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Stabilization of Nonlinear Systems Under Variable
Sampling: A Fuzzy Control Approach
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Abstract—This paper investigates the problem of stabilization
for a Takagi–Sugeno (T–S) fuzzy system with nonuniform uncer-
tain sampling. The sampling is not required to be periodic, and the
only assumption is that the distance between any two consecutive
sampling instants is less than a given bound. By using the input
delay approach, the T–S fuzzy system with variable uncertain
sampling is transformed into a continuous-time T–S fuzzy system
with a delay in the state. Though the resulting closed-loop state-de-
layed T–S fuzzy system takes a standard form, the existing results
on delay T–S fuzzy systems cannot be used for our purpose due
to their restrictive assumptions on the derivative of state delay. A
new condition guaranteeing asymptotic stability of the closed-loop
sampled-data system is derived by a Lyapunov approach plus the
free weighting matrix technique. Based on this stability condition,
two procedures for designing state-feedback control laws are
given: one casts the controller design into a convex optimization
by introducing some overdesign and the other utilizes the cone
complementarity linearization idea to cast the controller design
into a sequential minimization problem subject to linear matrix
inequality constraints, which can be readily solved using standard
numerical software. An illustrative example is provided to show
the applicability and effectiveness of the proposed controller
design methodology.

Index Terms—Input delay, linear matrix inequality, nonlinear
systems, sampled-data control, Takagi–Sugeno fuzzy systems.

I. INTRODUCTION

CONTROL of nonlinear systems is a difficult problem
because no systematic mathematical tools are available to

help find necessary and sufficient conditions for guaranteeing
their stability and performance. By using a Takagi–Sugeno
(T–S) fuzzy plant model, we can express a nonlinear system as
a weighted sum of some simple linear subsystems [5], [9], [14],
[23], [27], [35]–[39]. This model provides a fixed structure
to some nonlinear systems and greatly facilitates the analysis
and synthesis of the systems under consideration. Therefore,
the last decade witnessed a rapidly growing interest in T–S
fuzzy systems, and many important results have been reported.
Among these references, to mention a few, stability analyses are
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investigated in [23], [38], and [39], stabilizing and control
strategies are proposed in [5], [6], [9], [25], [27], [46], and
[47], filter designs are reported in [44], and reliable control
strategies are presented in [42] and [43]. These results are
concerned with many classes of T–S fuzzy systems, including
T–S fuzzy systems with parameter uncertainties [25], T–S
fuzzy systems with state delays [8], [45], T–S fuzzy systems
with actuator saturation [7], T–S fuzzy systems with singular
perturbations [28], [29], T–S stochastic fuzzy systems [40],
T–S sampled-data fuzzy systems [22], [34], and so on.

On the other hand, in practical and modern control systems,
computers are usually used as digital controllers to control con-
tinuous-time systems [11]. In such a system, a digital computer
is used to sample and quantize a continuous-time measurement
signal to produce a discrete-time signal, and then produce a
discrete-time control input signal, which is further converted
back into a continuous-time control input signal using a zero-
order hold. Such control systems involve both continuous-time
and discrete-time signals in the continuous-time framework and
are referred to as sampled-data systems. Analysis and synthesis
of sampled-data systems have been investigated in a number
of papers (see, for instance, [2], [10], [12], [15], [24], [32],
[33], [41] and the references therein). Among these references,
two main approaches have been used. The first one is based
on the lifting technique, in which the system under consider-
ation is transformed into an equivalent finite-dimensional dis-
crete system [2]. Recently, Lall and Dullerud gave a linear ma-
trix inequality (LMI) solution to sampled-data output-feedback

