 2 block 2 thread 4
[Switching focus to CUDA kernel 2 block (2,0,0), thread (4,0,0)

(cuda-gdb) cuda thread 5
[Switching focus to CUDA kernel 2 block (2,0,0), thread (5,0,0)

14

Thread Focus

 To obtain the current focus:

(cuda-gdb) cuda kernel block thread
kernel 2 block (2,0,0), thread (5,0,0)

(cuda-gdb) cuda thread
thread (5,0,0)

15

Devices

 To obtain the list of devices in the system:

 The * indicates the device of the kernel currently in focus

(cuda-gdb) info cuda devices

 Dev Desc Type SMs Wps/SM Lns/Wp Regs/Ln Active SMs Mask

* 0 gf100 sm_20 14 48 32 64 0xfff

 1 gt200 sm_13 30 32 32 128 0x0

16

Kernels

 To obtain the list of running kernels:

 The * indicates the kernel currently in focus

(cuda-gdb) info cuda kernels

 Kernel Dev Grid SMs Mask GridDim BlockDim Name Args
* 1 0 2 0x3fff (240,1,1) (128,1,1) acos parms=...
 2 0 3 0x4000 (240,1,1) (128,1,1) asin parms=...

17

Threads

 To obtain the list of running threads for kernel 2:

 Threads are displayed in (block,thread) ranges

 Divergent threads are in separate ranges

 The * indicates the range where the thread in focus resides

(cuda-gdb) info cuda threads kernel 2

 Block Thread To Block Thread Cnt PC Filename Line
* (0,0,0) (0,0,0) (3,0,0) (7,0,0) 32 0x7fae70 acos.cu 380
 (4,0,0) (0,0,0) (7,0,0) (7,0,0) 32 0x7fae60 acos.cu 377

18

Stack Trace

 Applies to the thread in focus

(cuda-gdb) info stack

#0 fibo_aux (n=6) at fibo.cu:88
#1 0x7bbda0 in fibo_aux (n=7) at fibo.cu:90
#2 0x7bbda0 in fibo_aux (n=8) at fibo.cu:90
#3 0x7bbda0 in fibo_aux (n=9) at fibo.cu:90
#4 0x7bbda0 in fibo_aux (n=10) at fibo.cu:90
#5 0x7cfdb8 in fibo_main<<<(1,1,1),(1,1,1)>>> (...) at fibo.cu:95

19

Accessing variables and memory
 Read a source variable

 Write a source variable

 Access any GPU memory segment using storage specifiers

— @global, @shared, @local, @generic, @texture, @parameter

(cuda-gdb) print my_variable

$1 = 3

(cuda-gdb) print &my_variable

$2 = (@global int *) 0x200200020

(cuda-gdb) print my_variable = 5

$3 = 5

20

Hardware Registers

 CUDA Registers

— virtual PC: $pc (read-only)

— SASS registers: $R0, $R1,...

 Show a list of registers (blank for all)

 Modify one register

(cuda-gdb) info registers R0 R1 R4
R0 0x6 6
R1 0xfffc68 16776296
R4 0x6 6

(cuda-gdb) print $R3 = 3

21

Code Disassembly

(cuda-gdb) x/10i $pc

0x123830a8 <_Z9my_kernel10params+8>: MOV R0, c [0x0] [0x8]
0x123830b0 <_Z9my_kernel10params+16>: MOV R2, c [0x0] [0x14]
0x123830b8 <_Z9my_kernel10params+24>: IMUL.U32.U32 R0, R0, R2
0x123830c0 <_Z9my_kernel10params+32>: MOV R2, R0
0x123830c8 <_Z9my_kernel10params+40>: S2R R0, SR_CTAid_X
0x123830d0 <_Z9my_kernel10params+48>: MOV R0, R0
0x123830d8 <_Z9my_kernel10params+56>: MOV R3, c [0x0] [0x8]
0x123830e0 <_Z9my_kernel10params+64>: IMUL.U32.U32 R0, R0, R3
0x123830e8 <_Z9my_kernel10params+72>: MOV R0, R0
0x123830f0 <_Z9my_kernel10params+80>: MOV R0, R0

