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Respiratory rate and body position are two major physiological parameters in sleep study, and monitoring
them during sleep can provide helpful information for health care. In this paper, we present SleepMonitor, a
smartwatch based system which leverages the built-in accelerometer to monitor the respiratory rate and body
position. To calculate respiratory rate, we design a filter to extract the weak respiratory signal from the noisy
accelerometer data collected on the wrist, and use frequency analysis to estimate the respiratory rate from the
data along each axis. Further, we design a multi-axis fusion approach which can adaptively adjust the estimates
from the three axes and then significantly improve the estimation accuracy. To detect the body position, we apply
machine learning techniques based on the features extracted from the accelerometer data. We have implemented
our system on Android Wear based smartwatches and evaluated its performance in real experiments. The results
show that our system can monitor respiratory rate and body position during sleep with high accuracy under
various conditions.
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1 INTRODUCTION

Sleep plays a significant role in maintaining good physiological and emotional health. In sleep study,
respiratory rate and body position are two important and useful physiological parameters. Respiratory
rate can be used to assess the sleep quality [6] and to predict some sleep-related diseases [12, 21]. Body
position is also a significant metric for sleep quality assessment [7], and it is related to many medical
conditions such as apnea [22] and back pain [8]. Thus, monitoring the respiratory rate and body position
during a user’s sleep is very important and can provide helpful information for health care.
Traditionally, sleep parameters such as respiratory rate and body position are monitored in the hospital
by using polysomnography (PSG) [29]. By collecting data from a lot of sensors and electrodes worn
on various parts of a user’s body, PSG is able to provide fine-grained sleep data. However, using PSG
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involves hospital visit, specialized wearable sensors and professional installation, which is impractical for
long-term sleep monitoring and limited only to clinical usage.

With the rapid development of wearable devices and wireless technologies, a lot of smart health
applications have been proposed [19, 20, 27, 28], including sleeping respiratory rate and body position
monitoring [1, 2, 14, 15, 17, 18, 23]. Recently, commercial wrist-worn devices such as Fitbit or Jawbone
have been released, which are able to track users’ sleep. However, they can only record some coarse-grained
sleep data such as sleep duration and body movement, and none of them monitors respiratory rate and
body position. Radio frequency (RF) based respiratory rate monitoring approaches have been proposed
in [1, 2, 15, 17, 23]. In these approaches, respiratory rate is estimated by capturing the variation in the
wireless signal’s CSI (Channel State Information) or RSSI (Received Signal Strength Indicator), which is
caused by the chest movement during respiration. Although RF based approaches can monitor respiratory
rate non-invasively, they require wireless transmitting and receiving devices and their performance is
sensitive to the environmental changes. Using wireless sensors to monitor body position during sleep
has been studied in [14, 18]. Sensor data collected from accelerometers placed at different parts of the
mattress [14] and sensor data collected from pressure sensors built in the specialized bedsheet [18] are
respectively utilized to monitor body position during sleep. These systems are unobtrusive. However,
they require sensor installation on the bed and their detection accuracies are affected by the user’s height
and weight.

Different from the aforementioned works, in this paper, we propose SleepMonitor, a smartwatch based
system which leverages the built-in accelerometer to monitor a user’s respiratory rate and body position
during sleep. Our basic idea for respiratory rate monitoring is to capture the slight periodic wrist
movement caused by the repeated inhalation and exhalation process during respiration, and the body
position monitoring is based on the observation that in different sleeping positions, the user’s wrist is
likely to be put at different positions with respect to the body and with different poses.

As shown in Figure 1, the accelerometer data along three axes is continuously collected from the user’s
wrist-worn smartwatch, and segmented into sampling windows for processing. To estimate the user’s
respiratory rate, the window of raw data is first fed into a filter to remove noise. Since the signal variation
in the filtered accelerometer data is mainly caused by the periodic patterns of inhalation and exhalation
while the user breathes during sleep, we apply Fast Fourier Transform (FFT) to the filtered data and use
the frequency with the largest magnitude to estimate the user’s respiratory rate. The estimates from
three axes are then fused together as the respiratory rate at the corresponding time. To monitor the
user’s body positions during the night, different features are extracted from the segmented windows.
With the extracted features and the ground truth knowledge of the user’s body positions at each time,
different machine learning techniques can be applied to train classifiers for recognizing different body
positions.

