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a b s t r a c t 

Human activities are inherently translation invariant and hierarchical. Human activity recognition (HAR), 

a field that has garnered a lot of attention in recent years due to its high demand in various application 

domains, makes use of time-series sensor data to infer activities. In this paper, a deep convolutional neu- 

ral network (convnet) is proposed to perform efficient and effective HAR using smartphone sensors by 

exploiting the inherent characteristics of activities and 1D time-series signals, at the same time providing 

a way to automatically and data-adaptively extract robust features from raw data. Experiments show that 

convnets indeed derive relevant and more complex features with every additional layer, although differ- 

ence of feature complexity level decreases with every additional layer. A wider time span of temporal 

local correlation can be exploited (1 ×9–1 ×14) and a low pooling size (1 ×2–1 ×3) is shown to be bene- 

ficial. Convnets also achieved an almost perfect classification on moving activities, especially very similar 

ones which were previously perceived to be very difficult to classify. Lastly, convnets outperform other 

state-of-the-art data mining techniques in HAR for the benchmark dataset collected from 30 volunteer 

subjects, achieving an overall performance of 94.79% on the test set with raw sensor data, and 95.75% 

with additional information of temporal fast Fourier transform of the HAR data set. 

© 2016 Published by Elsevier Ltd. 
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. Introduction 

With the rapid technological advancement and pervasiveness

f smartphones today especially in the area of microelectronics

nd sensors, ubiquitous sensing , which aims to extract knowledge

rom the data acquired by pervasive sensors, has become a very

ctive area of research ( Lara & Labrador, 2012 ). In particular, hu-

an activity recognition (HAR) using powerful sensors embedded

n smartphones have been gaining a lot of attention in recent years

ecause of the rapid growth of application demands in domains

uch as pervasive and mobile computing, surveillance-based secu-

ity, context-aware computing, and ambient assistive living, and

he ability to unobtrusively perform the recognition task ( Chen,

oey, Nugent, Cook, & Yu, 2012 ). HAR using smartphone sensors

s a classic multi-variate time-series classification problem, which

akes use of 1D sensor signals and extracts discriminative features

rom them to be able to recognize activities by utilizing a classi-

er ( Plotz, Hammerla, & Olivier, 2011 ). Such a tight 1D structure

mplies the presence of highly-correlated temporally nearby read-

ngs ( LeCun & Bengio, 1998 ). Moreover, it is apparent that the keys
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o performing successful HAR are appropriately designed feature

epresentations of sensor data and suitable classifiers ( Plotz et al.,

011 ). 

Human activities have inherent hierarchical structures, and in

he context of using sensors for HAR, are very prone to small trans-

ations at the input ( LeCun, Bengio, & Hinton, 2015; Duong, Phung,

ui, & Venkatesh, 2009 ). The former refers to the characteristic of

ctivities that can be broken down to simpler actions, while the

atter denotes the different forms and styles people perform the

ame activities. Such attributes of activities and time-series signals

re very useful knowledge if properly utilized and taken advantage

f by the feature extractor and classifier. 

Recent breakthroughs in image and speech recognition have re-

ulted in a new enthusiastic research field called deep learning.

onvolutional neural networks (convnet), in particular, have set the

atest state-of-the-art in image and speech domains ( Krizhevsky,

utskever, & Hinton, 2012 ). However, not only image and speech

an benefit from such a powerful feature extraction mechanism

nd classifier such as convnet—HAR is also a good match especially

hen considering translation invariance and temporally correlated

eadings of time-series signals, hierarchical structure of activities,

nd HAR feature extraction problems. 

In this paper, we propose a convnet as the automatic feature

xtractor and classifier for recognizing human activities using

martphone sensors. The convolution operation effectively exploits

http://dx.doi.org/10.1016/j.eswa.2016.04.032
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2016.04.032&domain=pdf
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mailto:sbcho@yonsei.ac.kr
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Fig. 1. 1D time-series multi-axes sensor input signal. 
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the temporally-local dependency of time-series signals and the

pooling operation cancels the effect of small translations in the

input ( LeCun et al., 2015 ). Using a multi-layer convnet with alter-

nating convolution and pooling layers, features are automatically

extracted from raw time-series sensor data (illustrated in Fig. 1 ),

with lower layers extracting more basic features and higher layers

deriving more complex ones. We show how varying convnet archi-

tectures affects the over-all performance, and how such a system

that requires no advanced preprocessing or cumbersome feature

hand-crafting can outperform other state-of-the-art algorithms in

the field of HAR. 