control by using the lifting technique when the sampling
and the hold operators are periodic and their rates are commea-
surable [24]. Lifting-based solutions are usually computation-
ally complicated, as they include the evaluation of the matrices
of lifted systems. The second one is more direct, and is based
on the representation of the system in the form of hybrid dis-
crete/continuous models. The solution is obtained in terms of
differential Riccati equations with jumps. Recently, Hu et al.
applied the hybrid system approach to robust sampled-data
control for the case of uniform sampling [21]. To overcome dif-
ficulties of solving differential inequalities with jumps, a piece-
wise linear in time Lyapunov function has been suggested, and
LMI solutions have been obtained that do not depend on the
sampling interval, and thus are quite conservative. Besides these
two main approaches, the continuous-time systems with digital
control also can be modelled as continuous-time systems with
delayed control inputs, which were introduced in [1] and [30]. In
this approach, the digital control law is represented as delayed
control between two sampling instants. This approach has been
further developed to robust sampled-data control of linear

1063-6706/$25.00 © 2007 IEEE 转载

http://www.paper.edu.cn



GAO AND CHEN: STABILIZATION OF NONLINEAR SYSTEMS UNDER VARIABLE SAMPLING: A FUZZY CONTROL APPROACH 973

systems. The most significant advantage of this input delay ap-
proach over the other two main approaches is that it does not
require the sampling distances to be constant. In other words,
this approach can be applied to systems with nonuniform un-
certain sampling.

In this paper, we aim at solving the problem of sampled-data
stabilization for T–S fuzzy systems with nonuniform uncertain
sampling. Sampled-data control of T–S fuzzy systems has been
investigated in a few papers, mainly by the aforementioned hy-
brid discrete/continuous approach (see, for instance, [22] and
[31]). It is worth noting that these pieces of work are based on
the assumption that sampling is made periodic, and the existing
results are generally difficult to be extended to systems with
variable sampling. The uncertain sampling may happen when
the sampler contains uncertainties or the mathematical model
we use is not ideally consistent with the sampling equipment. To
the best of the authors’ knowledge, so far no attempt has been
made towards solving the problem of stabilization for T–S fuzzy
systems with nonuniform uncertain sampling. This problem still
remains challenging, which motivates the present study.

In this paper, the input delay approach is adopted to solve the
problem of state-feedback stabilization for T–S fuzzy systems
with nonuniform uncertain sampling. More specifically, we do
not require the sampling to be periodic; the only assumption is
that the distance between any two consecutive sampling instants
is less than a given bound. By using the input delay approach,
the T–S fuzzy system with variable uncertain sampling is trans-
formed into a continuous-time T–S fuzzy system with a delay
in the state. Though the resulting closed-loop state-delayed T–S
fuzzy system takes a standard form, the existing results on delay
T–S fuzzy systems cannot be used for our purpose due to their
restrictive assumptions on the derivative of state delay. A new
condition guaranteeing asymptotic stability of the closed-loop
sampled-data system is derived by the Lyapunov approach plus
the free weighting matrix technique recently developed by He
et al. [19], [20]. Based on this stability condition, two proce-
dures for designing state-feedback control laws are given: one
casts the controller design into a convex optimization by intro-
ducing some overdesign and the other utilizes the cone com-
plementarity linearization (CCL) idea [13] to cast the controller
design into a sequential minimization problem subject to LMI
constraints, which can be readily solved using standard numer-
ical software [16].

The remainder of this paper is organized as follows. The
problem to be solved is formulated mathematically in Section II.
Main results, including stability analysis and controller design,
are presented in Section III. Section IV gives an illustrative
example. We conclude this paper in Section V.

The notation used throughout this paper is fairly standard.
The superscript “ ” stands for matrix transposition; denotes
the -dimensional Euclidean space; and the notation
means that is real symmetric and positive definite. In sym-
metric block matrices or long matrix expressions, we use an as-
terisk to represent a term that is induced by symmetry. Ma-
trices, if their dimensions are not explicitly stated, are assumed
to be compatible for algebraic operations.

