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Abstract—With the increasing variety of mobile applications, reducing the energy consumption of mobile devices is a major challenge
in sustaining multimedia streaming applications. This paper explores how to minimize the energy consumption of the backlight when
displaying a video stream without adversely impacting the user’s visual experience. First, we model the problem as a dynamic backlight
scaling optimization problem. Then, we propose algorithms to solve the fundamental problem and prove the optimality in terms
of energy savings. Finally, based on the algorithms, we present a cloud-based energy-saving service. We have also developed a
prototype implementation integrated with existing video streaming applications to validate the practicability of the approach. The results
of experiments conducted to evaluate the efficacy of the proposed approach are very encouraging and show energy savings of 15-49%

on off-the-shelf mobile devices.
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1 INTRODUCTION

Advances in information and communications technol-
ogy have increased the popularity of mobile devices.
This in turn is motivating the development of a growing
number of mobile applications and services, which are
having a profound effect on people’s lifestyles. However,
reducing the energy consumption of mobile devices that
utilize the applications and services is a major chal-
lenge. In recent decades, researchers have been exploring
various low-power system designs by targeting differ-
ent energy-intensive components [17,22,31], as well as
power management policies from various perspectives
[16,24,25]. Recent studies on mobile user activity in-
dicated that the backlight used to illuminate the dis-
play subsystem consumes most of the energy; thus, it
should receive the most attention with respect to im-
proving energy efficiency [27,28]. Furthermore, mobile
users nowadays are becoming increasingly addicted to
multimedia streaming applications, such as YouTube [8],
and the ability to disseminate videos via social network
communities like Facebook [4]. Such usage behavior will
lead to a significant increase in the energy consumption
of mobile devices, especially with the strong demand
for larger, higher-resolution screens. This observation
motivates us to explore how to minimize the backlight’s
energy consumption when browsing multimedia stream-
ing applications on mobile devices.
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The display subsystem needs to stay in active mode
for as long as the video stream is displayed; thus, a sensi-
ble way to reduce the energy consumption is to dim the
backlight. However, this may lead to image distortion,
which is normally defined as the resemblance between
the original video image and the backlight-scaled image
[12,29]. For example, the structural similarity index [32], a
metric specially designed to comply with the perception
of the human eye, is widely used to assess distortion.
In recent years, a number of effective backlight scaling
techniques have been developed to limit the distortion
and/or maintain the fidelity of a single image when
the backlight is dimmed. In particular, the just noticeable
difference of the human visual system is exploited by the
approach in [21], so that the incurred image distortion
is confined to a tolerable threshold and does not affect
the clarity of the display significantly. Various image com-
pensation techniques, e.g., [13,14,18], have also been pro-
posed to further dim the backlight. They compensate for
the image distortion through image pixel transformation
and further reduce the energy consumption at the same
time. These techniques determine the dimmest backlight
level for a single image and provide a foundation for
exploring dynamic backlight scaling optimization in this
paper.

A video stream comprises a series of image frames.
An intuitive way to reduce energy consumption is to
treat a video stream as a collection of images and dy-
namically change the backlight by applying backlight
scaling techniques to each image frame individually [10,
26]. However, in most video applications, the dimmest
backlight level may vary significantly across consecutive
frames [14], so changing the backlight abruptly over
a number of frames may result in flickering effects
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and affect user perception [20]. To resolve the issue,
some approaches determine the backlight level for an
image frame by considering the preceding frame’s pixel
values and backlight level [19,20]. The drawback of this
strategy is that switching the backlight level frequently
may introduce inter-frame brightness distortion [12].
Furthermore, the hardware requires some time to react
and adjust the backlight, so it is necessary to reduce
the frequency of backlight switching [23]. To this end,
the approach in [23] groups the image frames of a
video and determines a common backlight level for each
group. As a result, the backlight of a scene may be
changed suddenly if the frames comprising the scene
are partitioned into different groups. In contrast, the
approach in [12] quantizes the number of backlight levels
to eliminate small backlight fluctuations during a scene
and, thereby prevents frequent backlight changes. The
drawbacks of existing heuristics result primarily from
determining the backlight level of each image frame
based on only its adjacent frames (and itself), instead of
having an overall consideration based on all the frames
in a video. Approaches based on heuristic or empirical
studies cannot provide a rigid theoretic framework for
dynamic backlight scaling optimization.

In this paper, we focus on minimizing the energy
consumption incurred by the backlight for multime-
dia streaming applications on mobile devices, with-
out adversely impacting the user’s visual experience.
The contributions of this study are as follows. First,
we model the problem of dynamic backlight scaling
optimization that imposes three scaling constraints on
the backlight changes over image frames. Second, we
propose algorithms to solve the fundamental problem
with different combinations of the constraints. The so-
lution involves determining the appropriate backlight
levels for image frames without violating the concerned
constraints. We prove that the algorithms are optimal in
terms of energy savings when the energy consumption
is a strictly increasing function of the backlight levels.
Third, we have deployed a cloud-based energy-saving ser-
vice on Chunghwa Telecom (CHT) hicloud [3], where the
proposed algorithms serve as the key technology for the
service. We have also developed a mobile application
program for Google’s Android [1] and Apple’s iOS [2]
to validate the practicability of the approach studied in
this work. When the program is installed, HTC Desire
smartphones [6] and Apple iPad tablets [2] can achieve
a significant energy reduction (15-29% and 34-49%, re-
spectively) when browsing video streams on YouTube
[8], but users are not aware that dynamic backlight
scaling is being applied. Finally, we conducted a series of
experiments and compared the proposed approach with
a heuristic revised based on the approach proposed in
[23]. The experimental results provide further insights
into dynamic backlight scaling on mobile devices for
multimedia streaming applications.

The remainder of this paper is organized as follows:
Section 2 describes the system model and defines the
problem. In Section 3, we propose optimal algorithms

to solve the problem with different constraint combi-
nations. In Section 4, we present a cloud-based energy-
saving service and discuss technical implementation is-
sues. The experimental results are reported in Section 5.
Section 6 contains some concluding remarks.

2 SYSTEM MODEL AND PROBLEM DEFINITION

In this section, we present respective scaling constraints
that reflect some physical characteristics of video distor-
tion, user perception, and hardware limitation. Then, we
introduce the power model and define the fundamental
problem.