2. Related works 

Some of the pioneering works in HAR using the accelerometer

was published way back in the 90s ( Foerster, Smeja, & Fahrenberg,

1999 ). However, the most cited work that was able to produce sat-

isfactory results with multiple sensors placed on different parts of

the body together with different data mining algorithms was by

Bao and Intille (2004 ). This work concluded that the sensor placed

on the thigh was the most effective in recognizing different ac-

tivities, which was a finding that Kwapisz and her colleagues uti-

lized to perform HAR with only one accelerometer embedded in

a smartphone ( Kwapisz et al., 2010 ). With their own hand-crafted

features from sensor data, their work showed that J48 decision

trees and multilayer perceptrons achieve higher performance in

terms of accuracy compared to other data mining techniques; how-

ever, both classifiers cannot efficiently differentiate between very

similar activities such as walking upstairs and walking downstairs. 

Sharma et al. used neural networks (ANN) ( Sharma, Lee, &

Chung, 2008 ), while Khan used decision trees and the Wii Remote

to classify basic activities ( Khan, 2013 ). Another work declared k-

nearest neighbors (kNN) as the best classifier, but still failed to

effectively classify very similar activities ( Wu, Dasgupta, Ramirez,

Peterson, & Norman, 2012 ). Nevertheless, the latter and another

work by Shaoib et al. both testified to the usefulness of the gyro-

scope in conjunction with the accelerometer when classifying ac-

tivities ( Shoaib, Bosch, Incel, Scholten, & Havinga, 2014 ). Anguita

et al. used 561 hand-designed features to classify six different ac-

tivities using a multiclass support vector machine (SVM) ( Anguita,

Ghio, Oneto, Parra, & Reyes-Ortiz, 2012 ). All of these works have

derived their own set of hand-designed features, which makes
hem very hard to compare with each other due to different ex-

erimental grounds, and encountered difficulty in discriminating

etween very similar activities. In this work, using both the ac-

elerometer and gyroscope of a smartphone, we show that con-

nets are able to overcome these problems of current HAR systems.

Research about HAR using deep learning techniques and their

utomatic feature extraction mechanism is very few. Among the

rst works that ventured in it are ( Plotz et al., 2011 ), which made

se of restricted Boltzmann machines (RBM), and ( Bhattacharya,

urmi, Hammerla, & Plotz, 2014; Li, Shi, Ding, & Liu, 2014; Vollmer,

ross, & Eggert, 2013 ), which both made use of slightly differ-

nt sparse-coding techniques. The above mentioned deep learn-

ng methods indeed automatically extract features from time-series

ensor data, but all are fully-connected methods that do not cap-

ure the local dependency characteristics of sensor readings ( LeCun

 Bengio, 1998 ). Convolutional neural networks (convnets) were fi-

ally used together with accelerometer and gyroscope data in the

esture recognition work by Duffner, Berlemont, Lefebvre, and Gar-

ia (2014 ), which have concluded that convnet outperforms other

tate-of-the-art methods in gesture recognition including DTW and

MM. 

Zeng et al. (2014) and Zheng, Liu, Chen, Ge, and Zhao (2014 )

oth applied convnets to HAR using sensor signals, but the former

ssessed the problem of time-series in general and the latter only

ade use of a one-layered convnet, which disregards the possible

igh advantage of hierarchically extracting features. However, Yang

t al. applied convnets to HAR with hierarchical model to confirm

he superiority in several benchmark problems ( Yang, Nguyen, San,

i, & Krishnaswamy, 2015 ). It is obvious for the deep learning to

ecome the dominant technique for the HAR sooner or later, and

n this paper, we aim to give the whole picture of utilizing the

onvnet to work out the problem of HAR from H/W and S/W to hy-

erparameter tuning, and evaluate the performance with the larger

enchmark data collected from 30 volunteer subjects. 