II. PROBLEM FORMULATION

Consider the nonlinear system

(1)

where is a nonlinear function, is the state vector,
and is the control input. For state-feedback sampled-
data stabilization, only discrete measurements of can be
used for control purpose, that is, we only have measurements

at the sampling instant with

(2)

For nonlinear systems, it is now well known that a good ap-
proximation is provided by the so-called T–S fuzzy modeling.
This model is based on the suitable choice of a set of linear
subsystems, according to rules associated with some physical
knowledge and some linguistic characterization of the proper-
ties of the system. These linear subsystems properly describe, at
least locally, the behavior of the nonlinear system for a prede-
fined region of the state space. The T–S model for the nonlinear
system in (1) is given by the following [37].

Plant Rule : IF is and is and and
is , THEN

(3)

where are fuzzy sets, are constant matrices
of compatible dimensions, is the number of IF-THEN rules,
and is the premise variable
vector. Throughout this paper, it is assumed that the premise
variables do not depend on the input variable explicitly.
Given a pair of , the final output of the fuzzy system
is inferred as

(4)

where

with representing the grade of membership of
in . Then, it can be seen that

for all . Therefore, for all , we have

中国科技论文在线 http://www.paper.edu.cn



974 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 15, NO. 5, OCTOBER 2007

Fig. 1. Illustration of time delay d(t).

The purpose of this paper is to design a controller, based
on the parallel distributed compensation (PDC) technique, such
that the resultant closed-loop system is asymptotically stable
under the nonuniform sampling (2). For the fuzzy model rep-
resented by (3) or (4), the fuzzy PDC controller shares the same
IF parts with the following structure.

Controller Form: Rule : IF is and is
and and is , THEN

(5)

Thus, the controller in (5) can be represented by the following
input–output form:

(6)

For the above controller, we have assumed that the premise vari-
ables can be continuously measured online, and a zero-order
hold is placed after each subcontroller. Throughout this paper,
we make the following assumption.

Assumption 1: It is assumed that the distance between any
two sampling instants is bounded by . That is

(7)

Remark 1: The sampled-data control for the nonlinear system
in (1) through a fuzzy system approach has been investigated in
[22] and [34]. However, all these papers consider the case with
a constant sampling distance , that is, for any sampling instant

, they assume . However, the problem of sam-
pled-data control with nonuniform sampling, which has many
applications such as networked control systems, is more chal-
lenging, especially for nonlinear systems. It is worth noting that
the existing results obtained for periodic sampling case (such as
those obtained in [22], [34]) cannot be directly generalized to
variable sampling case, which constitutes the main motivation
of this paper.

III. MAIN RESULTS

A. Basic Idea

In this section, we will present our main results for the
sampled-data stabilization problem described above through an
input delay approach. The key idea behind this approach is that
we represent the sampling instant as

(8)

where . By connecting the system in (4) and the
controller in (6), we have the closed-loop system as follows.

Closed-Loop System:

(9)

By noticing (8), the closed-loop system in (9) can be rewritten
as

(10)

Now, we have transformed the sampled-data closed-loop
system in (9) into a continuous-time system with a time-varying
delay in the state. In the following, we will investigate
how to design a stabilizing sampled-data controller based on
the transformed closed-loop system in (10).

Remark 2: From (7) and (8), it is easy to see that
and , for all . An illustration of
the time delay is given in Fig. 1. Therefore, the sampled-
data fuzzy system in (9) can be seen as a particular class of the
state-delayed fuzzy system in (10). The asymptotic stability of
system (9) will be guaranteed if (10) is asymptotically stable.

Remark 3: Though the fuzzy sampled-data closed-loop
system has been transformed into a continuous-time fuzzy
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system with a time-varying delay in the state, it is worth
pointing out that the existing results for fuzzy time-delay
systems cannot be used for our purpose. To the best of the au-
thors’ knowledge, the results obtained for fuzzy delay systems
can be generally divided into two categories: delay-indepen-
dent and delay-dependent results. Easily understandable, the
delay-independent results cannot be used for system (10) due
to their ignorance of the delay size. Moreover, the existing
delay-dependent stability results also cannot be applied to
system (10) because most of them are based on the assumption
that or assume the delay to be constant. Note
here in our problem the derivative of time delay at the
sampling instant does not exist (please refer to Fig. 1). In what
follows, we will develop a new procedure for stability analysis
and controller synthesis.

