
How fast is fast enough? Choosing between Xenomai and Linux for

real-time applications

Dr. Jeremy H. Brown

Rep Invariant Systems, Inc.

38 Cameron Ave, Suite 100, Cambridge, MA, 02140, USA

jhbrown@repinvariant.com

Brad Martin

Rep Invariant Systems, Inc.

38 Cameron Ave, Suite 100, Cambridge, MA, 02140, USA

bmartin@repinvariant.com

Abstract

We needed data to help ourselves and our clients to decide when to expend the extra effort to use a
real-time extension such as Xenomai; when it is sufficient to use mainline Linux with the PREEMPT RT
patches applied; and when unpatched mainline Linux is sufficient.

To gather this data, we set out to compare the performance of three kernels: a baseline Linux kernel;
the same kernel with the PREEMPT RT patches; and the same kernel with the Xenomai patches. Xeno-
mai is a set of patches to Linux that integrates real-time capabilities from the hardware interrupt level
on up. The PREEMPT RT patches make sections of the Linux kernel preemptible that are ordinarily
blocking.

We measure the timing for performing two tasks. The first task is to toggle a General Purpose IO
(GPIO) output at a fixed period. The second task is to respond to a changing input GPIO pin by causing
an output GPIO pin’s value to follow it. For this task, rather than polling, we rely on an interrupt to
notify us when the GPIO input changes.

For each task, we have four distinct experiments: a Linux user-space process with real-time priority;
a Linux kernel module; a Xenomai user-space process; and a Xenomai kernel module. The Linux experi-
ments are run on both a stock Linux kernel and a PREEMPT RT-patched Linux kernel. The Xenomai
experiments are run on a Xenomai-patched Linux kernel.

To provide an objective metric, all timing measurements are taken with an external piece of hardware,
running a small C program on bare metal.

This paper documents our results. In particular, we begin with a detailed description of the set of
tools we developed to test the kernel configurations.

We then present details of a a specific hardware test platform, the BeagleBoard C4, an OMAP3 (Arm
architecture) system, and the specific kernel configurations we built to test on that platform. We provide
extensive numerical results from testing the BeagleBoard.

For instance, the approximate highest external-stimulus frequency for which at least 95% of the time
the latency does not exceed 1/2 the period is 31kHz. This frequency is achieved with a kernel module
on stock Linux; the best that can be achieved with a userspace module is 8.4kHz, using a Xenomai
userspace process. If the latency must not exceed 1/2 the frequency 100% of the time, then Xenomai is
the best option for both kernelspace and userspace; a Xenomai kernel module can run at 13.5kHz, while
a userspace process can hit 5.9kHz.

In addition to the numerical results, we discuss the qualitative difficulties we experienced in trying to
test these configurations on the BeagleBoard.

Finally, we offer our recommendations for deciding when to use stock Linux vs. PREEMPT RT-
patched Linux vs. Xenomai for real-time applications.

1

1 Introduction

We work with robotics, an inherently “real-time” dis-
cipline. Many of our customers need us to determine
when it is sufficient to use a stock Linux distribution,
and when we need to take the extra effort to seek ad-
ditional real-time support from the PREEMPT RT
Linux patches, or from Xenomai, a real-time system
that integrates with Linux to provide hard-real-time
capabilities.

In this paper, we present a test suite we devel-
oped to characterize the performance and limitations
of Linux and Xenomai for two benchmark real-time
tasks. The first task is to toggle a General Purpose
IO (GPIO) output at a fixed period. The second
task is to respond to a changing input GPIO pin by
causing an output GPIO pin’s value to follow it. For
this task, rather than polling, we rely on an interrupt
to notify us when the GPIO input changes.

To provide an objective metric, we run processes
on the test system, but measure their performance
using an external measurement system which runs a
C program on bare metal.

We present and discuss the specific numerical re-
sults for our first test platform, a popular embedded
system called the BeagleBoard. We also discuss some
of the difficulties we experienced in configuring and
testing Linux and Xenomai on the BeagleBoard.

Finally, we present our thoughts on how to decide
when to expend the effort to use Xenomai, and when
to simply use stock Linux.

1.1 Categories of real-time

“Real-time” is an ambiguous term. Every time-
sensitive application has its own requirements which
are not easily captured by a simple description. For
this paper, we have adopted the following specific
definitions:

Soft : The real-time requirements should be met
most of the time according to a subjective user
interpretation. A traditional example is a pro-
cess playing music on a desktop system. Soft
real time performance is subjective, but gen-
erally adequate on typical Linux desktop sys-
tems.

Life-safety hard : The real-time requirements re-
quirement must be met 100% of the time by the
system. If violated, someone may be injured
or killed, and/or substantial property damage
may occur. We do not recommend any of the

software evaluated in this paper for life-safety
hard applications.

100% hard : The real-time requirements require-
ment should be met 100% of the time by the
system. An example is a process control pro-
gram, where timing failures result in product
manufacturing defects.1

95% hard : The real-time requirements should be
met at least 95% of the time. An example is a
data collection system where data samples are
invalid when the requirement is missed, but it
is acceptable to lose some of the data.2

In the rest of this paper we limit our analyses to
the 95% and 100% hard real-time categories.

1.2 Technology background

Linux is a general-purpose interactive operating sys-
tem. It was designed to support multiple processes,
running on a single processor. The default configura-
tion is designed to optimize for total system through-
put, rather than for interactivity or the ability to
perform real-time work. A number of approaches
have been taken to enhance Linux’s utility in real-
time contexts. [14] is a recent survey of approaches
and actively-supported platforms. In this section, we
limit ourselves to two basic approaches.

Making Linux more real-time: Various PRE-
EMPT patches try to make the Linux kernel itself
more real-time by reducing the durations for which
high-priority operations can be blocked, at the cost
of reducing overall throughput.

