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Abstract—With the requirements for reducing emissions and
improving fuel economy, automotive companies are developing
electric, hybrid electric, and plug-in hybrid electric vehicles.
Power electronics is an enabling technology for the development
of these environmentally friendlier vehicles and implementing
the advanced electrical architectures to meet the demands for
increased electric loads. In this paper, a brief review of the current
trends and future vehicle strategies and the function of power
electronic subsystems are described. The requirements of power
electronic components and electric motor drives for the successful
development of these vehicles are also presented.

Index Terms—Electric machines, electric vehicles, fuel-cell
vehicles, hybrid vehicles, motor drive, plug-in hybrid vehicles,
power electronics, propulsion systems, vehicle strategy.

I. INTRODUCTION

W ITH the increasing demand for environmentally
friendlier and higher fuel economy vehicles, automotive

companies are focusing on electric vehicles, hybrid electric
vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and
fuel-cell vehicles. These vehicles would also enable meeting
the demands for electrical power due to the increasing use of
the electronic features to improve vehicle performance, fuel
economy, emissions, passenger comfort, and safety. In electric
vehicles, HEVs, PHEVs, and fuel-cell vehicles, the challenges
are to achieve high efficiency, ruggedness, small sizes, and low
costs in power converters and electric machines, as well as in
associated electronics [1], [2]. In particular, in fuel-cell vehi-
cles, a power-conditioning unit such as a dc–dc converter for
matching the fuel-cell voltage with the battery pack may also
be necessary. In steer-by-wire and brake-by-wire applications,
a fast-response motor, inverter, and control system are essential
and must be able to operate in adverse environmental con-
ditions. Furthermore, the integration of actuators with power
electronics not only improves the overall system reliability but
also reduces the cost, size, etc. In addition to power electronics,
the technology of the electric motor plays a major role in
the vehicle’s dynamics and the type of power converter for
controlling the vehicle operating characteristics.
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This paper is organized as follows. In Section II, the in-
troduction and general classification of HEVs are presented.
Series and parallel configurations, as a general classification,
are explained. In addition, detailed illustrations of an integrated
starter–generator (ISG), which is one of the main topics in elec-
tric machines for hybrid vehicles, are shown. In Section III, the
fundamental concept of plug-in hybrid vehicles is introduced
with the conversion of HEVs into PHEVs, which are able to
attain higher fuel economy and efficiency, with a longer range
in pure electric propulsion mode. In Section IV, a fuel-cell-
based vehicle propulsion system and a fuel-cell-based auxiliary
power unit (APU) for vehicles are illustrated with the general
classification of fuel cells for the automotive applications.
In Section V, the requirements for power electronics, such
as electric machines, sensorless control, high-power semicon-
ductors, new switching topology, manufacturing process, etc.,
are discussed. The summary and conclusions are presented in
Section VI.

II. HEVS

Hybrid vehicles have two or more sources of energy and/or
two or more sources of power onboard the vehicle. The sources
of energy can be a battery, a flywheel, etc. The sources of
power can be an engine, a fuel cell, a battery, an ultracapacitor,
etc. Depending on the vehicle configuration, two or more
of these power or energy sources are used. Hybrid vehicles
save energy and minimize pollution by combining an electric
motor and an internal combustion engine (ICE) in such a way
that the most desirable characteristics of each can be utilized.
Hybrid vehicles are generally classified as series hybrids and
parallel hybrids. In a series hybrid vehicle, the engine drives
the generator, which, in turn, powers the electric motor. In a
parallel hybrid vehicle, the engine and the electric motor are
coupled to drive the vehicle. A series hybrid vehicle can offer
lower fuel consumption in a city driving cycle by making the
ICE consistently operate at the highest efficiency point during
frequent stops/starts. A parallel hybrid vehicle can have lower
fuel consumption in the highway driving cycle, in which the
ICE is at the highest efficient point while the vehicle is running
at constant speed. Hybrid vehicles are also divided into mild
hybrids, power hybrids, and energy hybrids, according to the
role performed by the engine and the electric motor and the
mission that the system is designed to achieve [3]. A plug-in
hybrid vehicle can be a series or parallel hybrid, with the battery
being charged onboard the vehicle and being externally charged
by the utility grid, thus increasing the range when operating in
pure electric mode.
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Fig. 1. Series hybrid vehicle propulsion system.