22

CUDA-GDB 5.0 Features

 Attach to a running CUDA process (SM 2.0 and beyond)

 Attach upon GPU exceptions (SM 2.0 and beyond)

 Separate Compilation Support (SM 2.0 and beyond)

 Inlined Subroutine Debugging (SM 2.0 and beyond)

 CUDA API error reporting

 Enhanced interoperation with cuda-memcheck

23

CUDA-GDB 5.0 Features - Attach

CUDA

GDB

GPU CPU

 CPU threads

 GPU kernels, blocks, threads

 CPU + GPU memory state

 CPU + GPU register state

Attach at any point in time!

24

CUDA-GDB 5.0 Features - Attach

 Run your program at full speed, then attach with cuda-gdb

 No environment variables required!

 Inspect CPU and GPU state at any point in time

— List all resident CUDA kernels

— Utilize all existing CUDA-GDB commands

 Attach to CUDA programs forked by your application

 Detach and resume CPU and GPU execution

25

Attaching to a running CUDA process

1. Run your program, as usual

2. Attach with cuda-gdb, and see what’s going on

$ cuda-gdb myCudaApplication PID

Program received signal SIGTRAP, Trace/breakpoint trap.

[Switching focus to CUDA kernel 0, grid 2, block (0,0,0), thread (0,0,0),

device 0, sm 11, warp 1, lane 0]

0xae6688 in acos_main<<<(240,1,1),(128,1,1)>>> (parms=...) at acos.cu:383

383 while (!flag);

(cuda-gdb) p flag

$1 = 0

$ myCudaApplication

26

Attaching on GPU Exceptions

1. Run your program, asking the GPU to wait on exceptions

2. Upon hitting a fault, the following message is printed

3. Attach with cuda-gdb, and see which kernel faulted

$ cuda-gdb myCudaApplication PID

Program received signal CUDA_EXCEPTION_10, Device Illegal Address.

(cuda-gdb) info cuda kernels

 Kernel Dev Grid SMs Mask GridDim BlockDim Name Args

• 0 0 1 0x00000800 (1,1,1) (1,1,1) exception_kernel data=...

$ CUDA_DEVICE_WAITS_ON_EXCEPTION=1 myCudaApplication

The application encountered a device error and CUDA_DEVICE_WAITS_ON_EXCEPTION is

set. You can now attach a debugger to the application for inspection.

27

CUDA-GDB 5.0 Features – Error Reporting

 CUDA API error reporting (three modes)

1. Trace all CUDA APIs that return an error code (default)

2. Stop in the debugger when any CUDA API fails

3. Hide all CUDA API errors (do not print them)

 Enhanced interoperation with cuda-memcheck

— Display faulting address and memory segment

warning: CUDA API error detected: cudaMalloc returned (0xb)

(cuda-gdb) set cuda api failures [ignore | stop | hide]

Memcheck detected an illegal access to address (@global)0x500200028

28

CUDA-MEMCHECK

29

What is CUDA-MEMCHECK ?

 “Why did my kernel fail ?”

 Lightweight tool

 Run time error checker

— Precise errors : Memory access

— Imprecise errors : Hardware reported (SM 2.0+)

 Cross platform : Linux, Mac, Windows

 Integrated into cuda-gdb (Linux / Mac Only)

30

Running CUDA-MEMCHECK

 Standalone

 Misaligned and Out of bound access in global memory

$ cuda-memcheck [options] <my_app> <my_app_options>

Invalid __global__ read of size 4

 at 0x000000b8 in basic.cu:27:kernel2

 by thread (5,0,0) in block (3,0,0)