. The proposed method 

Human activities are also hierarchical in a sense that complex

ctivities are composed of basic actions or movements prerequisite

o the activity itself ( Duong et al., 2009 ). Moreover, they are

ranslation-invariant in nature in that different people perform the

ame kind of activity in different ways, and that a fragment of an
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Fig. 2. Hardware and software setup. 
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ctivity can manifest at different points in time ( LeCun et al., 2015 ).

n addition, considering that recognizing activities using sensors

nvolve time-series signals with a strong 1D, highly-temporally

orrelated structure ( LeCun & Bengio, 1998 ), and extracted sensor

eatures having a very high impact on over-all performance ( Plotz

t al., 2011 ), the use of a technique that addresses all these is very

ital. Convolutional neural networks (convnets) exploit these signal

nd activity characteristics through its convolution and pooling

perations, together with its hierarchical derivation of features. 

We start by describing our hardware and soft-

are setup, and move on to the concepts of con-

nets, its hyperparameters, and regularization techniques

sed. 

.1. Hardware and software setup 

Fig. 2 shows the hardware and combinations of software con-

tructed in our research. When it comes to convolutional neural

etworks, the network’s size is limited mainly by the amount of

emory available on the GPUs being used and by the amount of

raining time that the user is willing to tolerate ( Krizhevsky et al.,

012 ). For example, training LeNet5 requires a minimum GPU RAM

f 1GB. Logically, a larger GPU RAM is needed to train much bigger

onvolutional networks. To address this, our hardware is composed

f two Intel Xeon E5 CPUs that drive two NVIDIA Quadro K5200

PUs. The former has six cores and twelve threads each, powerful

nough to drive an NVIDIA GPU. The two NVIDIA Quadro K5200

PUs have 8 gigabytes of RAM, 2304 CUDA cores, and a bandwidth

f 192 GB/s. The bandwidth of the Quadro K5200 is considered to

e in the higher end of the hierarchy of NVIDIA GPUs; its RAM is

reater than that of Tesla K20, and its bandwidth is comparative to

he latter as well. 

The software is installed with the latest Ubuntu Linux oper-

ting system (14.04), in conjunction with Python and the CUDA

oolkit. Python has very efficient libraries for matrix multiplication,

hich is vital when working with deep neural networks, while

he CUDA Toolkit provides a comprehensive development environ-

ent for NVIDIA GPU-accelerated computing. Built on top of these

s Theano, a C/CUDA compiler that enables floating point opera-

ions on the GPU, with a tight integration with the Python Numpy

ibrary and allows for speeds rivaling hand-crafted C implementa-

ions for large amounts of data ( Bergstra et al., 2010 ). 

Next in line is Pylearn2—a rapidly developing machine learn-

ng library in Python ( Goodfellow et al., 2013 ). The library focuses

n flexibility and extensibility of implementing deep learning al-

orithms, which makes sure that nearly any research idea is fea-

ible to implement in the library. Implementation on Pylearn2 has

hree main code blocks: the data provider, the deep learning al-

orithm, and the YAML configuration file. The data provider ac-

esses the database of sensor data and converts it to a form that
he Pylearn2 algorithm implementation can understand (properly-

haped numpy arrays). The algorithm implementation includes all

he parts of the particular deep learning model, complete with

eural network classes, a cost function, and a training algorithm.

he YAML configuration file contains the training procedure, hy-

erparameter settings, algorithm function calls, and even data pre-

rocessing directions, all in one place, which enables researchers

o easily reproduce their research and save experiment parameters

or future reference. 