A streaming video comprises a series of N image
frames, F' = {fi, fo,..., fv}, displayed in succession at
a constant rate. Each image frame is represented by a
grid of pixels. The perceptual luminance intensity of a pixel
shown on a display subsystem is proportional to the
product of the backlight level and the pixel luminance'
[23]. The pixel luminance does not have a noticeable
impact on the energy consumption?, but the backlight
level is a decisive factor [14]. Therefore, dimming the
backlight level while limiting the image distortion or
compensating for the loss of the perceptual luminance
intensity by increasing the pixel luminance is considered
an effective way to save energy for image display on
mobile devices. A number of image distortion metrics
and compensation techniques have been proposed to
limit image distortion and/or maintain image fidelity of
a single image, e.g., [11,13,14,18,21]. In this paper, we
simply assume that each image frame f; € F' is associ-
ated with a critical backlight level, (i), which represents
its dimmest backlight level (determined by some image
distortion metric or compensation technique), and treat
the critical backlight level as a scaling constraint. This
distortion constraint limits the dimmest backlight level of
each image frame.

A user may perceive a wide range of stimulus mag-
nitudes under different backlight levels. Dynamic back-
light scaling is applied in a per-frame basis, and the
critical backlight levels may change significantly across
consecutive image frames in most videos [12,14]. The
abrupt changes in backlight levels may result in an
evident flickering effect, and this phenomenon will in-
terfere with the user’s visual experience of videos [12,
20]. Therefore, the maximum increase or decrease in the
backlight level for a backlight change should be limited,
so that the change is too subtle to be discerned by the
human eye or, at least, will not incur adversely inter-
ference to the user. In the human visual system, the just
noticeable difference is the minimum amount by which the
stimulus intensity must be changed in order to produce
a noticeable variation in sensory experience [20], and
Weber’s Law states that the ratio of the just noticeable

1. A pixel’s luminance is an 8-bit value between 0 and 255. It can be
derived by converting its RGB values to the YC,C; coordinate space
with standard conversion functions [23].

2. It requires little energy to rearrange the direction of liquid crystal
molecules between the alignment layers for changing the pixel trans-
mittance [14].
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Fig. 1. Power models

difference to the stimulus intensity is a constant [9,30].
Based on the law, we define the differential constraint that
the increment or decrement for a backlight change is not
greater than the current backlight level multiplied by a
differential ratio r.

A display subsystem relies on a light source to illumi-
nate the display panel from behind. Although the light
source is usually capable of adjusting the backlight level,
it may not be able to adjust the backlight promptly for
every image frame, because hardware takes some time to
react and usually has its limitation. In addition, frequent
changes in the backlight may introduce inter-frame
brightness distortion [12,20]. Therefore, there needs to be
a minimum time period (duration) between consecutive
changes in backlight levels. We define another scaling
constraint, referred to as the duration constraint, which
requires the adjusted backlight level resulting from a
backlight change to remain the same for a number of
d subsequent image frames.

The energy consumed by a display subsystem is dom-
inated by the backlight level as mentioned previously.
Some studies simply assume that the energy consump-
tion is linearly proportional to the backlight level and
model the relationship with linear functions [11,12].
However, as observed in [14], although the energy con-
sumption increases with the backlight level, the increas-
ing slope may change within different ranges of back-
light levels. Various stepwise functions have been used
to characterize the power models of display subsystems
[18,20,21]. Let a display subsystem be equipped with a
set of M available backlight levels B = {b1,ba,...,bar}.
For ease of presentation, we map the backlight levels into
corresponding dimming values, and normalize them in
the range 0 to 1, with 0 representing no backlight and 1
representing the full backlight. Figure 1 shows the power
models measured from an Android smartphone of HTC
Desire [6] and an Apple iPad tablet [2] in practice, as
well as the models approximated by linear and stepwise
functions. In this paper, we make no assumption about
the power model to which the proposed algorithms
can be applied. However, we prove that the proposed
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algorithms are optimal in terms of energy savings if the
power model P() is a strictly increasing function of the
backlight levels.

In summary, scaling down the backlight level will
save energy; however, it could affect the user’s visual
experience adversely if the image frames are not
applied with appropriate backlight levels. Therefore,
our objective is to determine an appropriate backlight
level for each image frame such that the total energy
consumption incurred by the backlight is minimized. A
mapping of a set of image frames, F, to a set of available
backlight levels, B, is called a backlight assignment, o,
ie, o : F — B. A backlight assignment is feasible if the
three scaling constraints are satisfied: (1) the backlight
level applied to any image frame is not lower than
the frame’s critical backlight level; (2) the magnitude
of a backlight change is not greater than the current
backlight level multiplied by a differential ratio; and (3)
the number of image frames between any two backlight
changes is not less than a specified number. Next, we
formally define the fundamental problem:

The Dynamic Backlight Scaling Optimization Problem

Instance: A set of image frames F = {f1, fo,..., fn},
where each frame f; € F is associated with a critical
backlight level c(i); a differential ratio » and a minimum
duration of d image frames for a backlight change; and
a set of available backlight levels B = {b1,b2,...,bum}
with a power model P() representing the relationship
between the backlight levels and the energy consump-
tion.

Objective: A feasible backlight assignment o such that

the total energy consumption, Zf;l P(o(i)), is mini-
mized.

3 DYNAMICBACKLIGHTSCALINGOPTIMIZATION
3.1 Video Distortion and User Perception
3.1.1  Algorithm Description

In this section, we propose an optimal algorithm to solve
a restricted version of the dynamic backlight scaling
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problem. In the version, we consider only the distortion
and differential constraints, and set the duration parame-
ter d at 1. The algorithm will demonstrate the basic idea
used to deal with the differential constraint when we
solve the general version in a subsequent section.

ALGORITHM 1:

Input: A frame set F' with critical backlight levels ¢(), a set of
backlight levels B with power model P(), and a
differential ratio r

Output: A feasible assignment o

g <«— C
Q—F
while Q # 0 do
fi < remove from ) a frame with the highest level
if fi_1 € Q then
oli — 1] « max(o[i — 1], MinLv( fﬂ))
if fiy1 € Q then
oli + 1] <« max(c[i + 1], MinLv(o[i] X (1 —r)))
return o

Given a frame set F' with critical backlight levels ¢(),
a set of backlight levels B with power model P(), and a
differential ratio 7, Algorithm 1 determines a backlight
assignment o without violating the two scaling con-
straints. At the beginning, each frame is initially assigned
with its critical backlight level (Line 1). Throughout the
algorithm, we maintain a priority queue () that initially
contains all the frames in F, keyed by their current
backlight levels (Line 2). We repeatedly remove from () a
frame f; with the highest backlight level until @) is empty
(Lines 3-4). Whenever frame f; is extracted, its backlight
level is determined and will never change. Then, the two
adjacent frames, f;_1 and f;11, are examined whether
their backlight levels should be updated, so as to satisfy
the differential constraint, as shown by the example in
Figure 2. If f;_; is still in @) (Line 5), its current backlight
level, o[t — 1], must be lower than or equal to the level,
oli], assigned to f;. Since the increment of a backlight
change cannot be greater than the current backlight level
multiplied by the differential ratio r, frame f;_; should

be assigned a level at least ;’J[:]T . Let MinLv(z) denote the

minimum available level that is not lower than z, i.e.,
MinLv(z) = min{b; > z| ¥ b; € B}. The level assigned
to fi—1 should be updated if the current level o[i — 1] is
lower than MinLv(fT[i]T) (Line 6). Similarly, if f;4q is in
@, since the decrement of a backlight change has to be
bounded, the currently assigned level o[i+ 1] is updated
to MinLv(o[i] x (1 —r)) if necessary (Lines 7-8). At the
end, the backlight assighment ¢ is returned (Line 9).