The main contributions of the paper are as follows:

e We propose a smartwatch based system to monitor respiratory rate and body position during
sleep.

e We design a multi-axis fusion approach which can adaptively adjust the estimates from the three
axes and then significantly improve the accuracy of respiratory rate monitoring.

e We have implemented our system on Android Wear based smartwatches and evaluated its
performance in real experiments. The results show that our system can monitor respiratory rate
and body position during sleep with high accuracy under various conditions.

The rest of this paper is organized as follows. Section 2 reviews related work. Section 3 and Section 4
illustrate the design details for respiratory rate monitoring and body position monitoring, respectively.
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In Section 5, we evaluate the performance of our system under various conditions. Section 6 concludes
the paper.

2 RELATED WORKS

Respiratory rate estimation is useful for health monitoring, and it has been studied in previous works.
Traditionally, polysomnography(PSG) is used to estimate the patient’s respiratory rate [29]. However,
it involves wearable sensors with professional installation, and thus is limited to clinical usage. Some
radio frequency (RF) based systems have been proposed in [1, 2, 15, 17, 23] to monitor respiratory rate
in a non-invasive way. The intuition behind these schemes is to capture the variation in the wireless
signal during its propagation, which is caused by the user’s chest movement when he/she breathes, to
estimate the respiratory rate. However, to implement these systems, wireless transmitting and receiving
devices have to be installed. Besides, the performance of these RF-based systems may degrade due to the
environment related changes or wireless signal interference. By leveraging the built-in sensors, researchers
have also proposed smartphone based respiratory rate monitoring systems. In [24], the microphone is
exploited to estimate the respiratory rate by capturing and analyzing the breathing sound. In [4], a
smartphone is bound on the user’s chest and the accelerometer and gyroscope is utilized to extract the
chest movement pattern for estimating respiratory rate. However, both of them are inconvenient and not
applicable for monitoring respiratory rate during sleep. In [24], to achieve accurate estimation, earphones
or earbuds have to be worn during sleep, and in [4], the smartphone has to be bound on the chest for
the whole night. Smartwatch’s accelerometer data is exploited in SeismoTracker [10] and Bio Watch [13]
for respiratory rate estimation. However, SeismoTracker does not provide details on how to process
the accelerometer data. BioWatch only uses data collected from one axis (the one with the largest
magnitude in frequency domain), without fully taking advantage of information obtained from other axes.
In addition, BioWatch also uses gyroscope, which may dramatically shorten the smartwatch’s battery life
since gyroscope consumes much more power than accelerometer. In [21], respiratory rate is monitored by
using the smartphone as an active sonar system. However, to achieve accurate estimation, the smartphone
has to be put close to the user. Different from all these works, we propose a smartwatch-based system
to estimate respiratory rate during sleep and design a multi-axis fusion approach to get high accuracy
estimation by exploiting information from different axes.

Body position is an important physiological parameter for sleep quality assessment, and many works
have been proposed to monitor body position during sleep. A camera is utilized in [30] to capture the
sequence of images during a user’s sleep, and then image processing techniques are applied to the recorded
images for detecting body positions. However, to implement this monitoring system, a camera has to be
installed. Also, the use of camera may raise privacy concerns, which makes this approach impractical. By
placing 3 WISP (Wireless Identification and Sensing Platform) tags at different positions of the mattress,
Hoque et al. [14] monitored body positions through the variation of the accelerometer data collected
from the WISP tags. In [18], a dense pressure sensitive bedsheet containing 64 x 128 pressure sensors
was employed and the pressure images were collected and analyzed to recognize body positions. However,
these systems are not practical since specialized hardware devices have to be installed on the bed.