B. Stability Analysis

In this section, we are concerned with the stability analysis
of the closed-loop system. More specifically, assuming that all
the subcontroller gains are known, we shall
study the conditions under which the closed-loop system in
(10) is asymptotically stable. The following theorem shows that
asymptotic stability of the closed-loop sampled-data system
can be guaranteed if there exist some matrices satisfying cer-
tain LMIs. This theorem will play an instrumental role in the
controller design.

Theorem 1: Consider the fuzzy system in (4) with Assump-
tion 1, and suppose the gain matrices of
the subsystem controllers (6) are given. The closed-loop sam-
pled-data system in (9) is asymptotically stable if there exist
matrices and satisfying

(11)

where

Proof: Define the following Lyapunov–Krasovskii
functional:

(12)

where

and are matrices to be determined. Then, along
the solution of system (10), the time derivative of is given
by (13), where is given in (14)

(13)

(14)

In addition, we have (15) as shown at the bottom of the next
page. By the Newton–Leibniz formula, we have

(16)

Then, for any matrices and , we have (17) and thus (18)

(17)

(18)
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Adding in (18) to (13) yields (19) as shown at the bottom of
the page. On the other hand, by noticing , from (11) it
is not difficult to get

(20)
which implies

(21)

and thus

(22)

(23)

Then, for any , it follows from (22) that there exists a scalar
such that

(24)

Then, from (19)–(24), we can obtain

This implies the asymptotic stability of the closed-loop system
in (9) and (10), and the proof is completed.

Remark 4: From the above proof, we can see that no
model transformation is performed in order to obtain the
delay-dependent stability condition. It should be noted that
in deriving delay-dependent stability and performance con-
ditions, a common approach is to transform the original

(15)

(19)
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system into another one by using the Newton–Leibniz for-
mula. In this framework, usually one has to employ some
bounding techniques to find upper bounds for the inner product
between two vectors. These bounding techniques involve
some matrix inequalities, such as the well-known inequality

. Employing these inequalities will
inevitably introduce some overdesign into the derived condi-
tions. However, it is worth emphasizing that in our derivation,
no system transformation has been performed to the original
system and thus no inequality is needed for seeking upper
bounds of the inner product between two vectors. This feature
has the potential to yield less conservative results.

Remark 5: It can be seen from the above development that the
input delay approach, though effective for the sampled-data sys-
tems, has introduced some overdesign when treating the sam-
pling as a delayed input. The conservativeness comes from the
fact that the delay in the transformed system in (10) is
only one particular type of all nondifferentiable delays, while
the condition presented in Theorem 1 is suitable for all nondif-
ferentiable delays. Therefore, how to develop a stability condi-
tion that removes this overdesign for the delay shown in Fig. 1
is an interesting topic that is worthy of further investigation.

C. Controller Design

Theorem 1 presents an LMI condition by which the
closed-loop sampled-data system is asymptotically stable.
It is worth noting that for given subsystem matrices
and distributed controller matrices , (11) is a set of strict
LMIs with respect to matrix variables , and
thus can be efficiently solved by available numerical software.
However, when the subsystem controller gains are not
known, (11) is a set of nonlinear matrix inequalities. By obser-
vation, it is not easy to transform this set of nonlinear matrix
inequalities to an equivalent set of LMIs. In what follows, we
will present two procedures for controller design, that is, to find
the subsystem controller gains .

