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ABSTRACT

We describe an automated method to locate and
outline blood vessels in images of the ocular jundus.
Such a tool should prove useful to eyecare specialists
for purposes of patient screening, treatment
evaluation, and clinical study. Our method differsfrom
previously known methods in that it uses local and
global vessel features cooperatively to segment the
vessel network. A comparison of our method against
hand-labeled ground truth segmentations of five
images yielded 65% sensitivity and 81% specificity. A
previously known technique yielded 69% sensitivity
and 63% specificity. For a baseline, we also compared
the ground truth against a second hand labeling,
yielding 80% sensitivity and 90% specificity. These
numbers indicate our method improves upon the
previously known technique, but that further
improvement is stillpossible.

INTRODUCTION

Blood vessel appearance is an important indicator
for many diagnoses, including diabetes, hypertension,
and arteriosclerosis. Vessels and arteries have many
observable features, including diameter, color,
tortuosity (relative curvature), and opacity
(reflectivity). Artery-vein crossings and patterns of
small vessels can also serve as diagnostic indicators.
An accurate delineation of the boundaries of blood
vessels makes precise measurements of these features
possible. These measurements may then be applied to a
variety of tasks, including diagnosis, treatment
evaluation, and clinical study.

We describe an automated method to locate and
outline blood vessels in images of the ocular fundus.
With this tool, eyecare specialists can potentially
screen larger populations for vessel abnormalities.
Precise measurements may be more easily recorded,
for instance for evaluation of treatment or for clinical

study. Observations based upon such a tool would also
be more systematically reproduceable.

Previous methods to segment blood vessels
automatically have concentrated primarily on their
local attributes. Vessels may be characterized by the
expected color (reddish), shape (curvilinear), gradient
(strength of boundary), and contrast (with
background). Unfortunately, this description is not
exclusive. For suitable ranges of these attributes, other
image manifestations, such as the boundaries of the
optic nerve and some hemorrhages and lesions, can
exhibit the same local attributes as vessels.

Figure 1 shows an example retinal image, along
with an image showing the result of the matched filter
convolution described in [1]. The strength of the
matched filter response (MFR) is coded in greyscale:
the darker a pixel, the stronger the response. Notice
that the strong responses in the center of the MFR
image, which are obviously not vessel, are
unfortunately much stronger than the responses on the
left side of the MFR image, which are vessel.
Therefore, applying a single global threshold does not
provide adequate classification, as shown in Figure 2.

We propose a novel method to segment blood
vessels that compliments local vessel attributes with
region-based attributes of the network structure. A
piece of the blood vessel network is hypothesized by
probing an area of the MFR image, iteratively
decreasing the threshold. At each iteration, region-
based attributes of the piece are tested to consider
probe continuation, and ultimately to decide if the
piece is vessel. Pixels from probes that are not
classified as vessel are recycled for further probing.
The strength of this approach is that individual pixel
labels are decided using local and region-based
properties.

RELATED WORK

Previous methods to segment blood vessels
generally fall into three categories: window-based
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[1,2,3], classifier-based [4,5], and tracking-based [6,7].
Window-based methods, such as edge detection,
estimate a match at each pixel for a given model
against the pixel's surrounding window. In [1], the
cross section of a vessel in a retinal image was

modeled by a Gaussian shaped curve, and then
detected using rotated matched filters. In [2], a similar
method was used for artery detection in angiograms. In
[3], a window surrounding a vessel was modeled by a

neural network trained on user-selected examples. The
drawback of these methods is that the large-scale
properties of vessels (i.e., their network structure) must
be ignored to insure computational feasibility.

Classifier-based methods proceed in two steps.
First, a low-level algorithm produces a segmentation of
spatially-connected regions. These candidate regions
are then classified as being vessel or not vessel. In [4],
regions segmented by user-assisted thresholding were

classified as blood vessel or leakage according to their
length to width ratio. In [5], regions segmented by the
method in [1] were classified as vessel or not vessel
according to many properties, including their response
to a classic operator designed to detect roads in aerial
imagery [8]. The drawback of these methods is that the
large-scale properties of vessels cannot be applied to
the problem until after the low-level segmentation has
already finished. Therefore, these properties cannot be
used to drive the segmentation, merely to evaluate it.