3.1.2 The Properties of Algorithm 1

For the rest of this section, we analyze the time com-
plexity of Algorithm 1 and prove its optimality for the
restricted version.

Lemma 1: The time complexity of Algorithm 1 is
O(NInNM).
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Fig. 2. An example to illustrate Algorithm 1

Proof. This analysis assumes that the priority queue
@@ and the function MinLv() are implemented by a
binary heap and a binary search algorithm, respectively
[15]. The initialization of array o and the building of
heap @ based on F in Lines 1-2 can be done in O(N)
time. The while loop in Lines 3-8 is exactly executed
N times. Within the loop, each operation on ¢ and
each call to MinLv() cost time O(In N) and O(ln M),
respectively. Note that each update to ¢ in Line 6 or
Line 8 also involves an implicit operation on the heap
to maintain the heap property. Each loop contributes
O(lnN +InM)=O(InNM) to the running time. Thus,
the time complexity of Algorithm 1is O(NInNM). 1

Theorem 1: Algorithm 1 is an optimal algorithm for
the dynamic backlight scaling problem when only the
distortion and differential constraints are considered.

Proof. Each frame’s backlight level is initialized as its
critical backlight level and will never decrease, so o
satisfies the distortion constraint. Moreover, the back-
light levels between adjacent frames are limited to the
differential constraint, because the removal of a frame
from (@) causes at most two frames to increase their
backlight levels, and the adjusted levels must never
be higher than the determined levels for the frames
that have been removed from (. Thus, ¢ is a feasible
assignment.
Next, we prove its optimality by contradiction. Sup-
pose there exists a feasible assignment ¢’ with energy
consumption SN P(o'[i]) < 2N, P(o]i]). Since P() is
a strictly increasing function, there must be at least one
frame whose backlight level in ¢’ is strictly lower than
in 0. Let fi be the first frame with o'[k] < o[k] during
the execution of Algorithm 1. At the time instance im-
mediately before f, is removed from @), we should have
o'lk] < olk] and o'[i] > oli], Vf; ¢ Q. We delineate four
possible cases, depending on whether fr_1, fi+1 € Q.
1) If fr_1, fer1 € Q, the two frames have not been
removed, so the backlight level of f, must have
not been updated yet. Thus, o’ [k] < o[k] = (k).

2) If fr—1 ¢ Q and fi1 € Q, when f;_; was removed,
the backlight level of f, may be updated. That is,
o'[k] < o[k] = max(MinLv(o[k—1] x (1 —7r)),c[k]) <
max(MinLv(o'[k — 1] x (1 — 1)), c[k]).

3) If fre1 € Q and fr41 ¢ @, when fri1 was

removed, the backlight level of f;, may be updated.
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, X P k
i x P(max cf ),
min
max(1,i—2d)<j<i—d

E(i)

{E(j) + NumFm(7, j) x P(max c(k))},

if 1 <i<d;

max. otherwise. M)
I<k<1

olk+1]
147

That is, o'[k] < o[k] = max(c[k], MinLv(
max(c[kLMinLv(%)).
4) If fy—1, fe+1 ¢ @, by similar arguments in the
above cases, o'[k] < max(MinLv(o'[k — 1] x (1 —
r)), clk], MinL (2,
To conclude, in all the cases, o’[k] violates either the
distortion constraint or the differential constraint, which
contradicts the assumption that ¢’ is a feasible assign-

ment. Thus, the theorem follows. [ |

) <

3.2 Video Distortion and Hardware Limitation
3.2.1 Algorithm Description

In this section, we present a dynamic-programming
algorithm and its polynomial-time implementation to
solve another restricted version of the dynamic backlight
scaling problem. In this version, we consider only the
distortion and duration constraints, and set the differ-
ential ratio r at co. The algorithm will demonstrate the
basic idea of how we deal with the duration constraint,
as used in a subsequent section to solve the general
version.

»
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Fig. 3. An illustration to the dynamic-programming for-
mula in Equation (1)

The algorithm is based on the recursive formula given
in Equation (1). Let E(i) be the minimum energy re-
quired to display first i frames in F' without violating the
two scaling constraints, provided that a backlight change
is allowed at the subsequent frame f;1;. For ease of
presentation, we introduce blank frames and append them
to F. The critical backlight level of each blank frame is
set at 0, i.e.,, ¢(i) = 0,Vf; > N. It is assumed that the
blank frames do not consume any energy regardless of
the backlight levels applied to them. We delineate two
possible cases in Equation (1):

is, the ¢ frames are assigned a common backlight
level, which is equal to the maximum of their
critical backlight levels.

3. For ease of presentation, we assume 0 X co = oo in this paper.

2) Otherwise, if ¢ > d, suppose that the last i — j
frames are assigned the same backlight level, where
i > j > 1. Because any frame f;, for all k > N is a
blank frame that does not consume any energy, we
should only consider the non-blank frames when
computing the energy consumption of the i — j
frames. Let NumFm(4, j) denote the number of non-
blank frames from f; to fji1, i.e., NumFm(i, 5)
min(i, N) — min(j, N). By definition, the minimum
energy consumption of the first j frames is E(j),
provided that a backlight change is allowed at
frame fj;1. Thus, the total energy consumption is
E(j)+NumFm(i, j) x P(jrggé c(k)), as shown by the

example in Figure 3. Note that after a backlight
change, the backlight level must remain the same
for at least d frames. To ensure that the backlight
can be changed at frame f;1, the j value should
be in the range 1 to i — d. However, we do not
consider all the ¢ — d possible values. Instead, by
considering at most d 4+ 1 possible values for j in
the range max(1,7 — 2d) to i — d, E(i) is set as the
minimum energy derived.
The objective is to derive E(N + d). Note that the last
d blank frames consume no energy, and are introduced
to relax the presupposition that the last d non-blank
frames of the N frames are subject to the same backlight
level. Consequently, E(N + d) is equal to the minimum
energy required to display the original N frames without
violating the distortion and duration constraints.