Theorem 2: Consider the fuzzy system in (4) with Assump-
tion 1. A stabilizing controller in the form of (6) exists, such
that the closed-loop sampled-data system in (9) is asymptoti-
cally stable, if there exist matrices , and

satisfying

(25)

where

(26)

Moreover, if the above condition has a feasible solution, the
gains of the subsystem controllers in (5) are given by

(27)

Proof: Suppose there exist matrices
and satisfying (25); we will prove that there must exist

matrices and satisfying (11).
First, since , we have , which

is equivalent to

(28)

Thus, from (25) and (28), we have

(29)

Performing a congruence transformation to (29) by
diag , we have (30) as shown at the
bottom of the next page, where

which, by Schur complement, is equivalent to

(31)

where

Now, define the following matrix variables:

By substituting the above matrix variables into (31), we readily
obtain (11), which means that there exist matrices

and satisfying (11), and thus the controller gains
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defined in (27) render the closed-loop sampled-data system in
(9) to be asymptotically stable.

Remark 6: Theorem 2 presents a sufficient condition for de-
termining the gains of subsystem controllers. Condition (25) is a
set of LMIs, and thus can be efficiently solved by using standard
numerical software. It is worth pointing out that the condition
in Theorem 2 is not equivalent to that in Theorem 1. In other
words, the condition in Theorem 2 is more stringent than that in
Theorem 1. In the following, we will present another controller
design procedure.

Theorem 3: Consider the fuzzy system in (4) with Assump-
tion 1. A stabilizing controller in the form of (6) exists, such
that the closed-loop sampled-data system in (9) is asymptoti-
cally stable, if there exist matrices and

satisfying

(32)

where and are given in (26). Moreover, if the above
condition has a feasible solution, the gains of the subsystem
controllers in (5) are given by (27).

Proof: The proof follows similar lines as those in the proof
of Theorem 2, and is thus omitted.

Remark 7: Theorem 3 presents a sufficient condition for
the existence of desired controllers, which is equivalent to the
condition in Theorem 1. However, (32) is still a set of nonlinear
matrix inequalities, which cannot be directly solved using
standard numerical software. In the following, we will present
an iterative procedure for solving the nonconvex conditions in
Theorem 3.

First, we define a new variable such that
and replace (32) with

(33)

(34)

where and are given in (26). Then, (34) is equivalent
to

which, by Schur complement, is further equivalent to

Now, by introducing new matrix variables and
, the original condition (32) can be represented as (33)

and

(35)

(36)

Denote the following set:

and are satisfied

as the solution of Theorem 3. It is noted that is not a convex
set due to the matrix equality constraints in (36). Several ap-
proaches have been proposed to solve such nonconvex feasi-
bility problems, among which the CCL method [13] is the most
commonly used one (for instance, the CCL algorithm has been
used for solving the controller design problems as well as model
reduction problems [17], [18]). The basic idea in CCL algorithm

is that if the LMI is feasible in the matrix vari-

ables and , then , and
if and only if . Very recently, a so-called sequential
linear programming matrix method (SLPMM) was proposed for
solving such nonconvex feasibility problems, which can be seen
as an improved version of the CCL algorithm. As is indicated in
[26], the SLPMM algorithm is superior to the CCL algorithm in
that it always generates a sequence of iterates with strictly de-
creasing objective function values and is globally convergent.
Here, we will employ the SLPMM algorithm to solve the non-
convex feasibility problem formulated above.

First, for computational purposes, introduce a sufficiently
small scalar and replace (33) by

(37)

(30)
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The idea behind such dealing is to make the condition in (33)
closed by introducing the small positive scalar . Secondly, to
convexify , the equality constraints in (36) can be weakened
to the following semidefinite programming relaxations:

(38)

Note that the equality constraints in (36) correspond to the
boundaries of the convex sets in (38). Now, define

and

Then, is a closed and convex set and thus the SLPMM algo-
rithm can be applied to find feasible solutions of Theorem 3 via
solving the following problem.

Problem SDS (Sampled-Data Stabilization): See (39) at the
bottom of the page.

If the solution of the above minimization problem is 3 , that
is, , then the conditions in
Theorem 3 are solvable. A detailed SLPMM algorithm adapted
to our problem is presented as follows.

Algorithm SDS

Step 1) Given the following parameters:

Error bound to control the solution
precision

Maximum number of iterations

Sufficiently small positive scalar for (37)

Step 2) Find a feasible set

. Set .