3 RESPIRATORY RATE MONITORING

In SleepMonitor, the accelerometer data collected from the smartwatch worn on a user’s wrist during
his/her sleep is used to estimate the respiratory rate. This is motivated by the observation that a user’s
breaths can cause the periodic slight movement on his/her wrists while he/she is sleeping. As shown in
Figure 2, respiration is the process of exchanging oxygen and carbon dioxide between the cells of the body
and external environment, which consists of repeated cycles of inhalation and exhalation. During the
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Fig. 2. The process of respiration.
Fig. 1. System overview.

inhalation cycle, air is taken into the lungs, and the diaphragm and intercostal muscle contract, causing
the thoracic cavity to increase in size. During the exhalation cycle, air is moved out from the lungs, and
the diaphragm and intercostal muscle relax, causing the thoracic cavity to decrease in size. The periodic
increase and decrease in the volume of the thoracic cavity will lead to the periodic contractions and
relaxations of the corresponding muscles, which eventually lead to the periodic movement of the chest,
abdomen, arms and wrists. SleepMonitor leverages the accelerometer data collected on the user’s wrist
to detect his/her respiration cycles during sleep. The collected accelerometer data along three axes is
first preprocessed to remove body movements and filter out noise. Then, frequency analysis is applied to
estimate respiration rate from data along each axis. After that, a Kalman filter is designed to improve
the estimation accuracy by fusing estimates from different axes together. In what follows, we discuss the
design details for monitoring respiratory rate.

3.1 Preprocessing

In our system, the accelerometer data along three axes (denoted as a,, a, and a, respectively) is
continuously sampled with a sampling rate of 16 Hz, and then segmented into windows of 30 seconds for
processing. SleepMonitor is designed to work when a user is in motionless sleep (i.e., quiet sleep without
body movement), which occupies the majority of time of sleep. However, during sleep, the user may
toss and turn occasionally and the accelerometer data collected at these moments should be discarded.
To detect whether a window is sampled in motionless sleep or not, we calculate the total acceleration

a=,/a+ a% + a2 for each accelerometer sample and compare it with a predefined threshold . Since

the 3-axis accelerometer equipped on the smartwatch actually measures all the accelerations that affect
the device, including the gravity, the total acceleration when the smartwatch is motionless will be equal
to the gravity in magnitude. Thus, we can compare the total acceleration with the gravity in magnitude
to detect if an accelerometer sample is collected in motionless sleep or not. In our system, -y is set to
10 m/s?. If there are more than 5% of the accelerometer samples (i.e., 1.5 seconds) in a window with
total acceleration larger than +, this window is detected as containing body movement and discarded;
otherwise, it is preserved for respiratory rate estimation.

During motionless sleep, the fluctuations caused by respiration in the accelerometer data collected
from the wrist are weak and easy to be dominated by noises (shown in Figure 3(a)). In order to extract
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Fig. 3. Denoising raw accelerometer data (along X axis) using low-pass filter and TV filter respectively.

respiratory signal from the weak and noisy accelerometer data, we first design a filter to remove the noise
from the raw accelerometer data.

In SleepMonitor, the total variation filter (TV filter) [25] is used for denoising. By reducing the total
variation of the raw signal, TV filter returns a filtered signal which is a close match to the original one
but is much smoother. Different from low-pass filter, which only removes the high-frequency noise, TV
filter removes both high and low-frequency noise and preserves the peaks and troughs which reflect the
respiratory cycles. Figure 3 shows the raw and filtered accelerometer data when using a second-order
Butterworth low-pass filter (cut-off frequency is set to 0.5 Hz) and a TV filter respectively. As can be
seen, the data processed by low-pass filter is still noisy due to some low-frequency noise, while the data
filtered by the TV filter shows clean respiration signal.

Let s € R™*! denote a series of raw accelerometer data in a sampling window, let § € R™*! denote the
filtered data, and let s; and 3; denote the i** sample in s and § respectively. Then, the TV filter is to
find an appropriate § which minimizes the following objective function:

JE,8) = E3,8) + \V(3) (1)

where
BGs) = 5 (60— s 2)

V(§) = Z 15— 5| (3)

and A\ > 0 is the regularization parameter.