ALGORITHM 2:

Input: A frame set F' with critical backlight levels ¢(), a set of
backlight levels B with power model P(), and a
minimum duration d

Output: The energy consumption for a feasible assignment o

1 fori<— 1to N +ddo

2

T[i] < oo

3 return E(N + d)

Procedure FE(7)

if T'i] < co then
return 7'[i]
if 1 <i<d then
T[i] < i x P( max c(k))

1<k<i

1
1) 11 < < d, then E(i) is set at ix P(max c(k)). That oo

7

T[] E(j)+NumFm(i, j)xP( max c(k))}

min
max(1,i—2d)<j<i—d j<k<i

return 7'[i]

Algorithm 2 implements the dynamic-programming
formula in Equation (1) recursively. Once derived, the
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solution to each subproblem E(i) is stored in a corre-
sponding entry T'[i] in a one-dimensional table T. At the
beginning of the algorithm, each table entry is initialized
as oo to indicate that the corresponding subproblem
has not been solved yet. Whenever Procedure E(i) is
invoked, the procedure simply returns the previously
derived solution stored in entry T'[¢] if the entry has been
updated. Otherwise, the solution to the subproblem is
derived based on the dynamic-programming formula in
Equation (1) and returned.

After the entire table 7' has been derived, a cor-
responding feasible assignment o can be constructed
by back tracing the table based on the dynamic-
programming formula as follows. We begin with the last
entry by setting an index ¢ as IV + d, and examine each
entry backward sequentially from T'[i — d] to T'[i — 2d],
until we find an entry T'[j] in which the stored value
minimizes the solution to subproblem E(i). The i — j
frames, fji+1, fj+2, ..., fi, are assigned the same backlight
level max, c(k). We then start with the discovered entry

by settiné i as j and repeat the above process recursively
until ¢ < d. Finally, we assign the remaining 4 frames,

fi, f2, ..., fi, the same backlight level max. c(k). Because

we have to examine N table entries at most, and each
examination takes constant time O(1) according to the
time complexity analysis in Lemma 2, the construction
of a feasible assignment ¢ based on table 7" can be
completed in O(N) time.

3.2.2 The Properties of Algorithm 2

In the remainder of this section, we analyze the time
complexity of Algorithm 2 and prove its optimality for
this restricted version.

Lemma 2: The time complexity of Algorithm 2 is
O(dN).

Proof. It is assumed that d < N; otherwise, the trivial
case is solvable in O(N) time. The time complexity of
the algorithm depends on the number of table entries
and the time required to derive the solution to a sub-
problem. The table contains O(XV) entries, each of which
is initialized and then updated as the solution to the
corresponding subproblem once. The solution to each
subproblem E(i) is derived by referring to d + 1 preced-
ing entries sequentially. When an entry T'[j] is referred
to, deriving a candidate solution to E(7) takes O(1) time.
Note that J_Ig?ici c(k) can be computed in constant time
O(1) by simply comparing c(j + 1) and max c(k),
JH1<k<i
because the latter term has been computed when entry
T[j + 1] was referred to. Therefore, deriving the solution
to a subproblem takes O(d) time. In summary, table T
can be constructed in O(dN) time. |

Lemma 3: In Equation (1), when ¢ > d, considering
max(1,i—2d) < j <i—d is equivalent to considering all
the possible values for j in the range 1 to i — d.

Proof. If d < i < 2d + 1, then max(1,i — 2d) = 1, and
this lemma obviously holds. For i > 2d + 1, we prove
this lemma by showing that all the candidate solutions
derived for E(i) when 1 < j < i—2d are not smaller than
the candidate solution derived when j = i — d. That is,
if we can prove that V1 < j <i—2d,

E(j) + NumFm(i, j) x P(jrgg;(i c(k))

> E(i — d) + NumFm(i, i — d) x P(F%lfﬁg c(k)),

then there is no need to consider 1 < j < ¢ — 2d when
we derive the minimum solution for E(7).

Without loss of generality, let us consider any j, where
1 < j < i — 2d. Because the maximum of a set is never
smaller than the maximum of any subset, we can derive
the following inequality by partitioning the range (j,1]
into two subranges (j,7 — d] and (i — d, 7].

E(j) + NumFm(i, j) x P(jrg?%(i c(k))

> B(i L
> E(j) + NumFm(i — d, j) x P(j<1£§fid c(k))

+NumFm(i, i — d) x P(iﬁfﬁg c(k))

Because j < i — 2d, NumFm(i — d,j) > d, which implies
that a backlight change is allowed at frame f;_q41.
Furthermore, the energy consumption of any backlight
assignment for the first ¢ — d frames, provided that
a backlight change is allowed at frame f;_44+1, is no
smaller than the minimum energy consumption E (i —d),
so we have

E(j) +NumFm(i — d, j) x P( max c(k))
j<k<i—d

> E(i — d).

By comparing the above two inequalities, the lemma
follows. |

Theorem 2: Algorithm 2 is an optimal algorithm for
the dynamic backlight scaling problem when only the
distortion and duration constraints are considered.

Proof. The theorem follows directly from the correctness
of the dynamic-programming formula E(i) in Equation
(1). We prove its correctness by mathematical induction
on the index i. As the induction basis, when 1 <7 < d, to
ensure that a backlight change is allowed at frame f;;1,
the first ¢ frames must be assigned the same backlight
level. Since P() is a strictly increasing function, the
minimum energy consumption required to display the 4
frames is i x P(fg?é ¢(k)). Thus, the formula is correct.

For the induction hypothesis, suppose that the formula is
always correct for the first i frames when i < n. We show
that the formula is also correct for the first n frames.
Suppose that the last n — j frames are assigned a
common backlight level. Then, the minimum energy
consumption required to display the n — j frames is
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th _ o b
ES,Q = . g,MlnLV(H%)
min {E,

max(s,h—2d)<j<h, =

max(h,j+d)<i<min(h+2d,t)

+ NumFm(7, j) x P(b) +

7
ift=s;
else if t < s+ d;
. - 2
t,b otherwise. @

i,MinLv(b(1—7)) }’

NumFm(n, j) X P(‘mlgié( c(k)). Since j < n, by the in-
J<k<n

duction hypothesis, E(j) is the minimum energy con-
sumption for the first j frames, provided that a backlight
change is allowed at the subsequent frame f;;. Since the
common backlight level applied to the last n — j frames
is not subject to the level assigned to frame f;, the total
energy consumption of the n frames is the sum of the
energy consumption of the first j frames and that of the
last n — j frames. To allow a backlight change at frame
fn+1, we must ensure that n—j > d. This implies that all
possible values for j are in the range 1 to n — d. Based
on Lemma 3, considering max(1,n —2d) < j < n—d
is sufficient to derive the minimum among all the n —d
candidate solutions. Hence, E(n) is the minimum energy
consumption of the n frames, provided that a backlight
change is allowed at frame f,, 1. The theorem follows. il

3.3 Video Distortion, User Perception, and Hardware
Limitation

3.3.1 Algorithm Description

In this section, we present a dynamic-programming algo-
rithm and its polynomial-time implementation to solve
the general version of the dynamic backlight scaling
problem.