A. Series Hybrid Vehicles

A typical configuration of a series hybrid propulsion system
is shown in Fig. 1. A series hybrid vehicle is essentially an
electric vehicle with an onboard source of power for charging
the batteries. In general, an engine is coupled to a generator to
produce the power to charge the batteries. It is also possible to
design the system in such a way that the generator could act as
a load-leveling device that provides propulsion power. In this
case, the size of the batteries could be reduced, but the sizes of
the generator and the engine need to be increased. The power
electronic components for a typical series hybrid vehicle system
are: 1) a converter for converting the alternator output to dc for
charging the batteries and 2) an inverter for converting the dc to
ac to power the propulsion motor. A dc–dc converter is required
to charge the 12-V battery in the vehicle as well. In addition, an
electric air-conditioning unit needs an inverter and associated
control systems.

B. Parallel Hybrid Vehicles

Parallel hybrids can offer the lowest cost and the option
of using the existing manufacturing capability for engines,
batteries, and motors. However, a parallel hybrid vehicle needs
a complex control system. There are various configurations
of parallel hybrid vehicles, depending on the roles of the
electric motor/generator and the engine. In a parallel hybrid
vehicle, the engine and the electric motor can be used sepa-
rately or together to propel a vehicle. The Toyota Prius and
the Honda Insight are some examples of parallel hybrid sys-
tems, which are commercially available [3]. A typical con-
figuration of a parallel hybrid propulsion system is illustrated
in Fig. 2.

C. Crankshaft-Mounted ISG System

Many automotive companies are working on the develop-
ment of crankshaft-mounted-ISG-system-based hybrid vehi-
cles. The ISG concept provides the ability to reduce fuel
consumption through the use of engine off during coast-down
and idle times, early torque converter lockup with torque
smoothing, regenerative braking, and electric launch assist. The
feature stop–start, which means ICE off at idle, integrates quiet
starting and high-power generation into one single machine
[4]–[6]. This specific feature offers a high potential for reducing
fuel consumption, exhaust, and noise as a whole, compared to
general vehicles in which ICE suffers from an extremely low
miles per gallon (MPG) during stops/starts and the cold start of
the ICE is the most polluting region of operation. In addition,
ISG provides the capability for generating higher power than
today’s conventional automotive alternators. This higher power
would enable us to incorporate features such as electric power
steering, electric heating ventilation air-conditioning, electric
valve trains, mobile ac power, and many entertainment features.
The typical fuel economy gain by incorporating various func-
tions is shown in Fig. 3 [1].

A typical architecture of an ISG system is shown in Fig. 4
[1]. The vehicle has a parallel hybrid architecture in which
the electric machine and ICE can each provide torque to the
drive wheels separately or simultaneously. The electric machine
assists the IC engine by providing additional torque in the
operating regions where the engine is less efficient. The system
replaces the conventional vehicle’s flywheel, alternator, and
starter motor with an electric machine that fits between the
engine and the transmission. The system has a power generation
capability in the 5–10-kW range. The electric power take-
off (PTO) function can provide onboard electric power for
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Fig. 2. Parallel hybrid vehicle propulsion system.