Tracking-based methods utilize a profile model to
step along and segment a vessel incrementally. In [6], a
Hough transform is used to locate the papilla in a

retinal image. Vessel tracing proceeds iteratively from
the papilla, halting when the response to a one-
dimensional (cross-section) matched filter falls below
a given threshold. In [7], a similar method was
employed to detect vessels in coronary arteriograms,

from user-given starting points. One drawback to these
approaches is their proclivity for termination at branch
points, which are not well-modeled by one-
dimensional filters. Another drawback is their reliance
upon unsophisticated methods for locating starting
points.

In [9], a method for tracking edge paths is used to
segment arteries in cineangiograms. Edge paths are
modeled as Markov chains. A sequential edge linking
(SEL) algorithm is introduced to search the possible
set of paths for the best fit to the Markov model. The
probabilities of the model are adjusted to reflect the
properties of the desired path, such as the tolerance to
local curvature. A strength of this approach is that the
grouping operation works upon actual gradient values,
as opposed to a thresholded response. Therefore, a
segmentation decision is not reached until an arbitrary
number of pixels is available for classification. A
drawback to the approach is that branches are not
modeled, so that each branch must be traced and
classified independently.

In this work, we propose a new method for
segmenting blood vessels in a retinal image. The MFR
image, computed as described in [1], is thresholded
using a novel probing technique. The probe examines
the image in pieces, testing a number of region-based
properties. If the probe decides a piece is vessel, then
the constituent pixels are simultaneously segmented
and classified. Contrasted against classifier-based
methods, our probing method allows a pixel to be
tested in multiple region configurations before final
classification. Contrasted against tracking-based
methods, our probing method is driven by a two-
dimensional matched filter response. Contrasted
against [9], our probing method is region-based, and so
naturally allows for multiple branches.
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Figure 1: An example retinal image with obscured vessels (left) and matched filter response (right). The response
is coded such that a darker value represents a stronger response.



ALGORITHM

The basic operation of the algorithm is to probe
regions in a matched filter response (MFR) image.
During each probe, a set of criteria is tested to
determine the threshold of the probe, and ultimately to
decide if the area being probed (termed a piece) is
blood vessel. A flowchart for the algorithm is shown in
Figure 3. A queue of points is initialized, each of
which will be used for a probe. Upon a probe's
completion, if the piece is determined to be vessel,

then the endpoints of the piece are added to the queue.
In this way, different probes (and thus different
thresholds) can be applied throughout the image.

The following steps initialize a queue of pixels
that are to be used as starting points for probing:
* Convolve the matched filter described in [1] with

the image, producing a matched filter response
(MFR) image.

* Using a histogram of the MFR image, threshold
the image such that > TTHRESH pixels are above the
threshold.

* Thin the thresholded image (for instance, using the
algorithm given in [10], pg. 59).

* In the thinned image, erase (relabel as

background) all branchpoints, breaking up the
entire foreground into segments that contain two
endpoints each. Endpoints may be discovered as

any pixel for which a traverse of the eight
bordering pixels in clockwise order yields only
one foreground-to-background transition.
Similarly, branchpoints may be discovered as any
pixel for which the same traverse yields more than
two transitions.

* Discard segments with less than TMJN pixels.
* All remaining endpoints are placed in the probe

queue.
Each pixel in the probe queue is used as a starting

point for threshold probing. The probing is iterative;
the iterations are used to determine an appropriate
threshold for the area being probed. The initial
threshold is the MFR image value at the starting pixel.
In each iteration, a region is grown from the start pixel,
using a conditional paint-fill technique. The paint-fill
spreads across all connecting pixels that are not
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Figure 2: Matched filter response thresholded at two different values. There is a strong overlap between true
positive and false positive responses.

Figure 3: Flowchart of algorithm.



already labeled and that are above the current
threshold. Once the paint-fill is complete, the desired
attributes of the grown region are tested. If the region
passes the tests, then the threshold is decreased by one,
and a new iteration begins. Each probe iteration
conducts the following tests:
* If the piece size (in pixels) exceeds TM4x, then the

probe halts. This requires multiple pieces (and
thus potentially multiple thresholds) to segment
the entire image. The effect is that the probe
adapts to the local strength of the MFR image.

* If the threshold reaches zero, then the probe halts.
This happens when probing a small area (even one
pixel) interior to an area already classified as
vessel.