 Address 0x05500015 is misaligned

31

Running CUDA-MEMCHECK

 Imprecise errors

 Multiple precise errors using continue mode

 Leak checking of cudaMalloc() allocations

— Allocation that has not been cudaFree()’d at context destroy

 Integrated mode in CUDA-GDB

Out-of-range Shared or Local Address

 at 0x00000798 in kernel1

 by thread (0,0,0) in block (0,0,0)

(cuda-gdb) set cuda memcheck on

32

New features in 5.0

 Shared memory hazard detection (racecheck)

 Improved precise detection in address spaces

 Device side malloc()/free() error checking

 Device heap allocation leak checking

 Stack back traces

 CUDA API error checking

 Better reporting inside cuda-gdb

 Improved precision for device heap checks

 Name demangling (with parameters) for kernels

33

Threads revisited

 Threads are grouped into blocks

 Blocks are grouped into a grid

 A kernel is executed as a grid of blocks of threads

34

Memory hierarchy

 Thread:

— Registers

— Local memory

 Block of threads:

— Shared memory

 All blocks:

— Global memory

35

Memory hierarchy

 Thread:

— Registers

— Local memory

 Block of threads:

— Shared memory

 All blocks:

— Global memory

36

Memory hierarchy

 Thread:

— Registers

— Local memory

 Block of threads:

— Shared memory

 All blocks:

— Global memory

37

Memory hierarchy

 Thread:

— Registers

— Local memory

 Block of threads:

— Shared memory

 All blocks:

— Global memory

38

Shared memory
 Allocated per thread block

 Same lifetime as the block

 Accessible by any thread in the block

 Low latency

 High aggregate bandwidth

 Several uses:

– Sharing data among threads in a

block

– User-managed cache (reducing

global memory accesses)

39

Sharing data between threads

• Broadcast a value

• One writer thread

• Multiple reader threads

• Value is scoped to the grid

40

Sharing data between threads

• Broadcast a value

• One writer thread

• Multiple reader threads

• Value is scoped to the grid

41

Sharing data between threads

• Broadcast a value

• One writer thread

• Multiple reader threads

• Value is scoped to the grid

42

Sharing data between threads

• Broadcast a value

• One writer thread

• Multiple reader threads

• Value is scoped to the grid

43

Broadcast Implementation

__global__ int bcast(void) {

 int x;

 __shared__ int a;

 if (threadIdx.x == WRITER)

 a = threadIdx.x;

 x = a;

 // do some work

}

a

44

Sharing data between threads

a

45

Sharing data between threads

a

a

a

• Data access hazard

• Data being read in thread 2 can be stale

• Need ordering

46

Racecheck : Overview

 Mutations

— Inconsistent data

 Detect three types of hazards

— Write after Write (WAW)

— Read after Write (RAW)

— Write after Read (WAR)

 Internal heuristics

— Reduce false positives

— Prioritize hazards

47

Racecheck : Usage

 Built into cuda-memcheck

— Use option --tool racecheck

 Byte accurate

 Can provide source file and line

 Other useful options :

— save to save output to a disk

— print-level to control output

$ cuda-memcheck --tool racecheck <my_app> <my_app_options>

48

Racecheck : Internal Heuristic Filters

 Each report is assigned a priority

— Error

 Highest priority

— Warning

 Usually hit only by advanced users

— Information

 Same data for a Write After Write conflict (WAW)

 Hazard visibility can be controlled using --print-level option

49

Racecheck : Broadcast

__global__ int bcast(void) {

 int x;

 __shared__ int a;

 if (threadIdx.x == WRITER)

 a = threadIdx.x;

 x = a;

}

a

 Launch of 64 threads

 Ran app with Racecheck

50

Racecheck : Broadcast

ERROR: Potential RAW hazard detected at __shared__ 0x3 in block
(0, 0, 0) :
 Write Thread (0, 0, 0) at 0x000000d8 in race.cu:25:bcast(void)
 Read Thread (35, 0, 0) at 0x000000e8 in race.cu:27:bcast(void)
 Current Value : 0

 On a 16 SM GF100

 4 errors found (1 report per byte)