Fig. 3. Typical fuel economy gains for an ISG system. T/C—torque converter. TCC—torque converter clutch.

powering the appliances on the fly and when the vehicle is
parked. PTO consists of a single-phase inverter for converting
42-V dc to 120-V/240-V ac power. The typical rating of the
inverter is about 2.4 kVA. Depending on the functionality of the
vehicle, this power could go as high as 20 kW (with a higher dc
bus voltage). The requirements with respect to the starting mode

can be very different from those during the generation mode.
The result is that between the generator functionality and the
motor functionality, the current level has to be raised by a factor
of three. Although the current requirements for the silicon
power devices is low during generation mode, they still need to
be designed to meet the requirements of the starting current in
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Fig. 4. ISG based on Energen-10 system architecture.

motoring mode. The battery must be able to supply that amount
of electrical power at the respective ambient temperatures
as well.

D. Side-Mounted ISG

Recently, there has been an increasing interest in the side-
mounted ISG, i.e., the belt-driven starter–generator system.
The side-mounted ISG can be realized using the conventional
generator of today’s vehicle. With the addition of position
sensors and a three-phase inverter, the generator can be operated
as a motor and can provide enough torque through the belt to
the combustion engine to perform a fast and quiet restart for a
warmed-up engine. On smaller engines, it is possible to cold
crank the engine, eliminating the conventional starter. Further
improvements in the generator and power electronics technol-
ogy will increase the system efficiency, the power generation,
and the cranking torque to fulfill future requirements and also
allow the cold cranking of larger engines. The benefits of this
system are: 1) low cost; 2) simple implementation; 3) minimal
changes in the electrical system; and 4) use of the present belt-
driven machine. The electronic system consists of a three-phase
MOSFET bridge inverter with the associated gate drives and
control electronics. Although the normal generation current is
much lower, the power electronics need to be designed for
higher starting currents. The packaging and the cooling of the
devices need special consideration.

The Saturn Vue hybrid vehicle by General Motors is a typical
example of a belt-driven starter–generator system. Saturn Vue’s
hybrid system reduces fuel consumption by:

• shutting off the engine when the vehicle is stopped to
minimize idling;

• restarting the engine promptly when the brake pedal is
released;

• enabling early fuel shutoff during vehicle deceleration;
• capturing vehicle kinetic energy during deceleration

(regenerative braking) to charge an advanced nickel-metal
hydride battery;

• performing intelligent battery charging when it is most
efficient.

III. PHEVS

PHEVs have been considered as a significant advancement
of the hybrid vehicle technology in both the industry and the
academia [7] and even by various government agencies around
the world. PHEVs have a battery pack of high energy density
that can be externally charged and, hence, can run solely on
electric power for a range longer than regular HEVs, resulting
in a better MPG [8]–[12]. The battery pack can be recharged
by a neighborhood ac outlet charger or in the garage. PHEVs
improve the utilization of utility power because the charging of
the batteries is done during nighttime.

A representative architecture of a plug-in parallel hybrid ve-
hicle architecture is shown in Fig. 5. The conversion of conven-
tional HEVs into PHEVs is being tried as a transient technology
in many companies in order to enhance the efficiency of HEVs.
Moreover, auto manufacturers are considering and preparing
for the introduction of PHEVs into the commercial market. The
conversion is achieved either by adding a high-energy battery
pack or by replacing the existing battery pack of HEVs in order
to extend the all-electric range. In either case, the high-energy
battery pack must be able to store enough electrical energy from
external charging as well as from regenerative braking and must
be able to supply the stored electrical energy to a traction motor
system. AC outlet charging should inevitably need a battery
charger composed of an ac–dc converter with power factor
correction (PFC) and a programmable digital controller with
a proper voltage–current profile for high-energy battery packs.
A bidirectional dc–dc converter and charge–discharge profile is
also necessary so as to transfer energy between the battery and
the traction motor system.

To make PHEVs available to consumers, there are several
issues to be addressed. For example, the stability of utility
power with regard to using a great number of high-power
battery chargers with PFC at the same time and the choice,
safety, thermal management, and cell-balancing of high-energy
batteries such as NiMH and lithium batteries for automotive
applications are some of the important issues [13]–[29].