* If the piece touches (on its border) more than one
previously vessel-classified piece, then the probe
halts. This is particularly useful for bridging gaps
along vessels exhibiting weak MFR values.

* If the ratio border-pixels-touching-another-piece:
total-pixels-in-piece > TFpJNGE, then the piece is
fringing, and the probe halts. This prevents a
probe from searching along the borders of vessel
pieces already segmented.

* If the piece grows a loop, then the probe halts.
Loops are detected by thinning the piece, and
counting the endpoints and branchpoints. If the
number of endpoints exceeds the number of
branchpoints by more than two, there is a loop.
This test prevents a probe from searching along
circular MFRs, such as those caused by some
lesions and hemorrhages.

* If the ratio total-pixels-in-piece : branches-in-
piece < TTREE, then the probe halts. This requires a
piece to have a minimum span of vessel(s) per
branch, and thus prevents over-branching down
false paths.
Once the probe is complete, if the resulting region

has at least TMIN pixels, but less than TMA4x pixels, then
the region is labeled as vessel. The endpoints of the
vessel piece are added to the queue. If the region is not
determined to be vessel, then its pixels are left
unlabeled. In either case, the next point in the queue is
selected for probing. When the queue is empty, the
algorithm is complete.

EXPERIMENTS

Five retinal fundus slides were selected for testing
the described method. Each slide was digitized to
produce a 605 x 700 pixel image, 24-bits per pixel
(standard RGB). All five images contain abnormalities
that obscure or confuse the blood vessel appearance.
This selection was made for two reasons. First, most of
the referenced methods have only been demonstrated

upon normal vessel appearances, which are easier to
discern. Second, some level of success with non-
normal vessel appearances must be established to
recommend clinical usage.

Each of these five images was carefully labeled by
hand, to produce a ground truth segmentation of
vessels. An example is shown in Figure 4. Each of the
five images was processed by the described algorithm,
using the parameters TTHRESH = 30800, TMJN= 150,
Tm4x = 3500, TFRNGE = 0.3, and TTpHJEE= 200. These
values were selected after exploratory experiments,
except for TTHRESH, which was selected as the average
number of pixels labeled as vessel in the ground truth
images. An example result is shown in Figure 5. For
comparison, each of the five images was globally
thresholded using the same value of TTHRESH. Figure 2
(right) shows this result for the example.

Each global-segmented result and probing-
segmented result was compared against the ground
truth, as follows. The percentage of pixels correctly
segmented as vessel (true positive) was calculated as
the number of pixels segmented as vessel that were
within one pixel's distance of a pixel hand labeled as
vessel, divided by the total number of pixels hand
labeled as vessel. The percentage of pixels incorrectly
segmented as vessel (false positive) was calculated as
the number of pixels segmented as vessel that were not
within one pixel's distance of a pixel hand labeled as
vessel, divided by the total number of pixels hand
labeled as vessel. The tolerance of one pixel in
distance was used to help minimize measurement
error. For all five images, the global-segmented result
had 69% sensitivity (true positive rate) and 63%
specificity (37% false positive rate). The probing-
segmented result had 65% sensitivity and 81%
specificity.
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Figure 5: The result ofthreshold probing on the

example image.

CONCLUSIONS

The described method segments roughly two-
thirds of the vessels in a retinal fundus image.
Compared to a previously reported method [1], which
uses only a global threshold, the proposed method
produces roughly half the false positive responses, and
a slightly decreased true positive response. The latter is
mainly attributable to the restriction upon the approach
to produce connected vessel segmentations. A global
threshold is likely to segment small groups of isolated
pixels, as in Figure 2. Although such pixels may
actually be correctly labeled, their utility for
measurement is probably limited.

In order to explore our method of evaluation
further, a second person produced an additional set of
hand-labeled ground truth for the five test images. This
second set of ground truth was compared to the first set
of ground truth exactly as described above, yielding
80% sensitivity and 90% specificity. This suggests
some interesting conclusions. First, the vessels in the
images selected for testing may in fact be too difficult
to discern with 100% accuracy, so that our results must
be viewed accordingly. In contrast, our method of
evaluation may need to be changed so that competing
hand-labeled ground truths score near perfect, thus
more accurately reflecting the strength of automated
approaches. Finally, we note that in either case there is
still measurable room for improvement.
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