A ,
jMinLv(-—b_) .. 4 b .
Tm) ESy 77— t=—NumFm(i,/)< P(b) —<—E ; vinLv(h1)]
> T
& i
i [ —
= I .
= L | i
] s BRI B IS
s| T R I_‘
A [optimal - “aol
Critical ---- -
s+1 j h i t

Frame sequences

Fig. 4. An illustration to the dynamic-programming for-
mula in Equation (2)

Let E;Z be the minimum energy required to display
the frames in the range (fs, f;] without violating the three
scaling constraints, provided that the following condi-
tions are satisfied: (1) the level of f.y1 is not lower than
b; (2) the level of f; is not lower than b; and (3) backlight
changes are allowed at both fs;; and f;41. Consequently,
fs4+1 and f; should be assigned levels not lower than
max(c(s + 1),b) and max(c(t),b) respectively, while any
other frame fj, should be assigned a level not lower than
c(k). Let f;, be a frame which should be assigned a level

not lower than b, where b = max( max, c(k), b, b). For ease
s<k<

of presentation, we add d blank frames in the front and
at the back of F, respectively. We delineate three possible
cases in Equation (2):

1) If t = s, then Ezg is set at 0. That is, the frame set
is empty and consumes no energy.

2) If s < t < s+ d, then Et’g is set at oco. That is,

$,0
the frame set contains at most d — 1 frames, so the
energy consumption is set at oo to indicate there is
no feasible assignment in which backlight changes
are allowed at fsy1 and fiq1.
3) Otherwise, t > s + d. Suppose that the frame f,
is in some range (f;, fi], where the j — i frames

are assigned the same level b. Then, the energy

consumption of these frames is NumFm(i, j) x P(b).
For the frames in the front range (fs, f;], to ensure

that f;1 can be assigned the level b, f; should

be assigned a level not lower than MinLv(:2-).

Thus, the energy consumption for these frames

b

J,MinLiv( T

is B, ), Similarly, the energy consumption

18 Ef,’;inLv(?J(l—r))
backlight change is allowed at f;1i, then the to-
tal energy consumption is the sum of the energy
consumption for the three ranges, as shown by
the example in Figure 4. The possible values for
j are in the range [s,h). To ensure that a back-
light change is allowed at f;yi, we should have
i > j 4+ d, so the possible values for i are in
the range [max(h,j + d),t]. However, we do not
consider all the possible pairs of j and i. Instead,
by considering at most 2d values for j in the range
[max(s, h—2d), h) and at most 2d+ 1 values for i in

the range [max(h,j + d), min(h + 2d, 1)), Eig is set
as the minimum energy derived.

The objective is to derive E]_V ;f 61,0' Note that the d front
(resp. rear) blank frames are introduced to relax the pre-
supposition that the first (resp. last) d non-blank frames
of the IV original frames are subject to the same backlight
level. The formula in Equation (2) can be implemented
by a recursive algorithm, referred to as Algorithm 3,
in a similar way to the implementation of Algorithm
2, except that Algorithm 3 employs a four-dimensional
table* T'[s,¢,b,b] with each entry initialized as —occ to
indicate that the subproblem has not been solved yet.

for the rear range (fi, fi] .Ifa

4. For ease of presentation, we allow that table entries have negative
index values. In practice, all the index values are shifted with the same
constant.
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3.3.2 The Properties of Algorithm 3

In the remainder of this section, we analyze the time
complexity of Algorithm 3 and prove its optimality for
the dynamic backlight scaling optimization problem.

Lemma 4: The time complexity of Algorithm 3 is
O(N?M?(N +In M + d?)).

Proof.

It is assumed that d < N; otherwise, the trivial case
is solvable in O(N) time. The time complexity depends
on the number of table entries and the time required
to derive the solution to a subproblem. For an entry
T[s,t,b,b], the first two indexes have O(N) possible
values and the last two have O(M) possible values; thus,
the table contains O(N?M?) entries. Each entry is initial-
ized and stored with the solution to the corresponding
subproblem at most once. The solution to a subproblem
can be derived in O(N + In M + d?) time by three steps:

(1) finding the frame f3, and the level b takes O(N) time;
(2) the two calls to MinLv() cost O(In M) time; and (3)
considering each of the O(d?) pairs of j and i derives
the minimum, where a candidate solution with respect
to each pair costs O(1) time. |

Lemma 5: In Equation (2), when ¢ > s+ d, considering
j € [max(s,h—2d), h) and i € [max(h, j+d), min(h+2d, t)]
is equivalent to considering all the possible pairs of j €
[s,h) and i € [max(h,j + d),].

Proof. This lemma can be proved in a similar way to
the proof of Lemma 3 by showing two arguments. First,

all the candidate solutions derived for Eig when j €

[s, h—2d) are not smaller than the solution derived when
j = h—d; thus, there is no need to consider j € [s, h—2d)

when we derive the minimum solution for E;Z Then,

all the candidate solutions derived when i € (h + 2d, t]
are not smaller than the solution derived when 7 = h+d;
thus, there is no need to consider i € (h + 2d, t].

Theorem 3: Algorithm 3 is an optimal algorithm for the
dynamic backlight scaling optimization problem.

Proof. We prove this theorem by mathematical induction
on the size, i.e., the number of frames, of (fs, f;] in Equa-
tion (2). Two cases are proved as the induction basis. If
t = s, the energy consumption is 0 since the frame set is
empty. If s < t < s+d, there is no feasible assignment in
which backlight changes are allowed at both f,; and
fi1, so the energy consumption is deemed to be oc.
For the induction hypothesis, suppose that the formula
is correct for any frame set of size smaller than n. We
show that the formula is also correct for a frame set of
size n.