In the objective function J(§,s), E(8,s) measures the closeness between the filtered data § and the
raw data s, the total variation V(§) describes the fluctuation in §, and A controls how smoothing § is. If
A is too small, the first term in J(8,s) is dominant and the filtered data will be close to the original data
but with very little noise removed (shown in Figure 4(b)); if A is too large, the second term in J(8,s) is
dominant and the filtered data will be smooth but less like the original data (shown in Figure 4(c)). As
shown in Figure 4(d), when A is set appropriately (A is set to 5 in our system), the noise can be filtered
out and the periodic movement of the wrist which are hidden in the noisy raw data can be extracted.

The optimization problem shown in Equation 1 can be solved by Majorization-Minimization algorithm
[26] with the following iterations:

{ gk :SfDTZk_l (4)

zi, = clip(zg—1 + %Dék, %)

where k is the iteration index, z € R(®=1)x1
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Fig. 4. The raw and filtered accelerometer data (along X axis) collected from the wrist during sleep.

-1 1
-1 1
D(nfl)xn = . . ;
-1 1
and the clip function clip(x, 8) (x = [T1,...,Ti,...,Zm] ") is defined as
cdipx,8)=y | Y=, Vi Um]
ViT Bsign(a) if o] > B

As proven in [26], the optimization problem shown in Equation 1 is convex and the iteration will converge
from any initialization. Thus, we can simply set zop = 0 and solve the problem by using equation 4
iteratively to filter out noise in the raw accelerometer data.

3.2 Respiratory Rate Estimation

After the sampling windows are preprocessed, the noise is removed and the acceleration fluctuation
due to respiration is preserved. Since the fluctuation in the preprocessed data is mainly caused by the
repeated inhalation and exhalation process while a user breathes during sleep, the user’s respiratory rate
can be estimated as the frequency of the fluctuation. To calculate such frequency, we apply FFT to the
filtered accelerometer data. Since FFT decomposes the time-domain signal into frequency components
which make it up, for a quasi-periodic time-domain signal, there will be a strong frequency component in
the corresponding FFT, which indicates the frequency of the time-domain signal. In SleepMonitor, the
respiratory pattern is hidden in the accelerometer data, which is quasi-periodic after being preprocessed
(red line in Figure 5(a)), and thus by applying FFT to the filtered accelerometer data, the respiratory
rate (in Hertz) can be estimated as the frequency of the component with the largest magnitude (shown
in Figure 5(b)).

As shown in Figure 5(a), although respiration during sleep only causes a slight movement of the wrist,
due to the effect of gravity, the absolute values of the accelerations along X, Y and Z axis are much
larger than 0. For each axis, compared with the slight acceleration fluctuation caused by respiration, the
bias caused by gravity is much larger, resulting in a very strong DC component in the corresponding
FFT, which can dominate all the other frequency components. In order to detect the respiration related
frequency component, we simply remove the DC component in the FFT and set its magnitude to 0. In
addition, since the human respiratory rate is less than 30 bpm (breaths per minute) [16], in FFT, we
only consider the components with frequencies less than 0.5 Hz (i.e., 30 bpm).

3.3  Multi-axis Fusion

As shown in Figure 5, in total, 3 respiratory rate estimates are obtained from X, Y and Z axis. To obtain
more accurate respiratory rate, we design a multi-axis fusion approach to fuse these estimates together.
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Fig. 5. The raw (blue line) and filtered (red line) accelerometer data along each axis and the respiratory rate estimation
by applying FFT (with DC component removed) to the filtered data along each axis. The respiratory rate is estimated
as the frequency with the largest magnitude (marked as yellow). The ground truth respiratory rate is 0.267 Hz (16
bpm). According to the figure, respiratory rates estimated with accelerations along X, Y and Z are 0.267 Hz, 0.267 Hz
and 0.233 Hz respectively. A multi-axis fusion approach will be used to further improve the estimation accuracy (see
Section 3.3).