.2. Deep convolutional neural networks for HAR 

Convolutional neural networks perform convolution operations

nstead of matrix multiplication. Fig. 3 shows the whole process

f the convolutional neural networks for training and classification

rocesses for HAR and the hyperparameters that should be deter-

ined. In this figure, if x 0 
i 

= [ x 1 , . . . , x N ] is the accelerometer and

yroscope sensor data input vector and N is the number of values

er window, the output of the first convolutional layer is: 

 

1 , j 
i 

= σ

( 

b 1 j + 

M ∑ 

m =1 

w 

1 , j 
m 

x 0 , j 
i + m −1 

) 

, (1) 

here l is the layer index, σ is the activation function, b j is the

ias term for the j th feature map, M is the kernel/filter size,and w 

j 
m 

s the weight for the feature map j and filter index m . Similarly, the

utput of the l th convolutional layer can be calculated as follows:

 

l, j 
i 

= σ

( 

b l j + 

M ∑ 

m =1 

w 

l, j 
m 

x l−1 , j 
i + m −1 

) 

. (2) 

A summary statistic of nearby outputs is derived from c 
l, j 
i 

by

he pooling layer. The pooling operation used in this paper, max-

ooling, is characterized by outputting the maximum value among

 set of nearby inputs, given by 

p l, j 
i 

= max 
r∈ R 

(
c l, j 

i ×T + r 
)
, (3) 

here R is the pooling size, and T is the pooling stride. Several

onvolutional and pooling layers can be stacked on top of one an-

ther to form a deep neural network architecture. These layers act

s a hierarchical feature extractor; they extract discriminative and

nformative representations with respect to the data,with basic to

ore complex features manifesting from bottom to top. 

A combination of fully-connected layer and softmax classifier

or just a simple softmax layer) can be utilized to recognize activ-

ties, which acts as the topmost layer. Features from the stacked

onvolutional and pooling layers are flattened to form feature vec-

ors p l = [ p , . . . , p ] , where I is the number of units in the last
1 I 
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Fig. 3. The overview of the convolutional neural network used for this paper. 
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pooling layer, as input to the fully-connected layer: 

h 

l 
i = 

∑ 

j 

w 

l−1 
ji 

(
σ
(

p l−1 
i 

)
+ b l−1 

i 

)
, (4)

where σ is the same activation function used in the previous lay-

ers, w 

l−1 
ji 

is the weight connecting the i th node on layer l − 1 and

the j th node on layer l , and b l−1 
i 

is the bias term. The output of the

last layer, the softmax layer, is the inferred activity class: 

P ( c| p ) = argmax 
c∈ C 

exp 

(
p L −1 w 

L + b L 
)

∑ N C 
k =1 

exp 

(
p L −1 w k 

) , (5)

where c is the activity class, L is the last layer index, and N C is the

total number of activity classes. 

Forward propagation is performed using Eqs. (1) –(4) , which

give us the error values of the network. Weight update and error

cost minimization through training is done by stochastic gradient

descent (SGD) on minibatches of sensor training data examples.

Backpropagation through the fully-connected layer is computed by

∂E 

∂w 

l 
i j 

= y l i 
∂E 

∂x l+1 
j 

, (6)

where E is the error/cost function, y l 
i 
= σ (x l 

i 
) + b l 

i 
, w 

l 
i j 

is a weight

from a unit u l 
i 

in layer l to a unit u l+1 
j 

in layer l + 1 , and x l+1 
j 

is

the total input to unit u l+1 
j 

. Backpropagation to adjust weights in
he convolutional layers is done by computing the gradient of the

eights: 

∂E 

∂ w ab 

= 

N−M−1 ∑ 

i =0 

∂E 

∂x l 
i j 

y l−1 
( i + a ) , (7)

here y l−1 
( i + a ) is the nonlinear mapping function equal to σ ( x l−1 

( i + a ) ) +
 

l−1 , and deltas ∂E 

∂x l 
i j 

are equal to ∂E 

∂y l 
i j 

σ ′ ( x l 
i j 
) . The forward and back

ropagation procedure is repeated until a stopping criterion is sat-

sfied (e.g., if the maximum number of epochs is reached, among

thers). 

.2.1. Regularization 

Very large weights can cause the weight vector to get stuck in

 local minimum easily since gradient descent only makes small

hanges to the direction of optimization. This will eventually make

t hard to explore the weight space. Weight decay or L2 regular-

zation is a regularization method that adds an extra term into the

ost function that penalizes large weights. For each set of weights,

he penalizing term λ�w 

w 

2 is added to the cost function: 

 = E 0 + λ
∑ 

w 

w 

2 , (8)

here E 0 is the unregularized cost function, and λ is the weight

ecay coefficient. With this new cost function, the learning rule
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Table 1 

Experimental setup. 