In kernel 2.6, the CONFIG PREEMPT build
flag makes most of the kernel preemptible, except
for interrupt handlers and regions guarded by spin-
locks. This allows interactive and/or high priority
real-time tasks to run even when some other task is
in the middle of a kernel operation. According to

1There is a cost tradeoff analysis here that is well outside
the scope of this paper: how much will it cost to produce
100% hard real-time software, and how much will it save you
in manufacturing defects over some time period? Does that
pay off compared to, say, building 99% hard real-time software
more quickly and at lower cost, and accepting a slightly higher
defect rate?

2Note that this definition is still very general. It covers a
system that misses one operation every 20 cycles, and a system
that misses blocks of 20 operations every 400 cycles. For some
applications, these are not equivalent systems! Consider a
20Hz control system for a robot helicopter — a 50ms outage
once a second is going to be much more survivable than a one
second outage every 20 seconds.

2

Label Implementation Real-time strategy

linux-chrt-user Linux userspace chrt used to invoke
xeno-user Xenomai userspace rt task set periodic called; uses RTDM driver
linux-kernel Linux kernelspace implemented using hrtimers
xeno-kernel Xenomai kernelspace rt task set periodic (kernel version) called

Table 1: Periodic task types

Label Implementation Real-time strategy

linux-chrt-user Linux userspace chrt used to invoke
xeno-user Xenomai userspace rt task create called; uses RTDM driver
linux-kernel Linux kernelspace implemented as top-half IRQ handler
xeno-kernel Xenomai kernelspace implemented as RTDM IRQ handler

Table 2: Response task types

[11], with the CONFIG PREEMPT option “worst
case latency drops to (around) single digit millisec-
onds, although some device drivers can have inter-
rupt handlers that will introduce latency much worse
than that. If a real-time Linux application requires
latencies smaller than single-digit milliseconds, use
of the CONFIG PREEMPT RT patch is highly rec-
ommended.”

The CONFIG PREEMPT RT[12] patch, main-
tained separately from the primary Linux sources,
adds harder real-time capabilities to Linux. It makes
many spinlock-guarded regions preemptible, moves
IRQ handlers into threads, and adds various other
real-time features. When people refer to Real Time
(RT) Linux, they typically mean a Linux kernel with
the CONFIG PREEMPT RT patches applied.

Adding real-time under Linux: Rather than
relying on improving Linux’s ability to preempt,
Xenomai[7, 8] adds a real-time subsystem under-
neath Linux, and exposes its capabilities through
Linux.

At the bottom, Xenomai relies on the Adeos[1,
16] I-pipe software to receive hardware interrupts.
Adeos passes these events to its software clients in
priority order; the Xenomai system has higher pri-
ority than Linux. Thus, the Linux kernel receives
only virtual interrupt events, and those only after
higher-priority software (e.g. the Xenomai layer) has
had an opportunity to respond first. Similarly, when
the Linux kernel blocks interrupt handlers, it does
so only for itself; high-priority Xenomai threads will
receive their events from the I-pipe on schedule.

Xenomai has a host of usability features that are
well outside the scope of this paper, including im-
plementations of multiple real-time APIs; the ability
to migrate threads between the non-real-time Linux

domain into the real-time Xenomai domain; etc.

2 Measurement system design

It is common in the literature to report real-time test
measurements made by the real-time system being
tested. For objectivity, we prefer not to rely on self-
measurement/self-reporting, so we developed a sim-
ple external, real-time measurement system. This
system also serves as the source of input events for
measuring response latency.

2.1 Architecture

We selected the Atmel AVR microcontroller as our
measurement platform. AVRs are used on the
popular Arduino series of hobbyist microcontroller
boards.

2.2 Software

The measurement software is written in C, and com-
piled under the AVR Studio IDE.

Response mode: In RESPONSE mode, the mea-
surement system waits a random interval from 3 µs
up to a configurable maximum period, then lowers
its output pin (i.e. the input to the test system) and
measures how long until the test system lowers its
output pin in response. It then immediately raises
its output pin and waits for the test system to do the
same before beginning another cycle. Measurements
are taken on falling edges only. When instructed to
stop, the measurement system reports a histogram
of response latencies.

3

Periodic mode: In PERIODIC mode, the mea-
surement system expects the test system to raise and
lower a GPIO pin at a specified periodic rate. When
instructed via the serial interface, the measurement
system begins measuring the actual period between
successive falling edges on its input pin.

When instructed to stop, the measurement sys-
tem emits a histogram showing how many samples
were measured at each actual offset, centered about
the expected period.

Because the measurement system measures
inter-falling-edge times, a single delay in test sys-
tem ping generation produces two off-period mea-
surements: one long measurement, followed by one
short one. E.g., if the test system is supposed
to generate falling edges every 1000µs, and it ac-
tually generates them at time T=0µs, T=1000µs,
T=2050µs, T=3000µs, T=4000µs, the test system
will report measurements of 1000µs, 1050µs, 950µs,
and 1000µs.

Histograms: Histogram granularity depends on
the expected or maximum period, and the memory
available on the specific AVR selected. Along with
each histogram, the system reports the number of
outliers falling above and below the range covered by
the histogram, along with the maximum and mini-
mum values seen.

3 Test suite details

3.1 Hardware

Any platform capable of running Linux and Xeno-
mai, and exposing at least two GPIO pins, is a viable
candidate for our test suite.

3.2 Task implementations

We wrote code to implement both response and
periodic tasks using four different methods: Linux
userspace, Linux kernel, Xenomai userspace, and
Xenomai kernel. Thus, we have 8 distinct sets of
code.

We run the Linux userspace processes with real-
time priority 99 (using chrt 99) to give them real-
time scheduling priority.