Let (fj,f:] be any frame subset (of the frame set
(fs, ft]) which includes the frame f;, and comprises
frames assigned the same backlight level. Since the level

assigned to f;, should not be lower than b, the minimum

energy required for the subset is NumFm(é, j) x P(b). For

the front frame subset (fs, f;], to ensure that f;;1 can
be assigned b, frame f; should be assigned a level not

lower than MinLv(ﬁbT). Because the size of the front

subset is smaller than n, by the induction hypothesis, the

.. . . gMinLv({Ps)
minimum energy required for the subset is I, p

provided that a backlight change is allowed at fj;1.
Similarly, the minimum energy required for the rear

subset (f;, ft] is EYY )’ provided that a backlight

4,MinLv(b(1—
change is allowed at f,4i. If a backlight change is
allowed at f;+1, then the total energy required for (fs, fi]
is the sum of that required for the three subsets. To allow
a backlight change at f;+1, possible values for j and 4
are in the ranges [s, h) and [max(h, j+ d), t], respectively.
Based on Lemma 5, the ranges of j and i can be reduced
to [max(s,h — 2d),h) and [max(h,i + d), min(h + 2d,t)],
respectively. By considering the possible pairs of j and

i, H;fz is set as the minimum energy derived, and the
theorem follows. |

4 ACLOUD-BASEDENERGY-SAVING SERVICE
41

In this section, we present a cloud-based energy-saving
service, called the dynamic backlight scaling service, which
minimizes the backlight’s energy consumption when dis-
playing video streams on mobile devices. A possible way
to realize the service would be to develop it as a value-
added service offered by Internet service providers.
Then, mobile users could apply for the energy-saving
service in the same way that they apply for other value-
added services, such as the short message service. The
service is presented in a way that is easy for end users to
understand. They do not need to know how the service
is provided and where the system that delivers the
service is located. In the following, we present the design
concepts and discuss in detain the implementation issues
that arise on the cloud side and the mobile device side.

5
Video Stream Yo u Tu he

Streaming Server
-

Backlight File hICIOUd

Backlight Server

System Design and Implementation

Mobile Device

Fig. 5. The system architecture

We have deployed the dynamic backlight scaling ser-
vice on CHT hicloud [3]. The prototype system, which
is integrated with existing video streaming services,
includes an on-line cloud server and a mobile applica-
tion program developed for Google’s Android [1] and
Apple’s iOS [2], as shown in Figure 5. The cloud server,
called the backlight server, uses the proposed algorithms
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to analyze the videos on major video streaming websites
like YouTube [8]. Note that determining the backlight
levels for the image frames of a video involves analyzing
a large number of image pixels and is therefore com-
putationally intensive. The designated cloud server is
responsible for running the algorithms and determining
the backlight assignments, as well as for exempting
mobile devices from the computational overheads. Each
derived backlight assighment is stored in a text file,
called the backlight file, in a space-efficient format and
associated with the corresponding video’s URL link.
Because the size of a backlight file for a 15MB video (with
a bit rate of 550-650 kbps) is usually less than 1 KB, it
can be transmitted quickly when the wireless bandwidth
is sufficient for video streaming.

& Dynamic Backlight Scaling Optimizer

You Tube

i

ion Soundtrack-Dream is
ng (Hans Zimmer)

_] Inception Soundtrack HD - #12
Time (Hans Zimmer) -

INCEPTION Soundtrack-Track #7
Mombasa

Fig. 6. Snapshots of the mobile application program

It would be ideal if all the videos on streaming web-
sites could be analyzed in advance, but doing so would
be tremendously time-consuming. Hence, we analyzed
the most popular videos on YouTube, and left the re-
mainder to be analyzed on demand. The on-demand
design is inspired by an observation that the majority
of videos on streaming websites are of little interest to
most people and the popularity of frequently viewed
videos usually varies over time. To support on-demand
video analysis, we developed an application program
with two versions that run respectively on Android and
iOS mobile devices, as shown in Figure 6(a). When a user
starts to play a video stream on a mobile device with the
program installed, the program sends the video’s URL
link to the backlight server. If there is no corresponding
backlight file, the server replies accordingly and starts
analyzing the video to generate the corresponding file. In
this case, the video is played without dynamic backlight
scaling, as shown in Figure 6(b). Conversely, if a corre-
sponding backlight file exists, the server returns it and
the program adjusts the backlight dynamically according
to the file with the video being played on the mobile
device, as shown in Figure 6(c). With the on-demand
design, the first user browses the video stream as usual,

but enables the backlight server to analyze the video so
that the subsequent users browsing the same video can
benefit from the dynamic backlight scaling service.

4.2

The backlight server is responsible for generating the
video stream’s backlight file when requested by a
mobile device. Because different mobile devices may
be equipped with different display subsystems and
consequently power models, we divide the genera-
tion process into two phases, device-independent and
device-dependent, for optimization purposes. The device-
independent phase analyzes the video stream, and deter-
mines each image frame’s critical backlight level, which
represents the dimmest backlight level at which the
incurred image distortion does not affect the clarity of
the display significantly. Based on the levels, the device-
dependent phase then executes one of the proposed
algorithms to derive an optimal backlight assignment for
the mobile device.

In the device-independent phase, any image distor-
tion metric that estimates the similarity between the
original video image and the backlight-scaled image
could be used to compute a video’s critical backlight
levels. An image compensation technique could also be
used to further lower the critical backlight levels and
potentially improve the energy savings. However, when
an image compensation technique is applied, the video
player’s decoder must be modified to increase the pixel
luminance when playing videos. For the compatibility
with popular players, a simple image distortion metric
was employed. In the system prototype, we utilized the
structural similarity (SSIM) index [32], a metric specially
designed to comply with the perception of the human
eye and widely used to assess distortion. The resultant
SSIM index is a decimal value between -1 and 1, where
the value 1 is only achievable in the case of two identical
sets of data. Given a video stream, the critical backlight
level of each image frame is computed with respect to a
specified SSIM index. The time complexity of this phase
depends on the adopted metric and is O(NP3log M),
where N, P, and M, denote the number of image
frames, the number of pixels per frame, and the number
of available backlight levels, respectively. Note that a
video stream’s critical backlight levels are unrelated to
mobile devices and only computed once. In addition,
each image frame can be analyzed independently and
concurrently, so a cloud server with hundreds of virtual
cores is especially well suited to the high-parallelism,
computationally-intensive task.

In the second phase, one of the proposed algorithms
is used to determine the optimal backlight assignment
with respect to the mobile device. This phase is device-
dependent because, in addition to the critical backlight
levels, the algorithm takes two device-dependent pa-
rameters as its input: the mobile device’s power model
P() and minimum applicable duration d between two
adjacent backlight changes. The output is a backlight
assignment for the video stream and the device model.