Parameter Value 

The size of input vector 128 

The number of input channels 6 

The number of feature maps 10–200 

Filter size 1 ×3–1 ×15 

Pooling size 1 ×3 

Activation function ReLU (rectified linear unit) 

Learning rate 0 .01 

Weight decay 0 .0 0 0 05 

Momentum 0 .5–0.99 

The probability of dropout 0 .8 

The size of minibatches 128 

Maximum epochs 50 0 0 
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ecomes: 

 i = ( 1 − ηλ) w i − η
∂ E 0 
∂ w i 

, (9) 

here 1 − ηλ is the weight decay factor. 

Momentum-based gradient descent introduces the notion of ve-

ocity for the parameters being optimized, in such a way that the

radient changes the velocity rather than the position in weight

pace directly. Let v = [ v 1 , . . . , v K ] as velocity variables, one for

ach weight variable. The gradient descent update rule becomes:

 → v ′ = μv − η∇E, (10)

 → w 

′ = w + v ′ , (11)

here μ is the momentum coefficient. 

Dropout modifies the network itself to avoid overfitting instead

f modifying the cost function. It works by randomly and tem-

orarily deleting a node in the network, while leaving input and

utput neurons intact, which makes it equivalent to training a lot

f different neural networks. The networks with different archi-

ectures will overfit in different ways, but their average results

ill effectively reduce overfitting ( Hinton, Srivastava, Krizhevsky,

utskever, & Salakhutdinov, 2012 ). It also forces neurons not to rely

n the presence of other particular neurons, enabling learning of

ore robust features ( Krizhevsky et al., 2012 ). Dropout is accom-

anied by an include probability, and is done independently for

ach node and for each training example. In our proposed convnet

rchitecture, dropout is applied only to the fully-connected layer. 

.2.2. Hyperparameters 

It is clear that there is a large number of possible combinations

f setting for the convnet hyperparameters. To assess the effects of

arying the values of these hyperparameters on the performance of

he network when using HAR sensor data, we incorporated greedy-

ise tuning starting from the number of layers L (one-layer, L 1 ;

wo-layer, L 2 ; three-layer, L 3 ; and four-layer, L 4 ), the number of

eature maps J , the size of the convolutional filter M , and the pool-

ng size R . We varied the number of layers from 1 to 4, the number

f feature maps from 10 to 200 in intervals of 10 (the same num-

er for all layers ( Wu et al., 2012 )), the filter size from 1 ×3 to

 ×15, and pooling size from 1 ×2 to 1 ×15. Up until the adjust-

ent of pooling size, we use only a simple softmax classifier. On

he other hand, we switch to a multilayer perceptron on the suc-

eeding runs to be able to show performance improvements that

esult in incorporating the final changes to the architecture. 

. Experiments 

.1. Data set and experimental setup 

Accelerometer and gyroscope tri-axial sensor data were col-

ected from 30 volunteer subjects who performed six different ac-

ivities while the smartphone was in their pockets. These sensor

ata were sampled at a rate of 50 Hz, and were separated into

indows of 128 values, with 50% overlap; the 128-real value vec-

or stands for one example for one activity (for each acc and gyro

xis). With this raw input, we perform 6-channel (6-axes), 1D con-

olution ( Anguita, Ghio, Oneto, Parra, & Reyes-Ortiz, 2013 ). (When

ompared to colored images, 3-channel (RGB), 2D convolution is

erformed.) Table 1 shows the experimental setup. 

There are a total of 7352 examples for the training data (from

1 randomly selected subjects), and 2947 examples for the test

ata (from the remaining 9 subjects). We standardize these values

y subtracting the mean and dividing by the standard deviation: 

 = 

x − x̄ 
. (12) 
σ r  
.2. Results and discussion 

We incorporate a greedy-wise tuning of hyperparameters

herein we adjust the number of layers, number of feature maps,

lter size, and pooling size (in that order), and retain the best con-

guration from the previous step. In this phase, we incorporate

ax-pooling, a learning rate of 0.01, padding for ‘full’ convolution,

nd a Gaussian initialization of U(0.05, 0.05). We used a weight

ecay value of 0.0 0 0 05, and increased the momentum from 0.5 to

.99. Training was done for 50 0 0 epochs, with an early stopping

riterion of halting training when there is no decrease in error dur-

ng the last 100 epochs ( Bengio, 2012 ). The model that achieves the

owest error rate on the validation set is saved. 