For hardware platform independence, our code
relies exclusively on standard Linux and Xenomai
APIs.

For the response task, the code relies on an in-
terrupt to detect GPIO input changes.

All userspace processes call mlockall to prevent
paging.

Most of our Xenomai-related code is derived from
example code distributed with the Xenomai source
tree.

3.3 RTDM driver support

To support the Xenomai userspace tests, we wrote
a small kernel module which provides the needed
GPIO operations as an RTDM (Real Time De-
vice Model) device driver; Xenomai userspace pro-
cesses access GPIOs by reading and writing using
rt dev read and rt dev write. The device driver
relies on Xenomai’s RTDM IRQ handling and the
Linux GPIOlib interfaces. The core read and write
routines are presented below; error handling has been
omitted for brevity.

static ssize_t simple_rtdm_read_rt(

struct rtdm_dev_context *context,
rtdm_user_info_t * user_info, void *buf,

size_t nbyte)
{

int ret;
rtdm_event_wait(&gpio_in_event);
if (nbyte <= 0) return 0;

ret = rtdm_safe_copy_to_user(
user_info, buf,

gpio_in_value ? "1" : "0", 1);
if (ret) return ret;
return 1;

}

static ssize_t simple_rtdm_write_rt(
struct rtdm_dev_context *context,

rtdm_user_info_t * user_info,
const void *buf, size_t nbyte)

{

int ret;
char value;

ret = rtdm_safe_copy_from_user(user_info, &value,
buf+nbyte-1, 1);

if (ret) return ret;

gpio_set_value(gpio_out, (value == ’0’ ? 0 : 1));
return nbyte;

}

3.4 Response task implementations

In the interrupt-response task, the test system is re-
quired to wait for an interrupt from an input GPIO
pin. When that happens, the system must set an
output GPIO pin to match the input signal. The
input transitions happen at random intervals.

Our implementation approaches are summarized
and labeled in Table 2; the labels are used in follow-
ing graphs and tables.

We briefly describe each approach below, and

4

present a snippet of code modeling our approach.
The snippets presented here are condensed for
brevity and reorganized for clarity.

Linux userspace: This uses the GPIO pin in-
terface devices in /sys/class/gpio to operate the
pins. in value fd and out value fd refer to
/sys/class/gpio/gpio<N>/value files.

for (;;) {
int cnt = read(in_value_fd, buf, 16);

write(out_value_fd, buf, cnt);
int result = poll(&poll_struct, 1, -1);

lseek(in_value_fd, 0, SEEK_SET);
}

Linux kernelspace: This uses the GPIOlib kernel
interface to the GPIO pins in a typical Linux IRQ
“top-half” handler.

irqreturn_t irq_func(int irq, void *dev_id) {

int output_value = gpio_get_value(gpio_in);
gpio_set_value(gpio_out, output_value);
return IRQ_HANDLED;

}

Xenomai userspace: This uses blocking-read on
our GPIO RTDM device driver (see Section 3.3.).

for (;;) {

rt_dev_read(device, buf, 4);
rt_dev_write (device, buf, 1);

}

Xenomai kernelspace: This uses the GPIOlib
kernel interface to the GPIO pins, and Xenomai’s
RTDM (real-time) IRQ handling.

int irq_func(rtdm_irq_t *irq_handle) {

int output_value = gpio_get_value(gpio_in);
gpio_set_value(gpio_out, output_value);
return RTDM_IRQ_HANDLED;

}

3.5 Periodic task implementations

In the periodic task, the test system is required to
toggle the value of an external GPIO periodically,
based on an internal timer. Our implementation ap-
proaches are summarized and labeled in Table 1; the
labels are used in following graphs and tables.

We briefly describe each approach below, and
present a snippet of code modeling our approach.
As above, the snippets presented here are condensed
for brevity and reorganized for clarity.

Linux userspace: The native Linux GPIO inter-
face for userspace applications is based on reading
from and writing to special files in /sys/class/GPIO
using standard C read and write calls. Our code
uses the Linux high-resolution timer interface for

the period, and the GPIO pin interface devices in
/sys/class/gpio to operate the output pin.

for (;;) {
write(gpio_fd, output_value ? "1\n" : "0\n", 2));
output_value = !output_value;

read(timer_fd,
&periods_elapsed,

sizeof(periods_elapsed));
}

Linux kernelspace: This uses the kernelspace
hrtimer interface for the period, and the Linux ker-
nel’s GPIOlib interface.

enum hrtimer_restart timer_func(struct hrtimer* timer) {

gpio_set_value(gpio_out, output_value);
output_value = !output_value;

hrtimer_forward_now(timer, half_period);
return HRTIMER_RESTART;

}

Xenomai userspace: This uses Xenomai’s
userspace RT TASK with a periodic timing for the
period, and our RTDM driver (see Section 3.3)
which provides access to the GPIO pins via read
and write operations.

while (1) {
int size = rt_dev_write (

device,
output_value ? "1" : "0", 1);

output_value = !output_value;
rt_task_wait_period(NULL);

}

Xenomai kernelspace: This uses Xenomai’s ker-
nelspace RT TASK with a periodic timing for the
period, and the GPIOlib kernel interface.

while (1) {

gpio_set_value(gpio_out, output_value);
output_value = !output_value;
rt_task_wait_period(NULL);

}

3.6 Test control

A python script manages running each test varia-
tion and collecting the resulting logfiles. The script
is responsible for GPIO mux and pin configuration,
kernel module insertion, process initiation, priority
management, and subsequent cleanup. Except for
the selection of appropriate GPIO pin numbers, it is
hardware platform independent and should work on
any Linux-based system.

We run the script with real-time priority 10 to
ensure timely operations even on a heavily-loaded
system.