Step 3) Solve the following LMI problem in (40) for the matrix

variables

. See (40) at the bottom of the page.

Step 4) Substitute the obtained matrix variables

into (32). If

condition (32) is satisfied, with

(41)

then output the feasible solutions

. EXIT.

Step 5) If , EXIT.

Step 6) Calculate by solving

where

Set

and , go to Step 3).

Remark 8: In Algorithm SDS, we use (32) and (41) as the
stopping criterion since it can be numerically difficult in prac-
tice to obtain an optimal solution such that its corresponding
minimum value in Step 3) is exactly equal to 3 .

Remark 9: This algorithm is similar to that developed in [26]
for the design of static output-feedback controllers. It
is noted that the SLPMM-based Algorithm SDS will recover
the CCL algorithm [13] by setting . As indicated in [26],

(39)

(40)
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Fig. 2. Membership functions of the two-rule model.

Algorithm SDS always generates a strictly decreasing sequence
of the objective function in (39). That is

where

Thus, always converges to some . If
, then an optimal solution

.
Upon the obtained feasible solution, desired gains of the
subsystem controllers in (5) can be obtained by (27).

IV. ILLUSTRATIVE EXAMPLE

In this section, we will use an example to illustrate the ap-
plicability of the sampled-data controller design procedure pro-
posed in this paper. Consider the problem of balancing and
swing-up of an inverted pendulum on a cart. The equations of
the pendulum motion are given by [4]

(42)

where is the angle (in radians) of the pendulum from
the vertical, is the angular velocity, and is the force
applied to the cart (in newtons). m/s is the gravity
constant, is the mass of the pendulum, is the mass of the
cart, 2 is the length of the pendulum, and .
Here we choose kg, kg, and m in
simulations [3].

The control objective here is to balance the inverted pendulum
for the approximate range through a
sampled-data control approach. First, we represent the system
in (42) by a two-rule Takagi–Sugeno fuzzy model [39]

Model Rule 1 IF is about

THEN

Model Rule 2 IF is about

THEN (43)

where

and (notice that when , the system
is uncontrollable). Membership functions for Rules 1 and 2 are
shown in Fig. 2.
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Fig. 3. State response of the closed-loop sampled-data system.

Now assume that the state variable is measured at the
sampling instant , where satisfies Assumption 1 with

ms (that is, the sampling distances are allowed to change
with time but do not exceed 15 ms). By using the sampled-data
controller design method (Theorem 1), we obtain the following
PDC control law:

Model Rule 1 IF is about

THEN

Model Rule 2 IF is about

THEN

where

To illustrate the asymptotic stability of the closed-loop
system, we assume that the initial condition of the state is

and the sampling instant is generated
randomly with the constraint that ms for
all . The state response of the closed-loop sampled-data
system is depicted in Fig. 3, from which we can see that the
closed-loop sampled-data system is asymptotically stable,
showing the effectiveness of the proposed controller design

procedure. Finally, by maximizing in Theorem 1, we obtain
that the maximum value of is 18 ms, such that the condition
in Theorem 1 has feasible solutions, and the controller gain
matrices are given by

V. CONCLUDING REMARKS

In this paper, we have investigated the problem of state-feed-
back stabilization for T–S fuzzy systems with nonuniform un-
certain sampling. This problem was solved through an input
delay approach, which represented the hybrid system with both
continuous and discrete signals as a continuous-time system
with a delay in the state. The sampling is not required to be pe-
riodic, and the only assumption is that the distance between any
two consecutive sampling instants is less than a given bound. An
LMI-based stability condition has been obtained for the closed-
loop sampled-data fuzzy system, upon which two procedures
have been proposed for designing desired state-feedback con-
trollers. An illustrative example has been used to show the ef-
fectiveness of the proposed controller design procedures. The
results reported here can be further extended to T–S fuzzy sys-
tems with uncertain parameters and to control of T–S fuzzy
systems.
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