Fig. 4 shows the effect of increasing number of feature maps

n the performance of one-layer ( L 1 ), two-layer ( L 2 ), three-layer

 L 3 ), and four-layer ( L 4 ) architectures. As can be seen in the fig-

re, there is a steady increase in performance on validation data

ith increasing layers. However, on validation data, the increase

n performance from L 3 to L 4 is much smaller. On test data, the

ncrease in performance from L 2 to L 3 is much smaller and there

re only four small increasing points in performance from L 3 to L 4 .

urthermore, we have found that adding a fourth layer results in

 decrease in performance from L 3 . This shows that as layers are

dded, more complex features are indeed extracted, but there is a

ecrease in level of complexity compared to the previous layer. 

In addition to that, the graphs show that increasing the num-

er of feature maps does not necessarily translate to increase in

erformance. For L 1 , L 2 , and L 3 configurations, the number of fea-

ure maps that achieved the best performance on the test set are

 1 = 120 (82.68%), J 2 = 130 (89.67%), and J 3 = 200 (90.90%). The

erformance does not increase when the number of feature maps

s greater than 130, and the product of the number of features in

he input should be roughly constant with each additional layer. 

From the previous best result configurations, we then increase

he filter size. Fig. 5 shows the effect of increasing filter size on

erformance. Filter sizes that achieved high performance on the

est set range from 1 ×9 to 1 ×14, an approximate time span of

.18 to 0.28 seconds. This implies that we can exploit this much

arger range of temporal local dependency to achieve better results,

s opposed to considering only the immediate neighbors of one

ime step, 1 ×3, which is the usual configuration applied. 

Fig. 6 shows the effect of pooling size on performance. Unlike

lter size, pooling size does not have much potential in increas-

ng the performance of the over-all classifier. Based on our multi-

le runs, a setting of 1 ×2 or 1 ×3 is enough. After this run, the

urrent best convnet has hyperparameter settings of J( L 3 ) = 200 ,

 = 11 , and R = 2 , with 92.60% accuracy on the test set. The results

f tuning the learning rate μ are shown in Table 2 . With the cur-

ent best convnet, now partnered by a multilayer perceptron with
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Fig. 4. Accuracies of one-layer ( L 1 ), two-layer ( L 2 ), three-layer ( L 3 ) and four-layer ( L 4 ) convnets on (a) validation data and (b) test data, with increasing number of feature 

maps. 

 

 

 

 

t  

t  

o  

a  

test set of 94.79%. 
a 10 0 0-node fully-connected layer, a μ of 0.006 improves perfor-

mance on the test set by 1.42%. 

Further experimenting with inverted-pyramid architectures

yielded a convnet configuration of 96-192-192-10 0 0-6 ( J( L 1 ) =
96 , J( L 2 , L 3 ) = 192 , J( L ) = 10 0 0 , M = 9 , R = 3 ), wherein the first
h 
hree values denote the number of feature maps in the convolu-

ional/pooling layers, and the last two values indicate the number

f nodes in the fully-connected layer and the softmax layer. With

 learning rate of μ = 0 . 02 , we achieve an overall accuracy on the
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Fig. 5. Performance of convnet with increasing filter size M . 