The control script reprioritizes pre-existing real-
time processes to a maximum real-time priority of

5

(a) BeagleBoard Rev C4 OMAP3 Single Board Computer
(SBC)

(b) BeagleBoard Trainer daughtercard with AVR-OMAP
I/O wiring.

Figure 1: Test system hardware components

Label Kernel Patches Version Source

stock “Stock” Linux None 2.6.33.7 [4]
RT Real-time Linux CONFIG PREEMPT RT patch-2.6.33.7-rt29 [10]
xeno Xenomai-enabled Adeos (Xenomai) 2.6.33-arm-1.16-01 (post 2.5.3 HEAD) [6]

Table 3: Operating system configurations

6

80. On the RT kernel, for the response task, an IRQ
thread is spawned for the input GPIO pin; and for
the periodic task, a soft IRQ thread is spawned for
the hrtimers. In both cases, the control script bumps
the IRQ thread priority to 99.

3.7 Data analysis

A Python script built on the matplotlib python li-
braries parses the logfiles from test runs. It generates
the charts and tables found throughout this report.

3.8 Test load

A bash script starts up heavy loads for the system.
It runs a combination operations that, empirically,
load the test system quite heavily:

• It launches a subprocess that tight-loops invok-
ing scp to copy a large file from and to a USB-
attached hard drive via the loopback network
interface.

• It launches a subprocess that tight-loops invok-
ing dd to copy a large file from an SD card to
/dev/null

• It launches 500 instances of dd copying from
/dev/zero to /dev/null. These are run at nice
level 20 to preserve a modicum of system in-
teractivity.

4 Profiling the BeagleBoard

4.1 The hardware

For our initial test platform, we used a BeagleBoard
Rev C4 OMAP3 Single Board Computer (SBC),
shown in Figure 1(a)). The OMAP3 microprocessor
is an ARM architecture. The board runs at 720MHz.

To run our measurement system, we selected the
BeagleBoard Trainer daughtercard, shown in Fig-
ure 1(b). The Trainer features an Atmel AVR, logic
level shifters enabling direct connections between the
AVR and the OMAP3’s signals, and a protoboard
space for making those connections. We used the
protoboard space to wire the two OMAP GPIO sig-
nals to IO ports on the AVR.3

We used the OMAP’s GPIO 130 for output in
all tests, and GPIO 138 for input and corresponding
interrupt generation for response tests. These GPIO

3Caution: many of the pads on the Trainer protoboard area
are mis-labeled!

signals run straight to the OMAP, with no (external)
busses to bottleneck.

4.2 Kernel configurations

We installed the Ubuntu Lucid Linux distribution on
the BeagleBoard, using the demo root fs image from
[3]. We ran experiments against three distinct ker-
nel configurations, summarized in Table 3. All three
configurations were built using the CodeSourcery
cross-compilation toolchain. The stock configura-
tion is built with CONFIG PREEMPT enabled. The
Adeos patches used in the xeno configuration are in-
cluded as part of the Xenomai sources.

4.3 Response experiments

Test procedure: Each experiment was run for two
hours. Each was run on the same hardware.

We configured the measurement system to issue
stimuli at random intervals from 3µs to 7071µs. At
this period, the output histograms have about 600
buckets with granularity of 1 µs.

Results: Table 4 shows the basic statistics for the
experiments.

Figure 2 presents detailed performance data for
each experiment, graphed on a linear scale. Dashed
lines indicate the envelopes within which 95% of mea-
surement samples occurred.

The 95% and 100% values are in some cases sep-
arated by orders of magnitude. Figure 3 plots these
values on a log scale.

4.4 Periodic experiments

Test procedure: Each experiment was run for two
hours. Each was run on the same hardware.

We ran the periodic task experiments with a pe-
riod of 7071µs. This is a semi-arbitrary period cho-
sen to be unlikely to align itself with periodic system
activities. With this period, the measurement sys-
tem granularity is 1 µs per bucket, with about 600
buckets.

Results: Table 6 shows the basic statistics for the
experiments.

Figure 4 presents detailed performance data for
each experiment, graphed on a linear scale. Dashed

7

0 50 100 150 200 250 300 350
0
5

10
15
20
25
30
35

%

stock linux-chrt-user

0 50 100 150 200 250 300 350
0
5

10
15
20
25
30
35

%

rt linux-chrt-user

0 50 100 150 200 250 300 350
0
5

10
15
20
25
30
35

%

xeno xeno-user

0 50 100 150 200 250 300 350
0
5

10
15
20
25
30
35

%

stock linux-kernel

0 50 100 150 200 250 300 350
0
5

10
15
20
25
30
35

%

rt linux-kernel

0 50 100 150 200 250 300 350
us

0
5

10
15
20
25
30
35

%

xeno xeno-kernel

response performance comparison

Figure 2: cross-configuration response experiments: time from GPIO input change to GPIO output change.
A dashed vertical line denotes the region containing 95% of the samples for that experiment.

8

10 100 1000 10000
us

stock linux-chrt-user 95%

rt linux-chrt-user 95%

xeno xeno-user 95%

stock linux-kernel 95%

rt linux-kernel 95%

xeno xeno-kernel 95%

stock linux-chrt-user 100%

rt linux-chrt-user 100%

xeno xeno-user 100%

stock linux-kernel 100%

rt linux-kernel 100%

xeno xeno-kernel 100%

115200bps serial bytes

response performance comparison

Figure 3: cross-configuration response experiments: maximum and 95% envelope response times plotted on
a log scale. Transmission time for 12 serial bytes at 115200bps (87µseach) is plotted for comparison.