Issues on the Cloud Side
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A feasible assignment satisfies some or all of the scaling
constraints, depending on the device’s characteristics
and the desired visual quality. The time complexity of
this phase depends on the adopted algorithm and is
O(NInNM), O(dN), or O(N?M?*(N + InM + d?)), as
analyzed in Section 3. The assignment is stored in a file
specifying the time instants (relative to the beginning of
the video) when the backlight should be changed and
the levels that should be used. The idea is similar to
that of subtitles in a video. The representation allows a
video stream’s backlight file to be portable for various
video formats.

43

The dynamic backlight scaling service is not intended for
all models of mobile devices. It is designed for popular
models and those that need the service, e.g., HTC Desire
[6] and Apple iPad [2]. Optimizing a mobile device’s
energy consumption must rely on the information about
the device’s power model. However, the accuracy of
the power model will only affect the amount of energy
saved, not the user’s visual experience; therefore, other
mobile devices could also benefit from the service even
if their accurate power models have not be acquired. In
this section, we explain how to acquire the power model
of a mobile device’s display subsystem, and discuss the
design concept behind the mobile application program.

In practice, we use the Power Monitor produced by
Monsoon Solutions [7] to measure the power models
of display subsystems. Under the prototype system,
we divide the luminance range into 21 equal backlight
levels. We then map and normalize the levels into 21
dimming values in the range 0 to 1, where 0 represents
no backlight and 1 represents the full backlight. The
reason behind the setting is that it was difficult to
determine whether the backlight has been changed when
we increased the dimming value by 0.05 at a time. For
example, Figure 1 shows the power model measured
from HTC Desire, which is equipped with a 3.7-inch
Super LCD display subsystem illuminated by a cold
cathode fluorescent lamp, as well as the power model
measured from Apple iPad, which is equipped with a
9.7-inch Multi-Touch IPS display subsystem illuminated
by a light-emitting diode. In addition, HTC Desire allows
backlight changes up to 8 times per second, which
corresponds to a minimum duration of 4 frames for 30
frame-per-second videos, while Apple iPad allows more
than 30 backlight changes in one second.

The mobile application program is developed as a
resident daemon running in the background. It is ac-
tivated at the same time when the codec is invoked by
any video player. The codec is the underlying program
that encodes/decodes video streams. When the daemon
is activated, it sends the mobile device’s model and the
video’s URL link to the backlight server via the HTTP
protocol. On receipt of the request, the backlight server
checks whether the device model supports the dynamic
backlight scaling service and whether the video’s back-
light file has been generated. If the backlight file is

Issues on the Device Side
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received, the daemon creates a control thread to adjust
the backlight dynamically with the video being played.
The thread synchronizes with the codec periodically to
support the Pause, Fast Forward, and Fast Backward
functions. With such a design®, no matter which applica-
tion programs (such as YouTube App or Web Browser)
mobile users employ to browse various video stream
formats (such as MPEG4 or H.264) on different web-
sites, they could benefit from the energy-saving service
without changing their user preferences. In addition, it
is intuitive that the energy savings increase as the SSIM
index (video quality) decreases. The program allows
users to adjust the SSIM index in order to arrange a
tradeoff between energy savings and video quality. As
shown in Figure 6, the program also plots the backlight
changes in real time for users’ reference, and estimates
the accumulated energy savings (in joules or percentage)
based on the mobile device’s power model.

5 REAL-WORLD CASE STUDIES
5.1

To better understand the properties of, and gain insights
into, dynamic backlight scaling for mobile streaming
applications, we performed experiments on some real-
world video streams to validate the practicability of our
approach and evaluate the performance of Algorithm 3
proposed for the general version of our problem.

Experimental Setup

Fig. 7. The experimental envirohment

The dynamic backlight scaling service was deployed
on CHT hicloud. The system resources allocated for the
service are two 64-bit virtual cores, 4GB memory, 100GB
storage capacity, and the maximum network bandwidth
of 1Gbps. With such resources, the backlight server
requires some time, ranging from dozens of minutes
to a few hours, to generate a backlight file for a video
stream, depending on the video’s characteristics and the

5. This design has been fully realized in the version developed for
Android. For iOS, users need to install our video player and jailbreak
their iPad tablets, because programming on iOS is subject to some
restrictions.
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algorithm’s input settings. Nevertheless, if the backlight
file has been compiled, it takes only hundreds of mil-
liseconds to obtain the file from the backlight server
via 54Mbps Wi-Fi. The mobile application program was
installed on two HTC Desire smartphones [6] and two
Apple iPad tablets [2]. In the experimental environment,
as shown in Figure 7, one smartphone/tablet performed
dynamic backlight scaling while the other did not, and
the transient power of the mobile devices was measured
by Power Monitors of Monsoon Solutions [7].
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Fig. 8. Snapshots and critical backlight levels of four
videos

We studied four videos with different characteristics,
namely, Need for Speed, Avatar, M. Jackson MV, and
BBC News, all of which can be found on YouTube. Figure
8 shows some snapshots of the videos and the critical
backlight levels when the SSIM index was set at 0.9.
Need for Speed, which is a typical advertisement for
video games, comprises diverse scenes that demonstrate
the game’s high fidelity; thus, the critical backlight levels
vary significantly. Avatar is a characteristic trailer for sci-
fi movies, so the high fidelity feature is also emphasized,
but the consecutive scenes are longer and more homo-
geneous than those of game advertisements. M. Jackson
MV is a classic performance of Michael Jackson with
spectacular stage effects. The critical backlight levels
vary frequently, but the changes are small. BBC News
is a news video clip mainly comprised of static scenes.

The performance metric was the percentage of energy
savings achieved without adversely impacting the visual
perception. We investigated the impacts of each of the
three parameters on the algorithm’s performance: (1)
the impacts of the SSIM index in the range 0.8 to 0.98
when the minimum duration d was set at 10 frames and
the differential ratio » was set at 0.5; (2) the impacts
of the differential ratio in the range 0.1 to 1 when the
SSIM index was set at 0.9 and d was set at 10 frames;
and (3) the impacts of setting the minimum duration
between 5 and 50 frames when the SSIM index was set
at 0.9 and r was set at 0.5. The settings were based on
the following observations. HTC Desire allows a back-
light change every four frames for 30 frame-per-second
videos. Moreover, it was difficult to determine whether

11

a video adopted our technique when the SSIM index
was no less than 0.8; and it was difficult to differentiate
which of two videos adopted our technique when the
SSIM index was no less than 0.9. The difficulty is more
evident when the differential ratio is no larger than 0.5.