Fig. 6. Performance of convnet with increasing pooling size R . 
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Tables 3 and 4 show the confusion matrices of the best convnet

nd SVM, respectively. Convnet achieved almost perfect classifica-

ion for moving activities (99.66%), especially very similar activity

lasses like walking upstairs and walking downstairs, which were

reviously perceived to be very difficult in classification ( Bao & In-

ille, 2004; Kwapisz, Weiss, & Moore, 2010; Wu et al., 2012 ). Upon

lose look, the few confusion cases on moving activities were from

ubject 13, indicating that this particular subject has a very dif-

erent style of walking compared to the rest of the 29 subjects in
he data set. However, the lowest score achieved was with Lay-

ng (87.71%), with the accuracy for stationary activities resulting in

nly 89.91%. This may be attributed to the lesser waveform fre-

uencies of sensor data from stationary activities than from mov-

ng ones, of which convnet is also sensitive to, as was found in

peech ( Swietojanski, Ghoshal, & Renals, 2014 ). On the other hand,

VM performed better on stationary activities (94.91%). However,

ike most other classifiers, it failed in differentiating between very

imilar activities (WD = 88.33%). 
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Table 2 

Effects of learning rate on convnet performance. 

Learning rate Accuracy Learning rate Accuracy 

0 .1 91 .882% 0 .009 93 .716% 

0 .09 92 .323% 0 .008 93 .648% 

0 .08 93 .173% 0 .007 93 .716% 

0 .07 92 .799% 0 .006 94 .022% 

0 .06 92 .969% 0 .005 93 .886% 

0 .05 92 .629% 0 .004 93 .580% 

0 .04 93 .818% 0 .003 93 .376% 

0 .03 93 .682% 0 .002 93 .648% 

0 .02 93 .376% 0 .001 93 .546% 

0 .01 93 .886% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Comparison of convnet to other state-of-the-art methods. HCF is the hand-designed 

features ( Anguita et al., 2012 ). tFFT is temporal fast Fourier transform from Sharma 

et al. (2008 ). 

Method Accuracy on test set 

PCA + MLP 57 .10% 

HCF + NB 74 .32% 

HCF + J48 83 .02% 

SDAE + MLP (DBN) 87 .77% 

HCF + ANN 91 .08% 

HCF + SVM 94 .61% 

Convnet (inverted pyramid archi) + MLP 94 .79% 

tFFT + Convnet ( J( L 1 ) = 200 ) 95 .75% 
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Lastly, we compare the best convnet with other state-of-the-art

methods in HAR as well as deep learning (in the area of automatic

feature extraction), as seen in Table 5 . According to the results,

convnet outperforms other state-of-the-art data mining techniques

in terms of performance on the test set. Also, using additional

information of the temporal fast Fourier transform of HAR data

set on an L 1 convnet improves performance further by almost 1%,

showing that more complex features were indeed derived from

additional information of FFT. The features are merged to the

first convolutional layer as follows: ([acc_x, acc_x_time-fft], [acc_y,

acc_y_time-fft], [acc_z, acc_z_time-fft], [gyr_x, gyr_x_time-fft],

[gyr_y, gyr_y_time-fft], [gyr_z, gyr_z_time-fft]). 

4.2. Additional experiment 

We have experimented another activity dataset that was col-

lected from three graduate students between 20 and 30 years old

( Lee & Cho, 2011 ). They grasped the Android smartphone by hand

for data collection. The sensor data were separated into windows

of 128 values, with 50% overlap; the 128-real value vector stands

for one example for one activity. The activities composed with

‘stand’, ‘walk’, ‘stair up’, ‘stair down’ and ‘run’. There are a total of

592 examples for training data and 251 examples for the test data.

We standardize these values by subtracting the mean and dividing

by the standard deviation. 

Fig. 7 shows the effect of increasing number of feature maps

on the performance of one-layer ( L ), two-layer ( L ) and three-
1 2 

Table 3 

Confusion matrix of the convnet. 

Predicted class 

W WU W

Actual class Walking 491 3 

W. upstairs 0 471 

W. downstairs 0 0 42

Sitting 0 0 

Standing 0 1 

Laying 0 0 

Precision 100 .00% 99 .16% 9

Table 4 

Confusion matrix of SVM. 

Predicted class 

W WU W

Actual class Walking 483 7 

W. upstairs 12 458 

W. downstairs 12 37 37

Sitting 0 1 

Standing 0 0 

Laying 0 0 

Precision 95 .27% 91 .05% 9
ayer ( L 3 ) architectures. Because of small data set, on validation

et, there is no difference of performances. On the test data, the

erformance of one-layer is lower than two- and three-layers, but

here is no difference between two- and three-layers. The graphs

how that the number of feature maps is not strongly related to

he performance. 