Config Experiment # samples Median 95% 100%

stock linux-chrt-user 1840823 67µs 307µs 17227µs
rt linux-chrt-user 1849438 99µs 157µs 796µs
xeno xeno-user 1926157 26µs 59µs 90µs
stock linux-kernel 1259410 7µs 16µs 597µs
rt linux-kernel 1924955 28µs 43µs 336µs
xeno xeno-kernel 1943258 9µs 18µs 37µs

Table 4: cross-configuration response experiments: latency from input GPIO change to corresponding output
GPIO change.

Config Experiment 95% period 100% period

stock linux-chrt-user 1.63 kHz 0.03 kHz
rt linux-chrt-user 3.18 kHz 0.63 kHz
xeno xeno-user 8.47 kHz 5.56 kHz
stock linux-kernel 31.25 kHz 0.84 kHz
rt linux-kernel 11.63 kHz 1.49 kHz
xeno xeno-kernel 27.78 kHz 13.51 kHz

Table 5: cross-configuration response experiments: approximate highest frequency possible for which latency
does not exceed 1/2 period, for 95% and 100% cases.

9

�150 �100 �50 0 50 100 150�1

0
1
2
3
4
5
6
7
8

%

stock linux-chrt-user

�150 �100 �50 0 50 100 150�1

0
1
2
3
4
5
6
7
8

%

rt linux-chrt-user

�150 �100 �50 0 50 100 150�1

0
1
2
3
4
5
6
7
8

%

xeno xeno-user

�150 �100 �50 0 50 100 150�1

0
1
2
3
4
5
6
7
8

%

stock linux-kernel

�150 �100 �50 0 50 100 150�1

0
1
2
3
4
5
6
7
8

%

rt linux-kernel

�150 �100 �50 0 50 100 150
us

�1

0
1
2
3
4
5
6
7
8

%

xeno xeno-kernel

periodic performance comparison

Figure 4: cross-configuration periodic experiments: timing jitter. Dashed vertical lines denote the region
containing 95% of the samples.

10

10 100 1000 10000
us

stock linux-chrt-user 95%

rt linux-chrt-user 95%

xeno xeno-user 95%

stock linux-kernel 95%

rt linux-kernel 95%

xeno xeno-kernel 95%

stock linux-chrt-user 100%

rt linux-chrt-user 100%

xeno xeno-user 100%

stock linux-kernel 100%

rt linux-kernel 100%

xeno xeno-kernel 100%

115200bps serial bytes

periodic performance comparison

Figure 5: cross-configuration periodic experiments: maximum and 95% envelope jitter magnitudes plotted
on a log scale. Transmission time for 12 serial bytes at 115200bps (87µseach) is plotted for comparison.

Config Experiment # samples Median 95% 100%

stock linux-chrt-user 1018391 -2µs 69µs 1205µs
rt linux-chrt-user 1018387 -1µs 47µs 158µs
xeno xeno-user 1018318 -1µs 34µs 57µs
stock linux-kernel 1018255 0µs 17µs 504µs
rt linux-kernel 1018249 0µs 24µs 98µs
xeno xeno-kernel 1018449 -1µs 23µs 41µs

Table 6: cross-configuration periodic experiments: jitter relative to expected time period between successive
falling edges. 95% and 100% are absolute values.

Config Experiment 95% period 100% period

stock linux-chrt-user 7.25 kHz 0.41 kHz
rt linux-chrt-user 10.64 kHz 3.16 kHz
xeno xeno-user 14.71 kHz 8.77 kHz
stock linux-kernel 29.41 kHz 0.99 kHz
rt linux-kernel 20.83 kHz 5.10 kHz
xeno xeno-kernel 21.74 kHz 12.20 kHz

Table 7: cross-configuration periodic experiments: approximate highest frequency possible for which jitter
does not exceed 1/2 period, for 95% and 100% cases.

11

lines indicate the envelopes within which 95% of mea-
surement samples occurred.

The 95% and 100% values are in some cases sep-
arated by orders of magnitude. Figure 5 plots these
values on a log scale.

4.5 Implementations across configu-

rations

To evaluate the impact of the PREEMPT RT
patches and Xenomai patches on native Linux code,
we ran the Linux user-space and kernel-module im-
plementations on the Xenomai-patched kernel as
well; the results for all three configurations are shown
side-by-side in Tables 9 and 8.

Across all experiments, the RT kernel has signif-
icantly better (lower) maximums (100% marks) than
do the stock kernel or the Xenomai kernel. It also sig-
nificantly outperforms the other two kernels on the
95% mark for the Linux userspace implementations.
The PREEMPT RT authors are clearly succeeding
in limiting maximum scheduling latency.

The response tests median column suggests that
the scheduling overhead due to either patch set is
significant. The Xenomai patches add about 50% to
median kernelspace response time, and about 25%
to median userspace response time. RT has more
impact: it adds 300% to median kernelspace response
time, and 48% to median userspace response time.

The periodic tests median column conveys less
information, since all three kernels have excellent me-
dian periodic timing. The 95% column indicates a
wide range of variation at this more stringent mark.
The Xenomai kernelspace jitter is 65% worse than
the stock kernel jitter, while the RT kernel is 41%
worse. The RT userspace is actually the best of the
three at the 95% mark, with 17% less jitter than the
stock kernel; Xenomai has 85% worse jitter than the
stock kernel.

4.6 Qualitative testing difficulties

Along the path to generating the numerical test re-
sults presented in this section, we ran into a number
of qualitative difficulties. These impact our overall
assessment of when to choose which system.

Stock Linux: As described in Section 4.7, the
stock Linux kernel would occasionally (roughly once
every 16 hours) complain of spurious IRQs; this event

would correspond with several unusually large re-
sponse latencies.

Real-time Linux: The RT configuration was our
most problematic.

The primary RT target platform is x86; ARM
support is not as mature. To get our system to boot
without warnings, we had to disable the real-time
clock (RTC) module, since the code path for setting
it up on the BeagleBoard tries to sleep in an invalid
context.