In addition to the above studies, we compared the
proposed algorithm, denoted as OPT, with a heuristic-
based algorithm, denoted as GOS, which is based on the
concept of groups of scenes utilized by the approach
in [23]. GOS starts with a group of d frames, and
then adds subsequent frames until the variance of the
average luminosity exceeds a threshold. The process is
repeated until all frames have been grouped, and the
frames in each group are assigned the maximum of
their critical backlight levels. Following the settings in
[23], the variation threshold was set at 40. We report
the results of experiments when the SSIM index was
set at 0.9 and the differential ratio r was set at 0.5,
while the minimum duration d was set at 10, 30, and 50.
GOS was adopted for comparison because the minimum
duration between changes in backlight levels can be
ensured by setting the minimum group size as d. Finally,
we conducted experiments to assess the time required to
exhaust the battery. Two identical mobile devices, HTC
Desire or Apple iPad, were fully recharged and used
to play repeatedly the same set of 42 videos selected at
random from YouTube until their battery was exhausted.
The experiment was performed in an off-line fashion
to ensure that the time measured was not affected by
unstable wireless communications.

5.2 Experimental Results

Figure 9 shows the impacts of the SSIM index on the
energy savings achieved by OPT. As expected, the en-
ergy savings increased as the SSIM index decreased. The
reason was that a smaller SSIM index led to lower critical
backlight levels, and this in turn implied more energy
savings. The results show that, when the SSIM was set
at 0.9, OPT can achieve energy savings of 15% to 29% for
HTC Desire and 34% to 49% for Apple iPad, depending
on the characteristics of videos. A more evident energy
reduction was achieved on Apple iPad than on HTC
Desire, because the slope of the former’s power model
increased more quickly with the backlight levels. We
also observe that the percentage of energy savings was
more evident when a video’s critical backlight levels
varied significantly, such as in the Need for Speed video.
This was because the significant variation meant a large
number of low critical backlight levels, which provided
opportunities to dim the backlight. Interestingly, a video
with a large number of static scenes, such as BBC News,
also benefited substantially from the dynamic backlight
scaling technique due to the difference between the full
and critical backlight levels.

Figure 10 shows the impacts of the differential ratio
on the energy savings achieved by OPT. The energy
savings increased as the differential ratio increased. The
result was as expected because, for the same backlight
level, a larger differential ratio allowed a larger backlight
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change. The characteristic was specially beneficial for
videos whose critical backlight levels varied significantly
to save energy. This also explains why the differential
ratio had a more significant impact on the Need for
Speed video than on the other videos. The results show
that the impacts of the differential ratio became saturated
when r > 0.5. In addition, we observe that the difference
in energy savings between the Need for Speed and
Avatar videos was very small when r was set at 0.1.
This phenomena occurred because the Need for Speed
video comprised a large number of short scenes, and the
possible backlight decreasing for the scenes was limited
by a small differential ratio.

Figure 11 shows the impacts of the minimum duration
on the energy savings achieved by OPT. The energy
savings generally decreased as the minimum duration
increased. This is because the solution space under a
larger duration is a subset of that under a smaller
duration. We observe that the minimum duration af-
fected the energy savings of the Need for Speed and
Avatar videos significantly; however, it did not have a
significant impact on M. Jackson MV and BBC News.
The results imply that the first two videos contained a
large variety of scenes, each comprised of a few frames.
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In contrast, the other two videos contained longer scenes
with similar critical backlight levels. In addition, as in the
previous experiments, the more diverse the critical back-
light levels, the greater the energy savings. To conclude
the impacts of the parameters on energy savings based
on the above experiments, the impacts appeared more
significantly by varying the SSIM index than by varying
the differential ratio or the minimum duration.

Figure 12 shows the energy savings achieved by OPT
and GOS for videos with different characteristics. As
expected, OPT outperformed GOS in all cases because it
has proved optimal in terms of energy savings. For the
same video, the performance difference between the two
algorithms was generally more evident when the mini-
mum duration was small, since the number of possible
solutions increased as the minimum duration decreased.
Consequentially, it was harder for a heuristic algorithm,
GOS for example, to make a “good” decision. This also
explains why, for the same minimum duration, the per-
formance difference was generally more evident when a
video’s critical backlight levels varied significantly. The
results show that, for the Need for Speed video on HTC
Desire, OPT reduced the energy consumption 1.3, 1.23,
and 1.22 times more than GOS when d was set at 10,
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Energy savings and prolonged times

30, and 50, respectively. Importantly, we observed that,
under GOS, a scene may suffer from sudden backlight
changes if it covered two groups and the maximum
critical backlight levels of the groups were very different.

Table 1 shows the energy savings achevied and the
usage times prolonged by OPT. The results of experi-
ments conducted over a set of videos show that HTC
Desire achieved energy savings of 15% to 29% for the
display subsystem and 10% to 20% for the whole device,
while Apple iPad achieved energy savings of 34% to
49% and 27% to 40%, respectively. For Apple iPad, a
tremendous amount of energy was reduced, because
it was equipped with a large display subsystem that
accounted for the majority of the energy consumption of
the whole device. On the other hand, the results of exper-
iments conducted to exhaust the battery show that, for
HTC Desire, the smartphone without dynamic backlight
scaling ran out of energy after 3 hours and 31 minutes,

remaining energy was lower than 10 percent) after 6
hours and 6 minutes, while the tablet that utilized the
technique was forced to turn down after 9 hours and 37
minutes, a difference of 3 hours and 31 minutes. Both
the devices benefited substantially from the dynamic
backlight scaling technique.

6 CONCLUDING REMARKS

This paper proposes an approach that minimizes the en-
ergy consumption incurred by the backlight when users
access multimedia streaming on mobile devices. Specif-
ically, the approach exploits backlight scaling and mod-
els a fundamental optimization problem with scaling
constraints (to limit image distortion, reflect hardware
limitation, and consider user perception). To solve the
problem, we propose three algorithms, and prove that
they are optimal in terms of energy savings when the
energy consumption increases strictly with the backlight
levels. To validate the practicability of our approach,
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based on the algorithms, we have deployed a cloud-
based energy-saving service, called the dynamic back-
light scaling service, on CHT hicloud [3]. We have also
implemented a mobile application program that enables
Android smartphones [1] and Apple tablets [2] to access
the energy-saving service. With the program installed,
HTC Desire [6] and Apple iPad [2] could achieve energy
savings of 15-29% and 34-49% respectively (in items
of the energy consumption of the display subsystems),
when browsing videos on YouTube [8], while users
were not conscious of the dynamic backlight scaling
technique. The efficacy of the proposed approach is more
evident for large-screen mobile devices or when a video
contains a large variety of scenes. Moreover, we have
released the mobile application program in the Hami
Apps [5] to seek feedback on the performance and to
identify issues that require further investigation.
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