The results of tuning the learning rate μ are shown in Table 6 .

ith the current best convnet, 0.03 of μ, achieved the accuracy

f 93.75%. Table 7 shows the result of comparing the performance

ith the other competitive methods, which confirms the superior-

ty of the proposed method in accuracy. 

. Conclusions 

In this paper, we propose deep convolutional neural networks

convnets) to perform efficient, effective, and data-adaptive human

ctivity recognition (HAR) using the accelerometer and gyroscope

n a smartphone. Convnets not only exploit the inherent temporal

ocal dependency of time-series 1D signals, and the translation

nvariance and hierarchical characteristics of activities, but also

rovides a way to automatically and data-adaptively extract

elevant and robust features without the need for advanced pre-

rocessing or time-consuming feature hand-crafting. Experiments

how that more complex features are derived with every additional

ayer, but the difference in level of complexity between adjacent

ayers decreases as the information travels up to the top convolu-

ional layers. A wider filter size is also proven to be beneficial, as
D Si St L Recall 

2 0 0 0 98 .99% 

0 0 0 0 100 .00% 

0 0 0 0 100 .00% 

0 436 34 21 88 .80% 

0 24 496 11 93 .23% 

0 43 23 471 87 .71% 

9 .53% 86 .68% 89 .69% 93 .64% 94 .79% 

D Si St L Recall 

6 0 0 0 97 .38% 

1 0 0 0 97 .24% 

1 0 0 0 88 .33% 

0 440 48 2 89 .61% 

0 26 506 0 95 .11% 

0 0 0 537 100 .00% 

8 .15% 94 .42% 91 .34% 99 .63% 94 .61% 
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Fig. 7. Additional experiment: accuracies of one-layer ( L 1 ), two-layer ( L 2 ) and three-layer ( L 3 ) convnets on (a) validation data and (b) test data, with increasing number of 

feature maps. 
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Table 6 

Additional experiment: effects of learning rate on convnet performance. 

Learning rate Accuracy Learning rate Accuracy 

0 .04 87 .50% 0 .006 89 .84% 

0 .03 93 .75% 0 .005 89 .06% 

0 .02 90 .63% 0 .004 89 .84% 

0 .01 92 .97% 0 .003 89 .84% 

0 .009 90 .63% 0 .002 88 .28% 

0 .008 91 .41% 0 .001 87 .50% 

0 .007 88 .28% 

Table 7 

Additional experiments: comparison of convnet to other state-of-the-art methods. 

Method Accuracy on test set 

HCF + NB 79 .43% 

HCF + J48 82 .62% 

SDAE + MLP (DBN) 60 .94% 

HCF + ANN 82 .27% 

HCF + SVM 77 .66% 

Convnet (inverted pyramid archi) + MLP 93 .75% 
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temporal local correlation between adjacent sensor readings has

a wider time duration. In addition to that, the adoption of a low

pooling size is better since it is very important to maintain the

information passed from input to convolutional/pooling layers. 

Comparison of convnet performance with other state-of-the-art

data mining techniques in HAR showed that convnet easily out-

performs the latter methods, achieving an accuracy of 94.79% with

raw sensor data and 95.75% with additional information of FFT

from the HAR data set. The achieved high accuracy is mostly due

to the almost perfect classification of moving activities, especially

very similar activities like walking upstairs and walking down-

stairs, which were previously perceived to be very hard to discrim-

inate. However, comparing convnet’s confusion with SVM’s, SVM

performed better in classifying stationary activities. 

Future works will include experimenting with a combination

of convnet and SVM, incorporating frequency convolution together

with time convolution, using a different error function, or includ-

ing cross-channel pooling in place of normal max-pooling. More-

over, we need further study for the analysis of the features ex-

tracted automatically by the convent and compare them with the

well-known hand-crafted features. Even though the deep convolu-

tional neural networks might be the dominant technique for the

HAR, further study on the characteristics of the method and utiliz-

ing larger dataset should be conducted. 
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