To get our tests to work without generating ker-
nel warnings, we had to convert a small number of
GPIO-related spin-locks into raw spin locks.

Our original test loads (see Section 3.8) in-
cluded 1000 NICE’ed dd processes, but that rou-
tinely caused the RT kernel to lock up; we reduced
the count to 500, and that seemed to solve the prob-
lem.

Even with the reduced number of processes, with
the test loads running, the RT kernel becomes much
less responsive than the other two kernels were even
with the higher load.

Xenomai: We initially patched our kernel with
Xenomai release 2.5.3.

Unfortunately, that version suffered from an in-
ability to tolerate IRQ pressure; this led to kernel
panics when the test system changed the GPIO input
too rapidly. Once we had figured this out, and read
through the Xenomai-help archives to find similar
problems, we checked out the Xenomai source repos-
itory head which included a fix for the IRQ pressure
bug.

As we began running our tests with a heavily-
loaded system, however, we began to see kernel
warnings and oopses. Gilles Chanteperdrix, via the
xenomai-help mailing list, provided a one-line patch
that resolved this problem by making it safe to call
gpio set value from a Xenomai context.

4.7 Discussion

Consistency: The Xenomai implementations
stand out for having by far and away the small-
est difference between their 95% and 100% hard
performance measurements. Non-Xenomai im-
plementations show factors of 6 or more (often
much more) between 95% and 100% performance;
Xenomai implementations are factors of 2 or less.

12

Config Experiment # samples Median 95% 100%

stock linux-chrt-user 1840823 67µs 307µs 17227µs
rt linux-chrt-user 1849438 99µs 157µs 796µs
xeno linux-chrt-user 1842548 84µs 259µs 23645µs

stock linux-kernel 1259410 7µs 16µs 597µs
rt linux-kernel 1924955 28µs 43µs 336µs
xeno linux-kernel 1939653 11µs 26µs 537µs

Table 8: Comparison of response linux-based experiments across configurations.

Config Experiment # samples Median 95% 100%

stock linux-chrt-user 1018391 -2µs 69µs 1205µs
rt linux-chrt-user 1018387 -1µs 47µs 158µs
xeno linux-chrt-user 1018450 -2µs 87µs 923µs

stock linux-kernel 1018255 0µs 17µs 504µs
rt linux-kernel 1018249 0µs 24µs 98µs
xeno linux-kernel 1018307 0µs 28µs 743µs

Table 9: Comparison of periodic linux-based experiments across configurations.

95% hard performance: Stock Linux ker-
nelspace has the best 95% hard performance, and
stock Linux userspace the worst. Xenomai userspace
is substantially better than Linux userspace run on
either stock or RT, and performs within a factor of
2-4 of Linux kernelspace. Linux userspace implemen-
tation performs better on RT than on stock.

100% hard performance: Xenomai kernelspace
is the best performer. Correspondingly, the naive
thing to do is implement every real-time application
in Xenomai kernelspace. However, this is also the
most labor- and maintenance- intensive approach,
so we would not recommend it as a default strat-
egy! Xenomai userspace performs around a factor
of 2 slower than kernelspace, but still handily out-
performs all non-Xenomai implementations, in most
cases by factors of 5 or more.

Bugs, priorities, and the meaning of “100%”:

A couple of times during testing “dry runs”, we saw
surprisingly high 100% measurements (over 3000µs)
for the Linux userspace response test running on the
stock kernel. In one such run, not only did the 100%
mark go surprisingly high, but it was also impos-
sible to compute the 95% mark because so many
outliers fell beyond our measurement system’s his-
togram range.

Upon investigation, we found that during the
experiments in question, the system reported a
glitch: Spurious irq 95: 0xffffffdf, please

flush posted write for irq 37.

In more recent tests, including those reported on
here, we again saw that glitch. However, the test re-
sults did not show the high latency we had previously
seen.

The major configuration difference between the
older tests and the newer ones is a change in our pro-
cedure: previously, we had run our tests with a real-
time priority of 50, not 99, and we did not adjust the
priority of other real-time processes (e.g. watchdog)
downward.

Even before adjusting the realtime priorities, the
glitch did not happen in every run. This goes to
illustrate the point that a low 100% value in one
run is no guarantee of hitting the same low mark in
another — and a low mark on a 2 hour test is no
guarantee of hitting the same low mark over a 365-
day operational time once deployed!

Serial data: Serial devices are common in robotics
and other real-time applications.

Consider a serial device running at 115,200bps
(the maximum “standard” baud rate). It can send
data, say a sensor measurement, at a maximum rate
of 11.5kBps. If a single measurement’s data packet
contains 12 bytes (provided for comparison in Fig-
ures 5 and 3), the device can send packets at just
under 0.1kHz (i.e. period of just over 10,000µs).

In this case, by the time the entire packet has
been transmitted, the data itself is a full period old.
The system designer would have to consider how
much additional latency or jitter will affect system

13

performance after such an up-front latency.

On the BeagleBoard, a userspace process run-
ning with real-time priority on stock Linux real-time
can respond to streaming data at the 0.1kHz period
for 95%-hard performance. However, for a 100%
hard requirement, a userspace process running on
stock Linux is inadequate – but RT looks like a vi-
able solution even for the 100% case.

Frequency view: The discussion about serial data
introduced frequency as a way of considering the per-
formance implications of each implementation and
configuration.

Table 5 shows the stimulus-response frequencies
that can be achieved subject to the arbitrary require-
ment that response latency may not exceed 1/2 pe-
riod. Similarly, Table 7 shows the periodic event
frequencies that can be achieved on the BeagleBoard
subject to the arbitrary requirement that jitter may
not exceed 1/2 period.