IV. FUEL-CELL VEHICLES

A. Fuel-Cell-Based Vehicle Propulsion System

With the advancement in the technology of fuel cells, there
is an increasing interest in using fuel cells for propulsion,
onboard power generation, and stationary power generation
applications. The advantages of fuel-cell vehicles compared to
ICE vehicles are [30] the following.

• It makes use of direct energy conversion (no combustion).
• It has no moving parts, is quiet, and has fuel flexibility.
• It uses low energy, produces low air pollution, and utilizes

alternative fuels.
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Fig. 5. Plug-in hybrid electric vehicle (parallel configuration).

Fig. 6. Typical fuel-cell vehicle system.

• It has no sharp change in efficiency according to the size
of the system and part load.

• It reduces CO2 emission by about 75% and other toxic
substances.

A fuel-cell system designed for vehicular propulsion appli-
cations must have a weight, a volume, a power density, a start-
up, and a transient response similar to present-day ICE-based
vehicles. Other requirements are: 1) very high performance
for a short time; 2) rapid acceleration; 3) good fuel economy;
and 4) easy access and safety considerations with respect to
fuel handling. The cost and the expected lifetime are also very
important considerations.

A typical fuel-cell vehicle propulsion system is shown in
Fig. 6. The output voltage of the fuel-cell stack is conditioned
to be compatible with the battery voltage using a power con-
ditioner, which could be a step-up or step-down converter,
depending on the voltage levels of the fuel cell and the battery.
An inverter is used to convert the dc to variable voltage and
variable frequency to power the propulsion motor. A battery
or an ultracapacitor is generally connected across the fuel-cell

system to provide supplemental power and for starting the sys-
tem. Among several kinds of fuel cells such as proton exchange
membrane (PEM) fuel cells, alkaline fuel cells, phosphoric acid
fuel cells, molten carbonate fuel cells, and solid oxide fuel cells
(SOFCs), PEM fuel cells are gaining importance for automotive
propulsion applications for the following reasons:

• easy start at ordinary temperatures below 100 ◦C;
• relatively high power density and smaller size;
• simple structure and maintenance;
• ruggedness to the shock and vibrations.

On the other hand, the problems in PEM are the following.

• The carbon monoxide (CO) concentration in the fuel
should be reduced to less than 10 ppm, which causes
deterioration in cell performance.

• Typically, expensive precious-metal catalysts are required,
and low overall fuel economy from hydrogen generation
should be addressed.

B. Vehicles With Fuel-Cell-Based APU

The power for the various electrical loads in an automobile
is generally obtained using a belt-driven alternator driven by
an ICE, producing power only while the engine is running.
However, the fuel cell can produce onboard power independent
of the engine operation, which can result in the elimination of
an alternator and low emissions while maintaining passenger
comfort such as heating. High-temperature SOFCs are partic-
ularly suitable as an APU in automotive applications because
of the potential for internal reforming of more conventional
petroleum fuels—with a simple partial oxidation reforming
process into hydrogen (eliminating the need for an external
reformer), less stringent requirements for reformate quality
(directly using carbon monoxide as a fuel), and less sensitive
to contaminants such as sulfur.

Authorized licensed use limited to: UNIVERSITY OF MELBOURNE. Downloaded on December 25, 2008 at 07:02 from IEEE Xplore.  Restrictions apply.



2242 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 55, NO. 6, JUNE 2008

Fig. 7. Dual-voltage system with generator as power source.

Fig. 8. Dual-voltage system with fuel cell as power source.

A dual 42-V/14-V architecture using an alternator is shown
in Fig. 7. In this architecture, a generator feeds a 42-V bus
having 42-V loads and a battery. A dc–dc converter connects
this bus to the conventional 14-V bus having 12 V loads and
a 12-V battery. The architecture for a dual-voltage electri-
cal system that contains a fuel-cell power source is shown
in Fig. 8.