 RAW (Read after Write) hazards

 Based on executed interleaving

 Identified bad accesses to shared memory

51

Racecheck : Anatomy of a report

ERROR: Potential RAW hazard detected at __shared__ 0x3 in block
(0, 0, 0) :
 Write Thread (0, 0, 0) at 0x000000d8 in race.cu:25:bcast(void)
 Read Thread (35, 0, 0) at 0x000000e8 in race.cu:27:bcast(void)
 Current Value : 0

52

Racecheck : Anatomy of a report

ERROR: Potential RAW hazard detected at __shared__ 0x3 in block
(0, 0, 0) :
 Write Thread (0, 0, 0) at 0x000000d8 in race.cu:25:bcast(void)
 Read Thread (35, 0, 0) at 0x000000e8 in race.cu:27:bcast(void)
 Current Value : 0

 Priority level of report

53

Racecheck : Anatomy of a report

ERROR: Potential RAW hazard detected at __shared__ 0x3 in block
(0, 0, 0) :
 Write Thread (0, 0, 0) at 0x000000d8 in race.cu:25:bcast(void)
 Read Thread (35, 0, 0) at 0x000000e8 in race.cu:27:bcast(void)
 Current Value : 0

 Priority level of report

 Type of hazard

54

Racecheck : Anatomy of a report

ERROR: Potential RAW hazard detected at __shared__ 0x3 in block
(0, 0, 0) :
 Write Thread (0, 0, 0) at 0x000000d8 in race.cu:25:bcast(void)
 Read Thread (35, 0, 0) at 0x000000e8 in race.cu:27:bcast(void)
 Current Value : 0

 Priority level of report

 Type of hazard

 Location of hazard

55

Racecheck : Anatomy of a report

ERROR: Potential RAW hazard detected at __shared__ 0x3 in block
(0, 0, 0) :
 Write Thread (0, 0, 0) at 0x000000d8 in race.cu:25:bcast(void)
 Read Thread (35, 0, 0) at 0x000000e8 in race.cu:27:bcast(void)
 Current Value : 0

 Priority level of report

 Type of hazard

 Location of hazard

 Block index (x, y, z)

56

Racecheck : Anatomy of a report

ERROR: Potential RAW hazard detected at __shared__ 0x3 in block
(0, 0, 0) :
 Write Thread (0, 0, 0) at 0x000000d8 in race.cu:25:bcast(void)
 Read Thread (35, 0, 0) at 0x000000e8 in race.cu:27:bcast(void)
 Current Value : 0

 Priority level of report

 Type of hazard

 Location of hazard

 Block index (x, y, z)

 Per thread

 Access type

57

Racecheck : Anatomy of a report

ERROR: Potential RAW hazard detected at __shared__ 0x3 in block
(0, 0, 0) :
 Write Thread (0, 0, 0) at 0x000000d8 in race.cu:25:bcast(void)
 Read Thread (35, 0, 0) at 0x000000e8 in race.cu:27:bcast(void)
 Current Value : 0

 Priority level of report

 Type of hazard

 Location of hazard

 Block index (x, y, z)

 Per thread

 Access type

 Thread index (x, y, z)

58

Racecheck : Anatomy of a report

ERROR: Potential RAW hazard detected at __shared__ 0x3 in block
(0, 0, 0) :
 Write Thread (0, 0, 0) at 0x000000d8 in race.cu:25:bcast(void)
 Read Thread (35, 0, 0) at 0x000000e8 in race.cu:27:bcast(void)
 Current Value : 0

 Priority level of report

 Type of hazard

 Location of hazard

 Block index (x, y, z)

 Per thread

 Access type

 Thread index (x, y, z)

 Instruction offset in kernel

59

Racecheck : Anatomy of a report

ERROR: Potential RAW hazard detected at __shared__ 0x3 in block
(0, 0, 0) :
 Write Thread (0, 0, 0) at 0x000000d8 in race.cu:25:bcast(void)
 Read Thread (35, 0, 0) at 0x000000e8 in race.cu:27:bcast(void)
 Current Value : 0