As noted, our 1/2 period assumptions are quite
arbitrary. Each real-time application is likely to have
its own requirements, leading to correspondingly dif-
ferent practical frequency limits.

5 Recommendations

Based on our experiments with the BeagleBoard, we
offer the following recommendations on how to de-
termine which implementation approach to use for
your real-time application.

5.1 BeagleBoard

Let’s assume that you are implementing a real-time
application to run on a BeagleBoard, operate its
GPIO pins, and share the board with a heavy non-
real-time processing load. In that case, Figure 6 cap-
tures our recommended decision procedure.

One note: for 100% hard applications, we im-
mediately steer you into a Xenomai world. Xeno-
mai separates the real-time interrupt-handling paths
from the complexities of the Linux kernel. We believe
this will reduce the likelihood of rare and irrepro-
ducible events that cause timing requirements to be
violated. The benefits of this separation are reflected
in the consistency of Xenomai performance — that
is, in the relatively small range between median and
100% performance numbers on Xenomai’s numbers
across periodic and response tasks, and userspace
and kernelspace.

5.2 Everything else

While we believe that the merits of the three plat-
forms will probably stay relatively constant across
variations, they may vary somewhat with hardware,
OS version, system load, application, etc. Thus, if
you are considering another hardware platform, ap-
plication function, or you have a substantially dif-
ferent metric, you may want to generate your own
decision flow-chart.4

The most important thing is to profile your can-
didate hardware and kernel; you can re-use the struc-
ture of Figure 6; just preface each implementation
with a profiling step. E.g., for a 95% hard task,
start with stock Linux, and run a synthetic bench-
mark user-space process which in some fashion re-
sembles your ultimate application. Provide a syn-
thetic system load which resembles your anticipated
actual load. Collect data for metrics which you can
directly relate to your application requirements. Af-
ter that, if you’re marginal, profile an RT kernel, and
so on.

The goal of this exercise isn’t to generate high-
precision numbers at each step. Instead, the goal
is to determine whether you’re clearly in the black,
marginal, in trouble, or off the map. If you’re com-
pletely off the map, you can probably move straight
to dedicated hardware.

5.3 Other considerations

The cost of custom: If your application isn’t
throw-away, consider long-term maintenance over-
head cost. In all likelihood, nobody is distributing
pre-built, patched kernels for your platform, so us-
ing RT or Xenomai configurations commits you to
maintaining a custom kernel in-house.

Building custom-patched kernels is time consum-
ing, and you will almost certainly encounter more
bugs than you will in stock Linux. Identifying, clas-
sifying, and resolving those bugs is time consuming.

Furthermore, since patches are developed and
distributed separately, patch sets may lag the stock
kernel head.

Device driver: Do you have to write a new device
driver to use your hardware with Xenomai?

Do you have to modify or rewrite an existing
Linux device driver to get it to work reliably in an
RT configuration?

4Or hire us to generate it for you!

14

Performance
good?

Linux userspace
impl. run on stock

Linux w/
PREEMPT

Linux userspace
impl. run on Linux
w/ PREEMPT_RT

Deliver software

Yes

95%

Performance
good?

Yes

How bad?No

Marginal

Linux kernelspace
impl. run on stock

Linux w/
PREEMPT

Xenomai
userspace impl run
on Xenomai kernel

Awful

Performance
good?

Yes

No

Use dedicated
hardware

No

No

Performance
good?

Yes

No

How hard
real-time?

Performance
good?

Xenomai
userspace impl run
on Xenomai kernel

Yes

Performance
good?

Yes

No

Xenomai
kernelspace impl.
run on Xenomai

kernel

No

100%

Start design

Figure 6: Flowchart for selecting an real-time application implementation strategy.

15

Do you have to write a completely new device
driver no matter what, e.g. for custom hardware?

These may have a heavy influence on your choice
of configuration.

6 Related work

A complete review of benchmarking literature is well
beyond the scope of this paper. Here we discuss some
directly relevant prior work evaluating Linux and/or
Xenomai systems.

[2] compares RTAI, VxWorks, Xenomai, and
stock Linux performance for use in a nuclear fusion
application. They perform three different bench-
marks. The first is directly comparable to our re-
sponsivity benchmark. The test system is required
to change an output DAC line when an input ADC
line changes. The metrics are latency from input to
output, and latency jitter. The measurements are
taken by oscilloscope applied to the lines. All im-
plementations are kernel mode. All code runs on a
Motorola MVME5500 (PowerPC architecture).

The reported latencies range from 69.2µs (Vx-
Works) to 73.2µs (Xenomai); jitter is sub-1µs in all
cases. Xenomai is outperformed by the stock Linux
kernel (which is, in turn, outperformed by RTAI and
VxWorks.)

The paper does not report how many measure-
ments were taken for each configuration. The system
is unloaded for all reported numerical measurements,
although the authors comment that Linux perfor-
mance measures “hold only for a system which is
not loaded, and soon decrease when the workload
increases.”

While the paper does not report how latency
and jitter are calculated, the sub-1µs jitter values
seem qualitatively different from the variations we
observed in testing the BeagleBoard. As shown in
Table 4, in our testing, the Xenomai kernel response
implementation showed nearly a factor of 4 differ-
ence between median response (9µs) and slowest re-
sponse (37µs.) Furthermore, note that while the
Linux kernel does outperform the Xenomai kernel
on a 95% basis in our results, the converse is true on
a 100%-basis. Based on these distinctions, we sus-
pect that the measurement methodology and sam-
pling duration used in [2] have limited validity in
deciding whether any of the measured systems can
be used for 100%-hard nuclear fusion control.