The alternator in Fig. 7 is directly replaced by the fuel cell,
and a new box, labeled “Power Conditioning Unit” is added, as
shown in Fig. 8. The functions of the power-conditioning unit
are to make the fuel-cell-stack output voltage compatible with
the required load voltage, to protect the fuel cell from overload
and short circuit at the output, and to prevent current from
flowing back into the fuel-cell stack. The power-conditioning
unit could be a buck, a boost, or a buck–boost dc–dc converter,
depending on the output voltage of the stack.

V. POWER ELECTRONIC REQUIREMENTS

The power switching devices, electric motors, and associated
control systems and components play a key role in bringing
hybrid and fuel-cell vehicles to market with reliability and
affordability. The power electronic system should be efficient to
improve the range of the electric vehicles and fuel economy in
hybrid vehicles. The selection of power semiconductor devices,
converters/inverters, control and switching strategies, the pack-
aging of the individual units, and the system integration are very
crucial to the development of efficient and high-performance
vehicles. In addition to power devices and controllers, there

are several other components such as capacitors, inductors, bus
bars, thermal systems, etc., that form a major portion of a power
electronic unit. The packaging of all these units as one system
has significant challenges. The U.S. Department of Energy, the
U.S. Navy, and other organizations have funded the develop-
ment of power electronics building blocks (PEBBs) to develop
modular power electronic systems that ranges from 10 kW to
several megawatts of power. Fig. 9 shows a “Power Control
Unit” similarly functioning as a PEBB, which is mounted on a
Toyota Hybrid Synergy Drive II system and is composed of an
inverter for the air conditioner, an inverter for the starter and the
generator, an inverter for the traction motor, a dc–dc converter
for the auxiliary battery, and a dc–dc bidirectional converter for
the high voltage battery. The goals of the U.S. Partnership for a
New Generation of Vehicles for power electronics and electric
machinery are quite challenging and are given in Table I.

To meet the requirements of the automotive environment,
several technical challenges need to be overcome, and new
developments are necessary, from the device level to the
system level.

A. Development and Research on Switches and Diodes for
High-Switching-Frequency, High-Power, and
High-Temperature Applications

• The development of a power device that combines the
MOS gate control characteristics with the current carrying
capability and voltage drop characteristics of a thyristor-
type structure whose forward voltage drop, even at higher
currents (> 400 A), must be less than 2 V and, at the same
time, can be operated at switching frequencies higher than
10 kHz is necessary.

• Furthermore, the development of a new power diode
with superior dynamic characteristics, such as a MOS-
controlled diode, should be carried out at the same time.

• The research on silicon carbide needs to be accelerated to
make possible their application to high-power switching
devices at higher operating temperatures.

• The devices and the rest of the components need to with-
stand thermal cycling and extreme vibrations.

B. Power Switch Packaging Technologies

The technologies related to device packaging need to be
investigated by the semiconductor industry to develop a power
switch, as the automotive industry is becoming one of the
primary customers for power electronic devices. Wire bonding,
device interconnections, etc., are the barriers to the develop-
ment of high-current-density power units. Technologies such
as topside power connection without wire bonds, minimizing
wire bonds, dynamic matching, heat-sinking both sides of the
die, direct bond copper on alumina and aluminum-nitride sub-
strates, interconnect solutions for large-scale manufacturing,
etc., need to be investigated as well. The reliable operation of
power modules and other related packaging technologies needs
to be studied. The power electronic systems available in the
market are still bulky and difficult to package for automotive
applications.
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Fig. 9. Power control unit (Toyota Hybrid Synergy II).