 Priority level of report

 Type of hazard

 Location of hazard

 Block index (x, y, z)

 Per thread

 Access type

 Thread index (x, y, z)

 Instruction offset in kernel

 File name and line number (if available)

60

Racecheck : Anatomy of a report

ERROR: Potential RAW hazard detected at __shared__ 0x3 in block
(0, 0, 0) :
 Write Thread (0, 0, 0) at 0x000000d8 in race.cu:25:bcast(void)
 Read Thread (35, 0, 0) at 0x000000e8 in race.cu:27:bcast(void)
 Current Value : 0

 Priority level of report

 Type of hazard

 Location of hazard

 Block index (x, y, z)

 Per thread

 Access type

 Thread index (x, y, z)

 Instruction offset in kernel

 File name and line number (if available)

 Kernel name

61

Broadcast Implementation Revisited

__global__ int kernel(void) {

 int x;

 __shared__ int a;

 if (threadIdx.x == WRITER)

 a = threadIdx.x; Write

 x = a;  Read

 // do some work

}

a

• Unsafe read, write skipped for some threads

• Fix by forcing an order

62

Fixed Broadcast Implementation

__global__ int kernel(void) {

 int x;

 __shared__ int a;

 if (threadIdx.x == WRITER)

 a = threadIdx.x;

 __syncthreads();

 x = a;

 // do some work

}

a

63

Stack Back Traces

 Saved host back trace at call site

— Precise errors : Kernel launch site

— Global Leaks : cudaMalloc site

— CUDA API errors : CUDA API call site

 Device function call back trace at error

 Supported host OS : Linux, Mac, Windows

 Supported devices : Fermi+

— Only in non blocking launch mode

 Enabled by default

64

Sample Back Trace

Invalid __local__ write of size 4
 at 0x000000e8 in localRecursive.cu:24:recursive(int*)
 by thread (6,0,0) in block (0,0,0)
 Address 0x00fffbfc is out of bounds
 Device Frame:recursive(int*) (fibonacci(int, int) : 0xe0)
 Device Frame:recursive(int*) (fibonacci(int, int) : 0xe0)
 Device Frame:recursive(int*) (fibonacci(int, int) : 0xe0)
 Device Frame:recursive(int*) (recursive(int*) : 0x28)
 Saved host backtrace up to driver entry point at kernel launch time
 Host Frame:libcuda.so (cuLaunchKernel + 0x3ae) [0xcb8ae]
 Host Frame:libcudart.so.5.0 [0x11dd4]
 Host Frame:libcudart.so.5.0 (cudaLaunch + 0x182) [0x3ad82]
 Host Frame:localRecursive (_Z28__device_stub__Z9recursivePiPi + 0x33) [0xfa3]
 Host Frame:localRecursive (main + 0x2cd) [0x12ad]
 Host Frame:/lib64/libc.so.6 (__libc_start_main + 0xfd) [0x1eb1d]
 Host Frame:localRecursive [0xdc9]

65

CUDA API Error Checking

 Checks all CUDA API calls

 Message when call will return an error

 Application will not terminate

 Standalone only

 Enable using --report-api-errors yes

66

Improved Precise Checking

 Improved precise error reporting

— Shared loads and stores

— Local loads and stores

— Global atomics and reductions

 Error messages now have an address space qualifier

 Enabled in both integrated and standalone modes

 Enabled on all supported architectures

67

Summary

 CUDA-GDB

— Usage

— Attach

— API error checking

 CUDA-MEMCHECK

— Usage

— Shared memory data access hazard detection (race check)

— Stack back traces

— API error checking

68

Thank You

 Availability:

— CUDA toolkit : http://www.nvdia.com/getcuda

 CUDA experts table

 For more questions, come to our booth on the demo floor

 Repeat session on Wednesday @ 2 pm

http://www.nvdia.com/getcuda
http://www.nvdia.com/getcuda