The second benchmark described in [2] is a simi-
lar latency test; however, the input thread notifies a

second thread to perform the output write. The ad-
ditional latency, compared with the first experiment,
is determined to be the scheduling overhead, with a
maximum of under 6µs on stock Linux. The third
experiment involves separating the input and output
functions onto separate computers; the input system
sends a UDP packet to the output system over gi-
gabit Ethernet. The latency reported ranges from
101µs on RTAI+RTnet to to 157µs on VxWorks. [9]
extends and deepens the real-time networking com-
parisons.

[13] reports on a robot control application that
has an 80µs hard real-time latency requirement
for small IEEE 1394 (FireWire) data transactions.
This paper compares a Xenomai userspace and an
RTLinux Pro kernelspace query/response implemen-
tations. It reports that for a 4-byte request/response,
Xenomai has a 61µs latency while RTLinux Pro has
a 58µs response. Jitter is not reported.

[15] describes common sources of latency in
Linux x86 systems. It also includes a number of (self-
measured) latency results based on outputs to one
parallel port pin which is wired to another parallel
port pin used for input. Latency is the time from
when the system stimulates the output pin to when
it handles an incoming interrupt from the input pin.
All measurements are strictly reported against stock
Linux; however, the computational load and hard-
ware are varied, resulting in dramatically different
responsivity histograms.

[5], performed at the same institution two years
later, is in some ways similar to our present work. It
reports (self-measured) responsivity experiments run
using a parallel-port loopback, as well as periodic ac-
tivity tests with internal measurement. It reports
results across a kernel and userspace implementa-
tions for Linux with various preemption patches, for
RTAI, and for Xenomai. In general the trends are
as expected. It is noteworthy, however, that CON-
FIG PREEMPT increases the average latency not
just of stock Linux results, but also of Xenomai re-
sults; the authors discuss some possible causes. The
measurements are taken over periods of 1 minute
each, which the authors note is a brief enough period
to put measured maximum values into question.

7 Conclusion

We have presented a test system for evaluating the
performance of two real-time tasks on Linux and
Xenomai systems. The most important feature of
this suite is that it uses an external system, run-
ning code directly on “bare metal”, to perform all

16

measurements. This avoids the inherent untrustwor-
thiness of self-reported performance measurements.

We ran the suite on a specific hardware platform,
the BeagleBoard, using three different kernel config-
urations: stock Linux, Real-time (PREEMPT RT)
Linux, and Xenomai. We presented and analyzed
data from these specific tests. We also presented our
general conclusions about when each kernel configu-
ration might be most appropriate.

7.1 Acknowledgments

We want to thank several people. Gilles Chanteper-
drix fielded our questions on the xenomai-help mail-
ing list to help us get Xenomai working on our hard-
ware. Thomas Gleixner and Gowrishankar similarly
helped us with PREEMPT RT via the linux-rt-users
mailing list. Finally, Carsten Emde offered several
valuable comments on an earlier draft of this paper.
Many thanks to you all.

References

[1] Adeos home page. http://home.gna.org/

adeos/.

[2] A. Barbalace, A. Luchetta, G. Manduchi,
M. Moro, A. Soppelsa, and C. Taliercio. Perfor-
mance comparison of vxworks, linux, rtai, and
xenomai in a hard real-time application. Nuclear

Science, IEEE Transactions on, 55(1):435–439,
2008.

[3] BeagleBoard Ubuntu Lucid Linux Demo Image.
http://rcn-ee.net/deb/rootfs/ubuntu-10.

04-minimal-armel.tar.7z.

[4] Linux 2.6 kernel with BeagleBoard
patches. https://code.launchpad.net/

~beagleboard-kernel/+junk/2.6-stable.

[5] Markus Franke. A quantitative comparison
of realtime linux solutions. Technical report,
Chemnitz University of Technology, March 5
2007.

[6] Xenomai git source code repository. git://

xenomai.org/xenomai-2.5.git.

[7] Xenomai: Real-time framework for linux. http:
//www.xenomai.org.

[8] Philippe Gerum. Xenomai - Imple-
menting a RTOS emulation frame-
work on GNU/Linux, April 2004.

http://www.xenomai.org/documentation/

branches/v2.3.x/pdf/xenomai.pdf.

[9] A. Luchetta, A. Barbalace, G. Manduchi,
A. Soppelsa, and C. Taliercio. Real-time com-
munication for distributed plasma control sys-
tems. Fusion Engineering and Design, 83(2-
3):520 – 524, 2008. Proceedings of the 6th IAEA
Technical Meeting on Control, Data Acquisi-
tion, and Remote Participation for Fusion Re-
search.

[10] CONFIG RT PREEMPT patch. http:

//www.kernel.org/pub/linux/kernel/

projects/rt/patch-2.6.33.7-rt29.gz.

[11] Real-time linux frequently asked questions.
https://rt.wiki.kernel.org/index.php/

Frequently_Asked_Questions.

[12] The real-time linux wiki. https://rt.wiki.

kernel.org/index.php/Main_Page.

[13] M. Sarker, Chang Hwan Kim, Jeong-San Cho,
and Bum-Jae You. Development of a Network-

based Real-Time Robot Control System over

IEEE 1394: Using Open Source Software Plat-

form, pages 563–568. IEEE, 2006.

[14] N. Vun, H. F. Hor, and J. W. Chao. Real-time
enhancements for embedded linux. In ICPADS

’08: Proceedings of the 2008 14th IEEE Inter-

national Conference on Parallel and Distributed

Systems, pages 737–740, Washington, DC, USA,
2008. IEEE Computer Society.

[15] Thomas Wiedemann. How fast can computers
react? Technical report, Chemnitz University
of Technology, December 21 2005.

[16] Karim Yaghmour. Adaptive Domain Environ-
ment for Operating Systems. http://www.

opersys.com/ftp/pub/Adeos/adeos.pdf.

17