TABLE I
TECHNICAL TARGETS OF ELECTRIC MACHINES AND POWER

ELECTRONICS (INCLUDING ACTIVE MATERIALS,
MOTOR GEARS, AND HOUSING)

C. Other Component Technologies to Meet the Application

In the past ten years, the technology of power semiconductor
devices, magnetic components, and capacitors has significantly
advanced to be used in high-frequency power electronic appli-
cations. The capacitors with high-frequency and high-voltage
operations, low equivalent series resistance, high operating
temperatures, and high ripple current capabilities need to be
further developed. Hence, improved dielectric materials need
to be investigated. The technology of laminated bus bars with
high isolation voltage and low inductance needs further work
to meet the automotive operating environment. To meet the
packaging goals, the components must be designed to operate

over a much higher temperature range. A novel way of cooling
the entire unit needs to be examined to quickly take away the
heat from the devices. The current heat management techniques
are inadequate to dissipate heat in high-power-density systems.
In addition, the impact of current intensiveness in a system on
lower efficiency, larger passive components such as inductors
and capacitors, and a thicker wiring harness among the compo-
nents should be properly taken into consideration at the stage
of system design.

D. New Switching Method, Integrated EMI Filter, and
Fault-Tolerant Topology

Although soft-switching inverters have the advantage of
lower switching losses and low electromagnetic interference
(EMI), they need more components, higher operating voltage
devices (depending on the topology), and more complicated
control compared to hard-switched inverters. Hence, a soft-
switched inverter application is limited to very special types
of needs. There is a need to develop an inverter topology that
achieves the performance of a soft-switched inverter but with
less components and simplified control. Topologies with two
or more integrated functions such as an inverter, a charger,
and a dc/dc converter and with minimum use of capacitors
need to be developed. In the area of dc–dc converters, further
development is needed to obtain 12 V from 42 V and higher
voltages. Integrated EMI filters for the control of EMI generated
due to the switching of the devices needs to be a part of
the inverter/converter topology. Fault-tolerant topologies and
control techniques need further investigation. The system needs
to be fault tolerant and provide limp-home capability.
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E. Robust Sensorless Control and Low-Cost
High-Temperature Magnets of Electric Propulsion Machine

In the area of propulsion motor and other motor control
technologies, methods to eliminate speed/position sensors, in-
verter current sensors, etc., have been under investigation for
several years. These technologies have not yet been proven
to be practical for automotive applications [31]–[37]. The
technology development effort needs to be focused on the
sensorless operation of electric machines and the reduction or
elimination of current sensors in inverters. Controllers need to
be developed for the robust operation of all vehicle subsystems.
The development of low-cost high-temperature magnets would
lead to the widespread use of permanent magnet (PM) motors.
PM motors have higher efficiency and need lower current to
obtain the same torque as other machines. This would reduce
the cost of power devices as well.

F. Development of New Manufacturing Processes

The cost of developing new manufacturing processes and
packaging techniques are prohibitive for low production vol-
umes. Generally, manufacturing technologies are taken for
granted. Hence, low-cost manufacturing of power electronic
systems needs a major work. The units have to be rugged and
reliable for a 150 000-mi vehicle lifetime.

VI. CONCLUSION

Several technologies are in the horizon to be implemented
in the next generations of automobiles. There are still a lot of
technology challenges to overcome, particularly in the area of
fuel-cell vehicles. Major obstacles must still be overcome in
the areas of weight, volume, and cost to achieve the expected
efficiency and performance. Other issues are manufacturability,
reliability, safety, and durability, and the most important is the
value to the customer as a function of the cost.

The barriers to the introduction of a “More Electric Vehicle”
depend on the economics and not much on the technology. The
value of a hybrid or plug-in hybrid vehicle has to be greater
than the cost. This value equation includes the payback in fuel
cost savings for the extra cost of the vehicle, adding to the
manufacturer’s corporate average fuel economy value, vehicle
performance and boost, amount of onboard electric power
for entertainment features and other conveniences, emissions
reduction, and, finally, the image for the original equipment
manufacturer.

Progress has been made in the area of power electronics and
rotating machines to reduce the cost and improve the efficiency
of the system. The issues related to power conversion and
rotating machines are similar in electric, hybrid, and plug-in
hybrid vehicles. The cost of the power electronics and the motor
drive system is being reduced more to make the hybrid and
plug-in hybrid vehicles at par with ICE-based vehicles.
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