To fuse estimates obtained from different axes together, a straightforward idea is to average these
estimates. However, this may result in large error in some cases due to the possible inaccurate estimates
along some axes. During a user’s sleep, the smartwatch worn on his/her wrist may be at different positions
(e.g., at the side of the body, on the belly or close to the pillow) with different poses (e.g., smartwatch
screen facing up, down or other directions). Depending on the position and pose of the smartwatch, the
intensity of the acceleration fluctuation caused by respiration and the noisiness of the accelerometer data
along each axis may be different, which may result in different estimation accuracies along different axes.
For example, in Figure 5, compared with Z axis, the acceleration fluctuations along X and Y axis are
much stronger and their data is less noisy, and thus the respiratory rates obtained from X and Y-axis
data are more accurate than that from Z-axis data. Therefore, simply averaging results from all three
axes may cause large inaccuracy if the results from some axes are far away from the ground truth value.

In our system, to fuse respiratory rates estimated from different axes, instead of merely considering
the three estimates obtained at a particular moment, we also exploit the historical information by
implementing a Kalman filter (KF), where the respiratory rates calculated previously are used for
prediction and the current estimates from 3-axis accelerometer data are used as the measurement in KF
model for update. More specifically, in our Kalman filter, we predict the respiratory rate at time step
t (i.e., the t'" sampling window in our system) as that of time step ¢ — 1 since the respiratory rates of
the two continuous sampling windows are not likely to vary dramatically during sleep. Then we use the
weighted arithmetic mean of the three respiratory rates obtained from X, Y and Z axis at time step ¢
as the measurement and use the corresponding standard deviation as the variance of the measurement
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noise in KF model (see Equation 10 and 11). Let rry; and rry;_; respectively denote the a posteriori
and the a priori respiratory rate at time step ¢, the Kalman filter recursively updates the respiratory rate
as follows:

TTtt—1 = TTt—1]t—1 (5)
Pt|t—1 = Pt—1]t—1 (6)
Dtjt—1
k= ——7-— 7
! Dijt—1 + Tt ")
Ty = TTep—1 + ke (T = rrye-1) (8)
Pt = (11— kt)pt|t—l 9)

where py; and p;,_; respectively represent the a posteriori and the a priori estimation error variances at

time step ¢, k; is the Kalman gain at ¢, the measurement rr}" is

mo__ axr ar
rryt = E wi® et (10)
ar€{w,y,z}

and the variance of the measurement noise r; is

=) Y fwpm (g — )2, (11)

aw€{w,y,7}

In Equation 10 and 11, w{* is a normalization factor to describe the weight of rr{® when calculating
rry*. Let varg® denote the variance of the filtered accelerometer data along axis az in the window at
time step ¢, and the normalized weight w{® is calculated as:

ax
varyg

Wit = varf +vary + varf

t t [
When the variance along an axis is greater, which means the wrist movement caused by respiration along
that axis is stronger, the respiratory rate estimated from that axis should be more reliable. Thus, in our
system, we assign weights to the estimates from different axes based on their corresponding variances.

As can be seen from Equation 8, the Kalman gain k; is a weighting factor to decide the weights of the
respiratory rate calculated at t — 1 and the measurement at ¢ in calculating the final respiratory rate
at t. When k; is large, the filter places more weight on the current measurement, and when k; is small,
the filter places more weight on the previous respiratory rate. According to Equation 7, k; is related to
the variance of the measurement noise r;, which describes the reliability of the measurement at ¢. In
our system, when the estimates from the three axes are more consistent, r; is smaller and k; is larger,
resulting in more weight placed on the current measurement in Equation 8. Otherwise, the measurement
is less reliable, k; is smaller and rry|; is closer to the previous respiratory rate. At the extremes, if the
estimates from all three axes are the same, r, = 0, k; = 0 and rry; = rry"; if the estimates from all three
axes are totally different, r, — oo, k¢ — 1 and rryy — rri_q)i—1-

Kalman filter is recursive and works in real time. As shown in Figure 6, the respiratory rates obtained
by using Kalman filter are more accurate than those obtained by simply averaging estimates from
different axes. Even when the respiratory rates in two continuous sampling windows change suddenly,
the respiratory rate calculated in Kalman filter can be corrected quickly by the new measurement values.
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Fig. 6. The respiratory rates obtained by averaging estimates from all three axes and by using Kalman filter. A user is
asked to change his respiratory rate while he is lying on the bed. The ground truth is obtained by asking the user to
breathe to a metronome.

4 BODY POSITION MONITORING

Body position is an important physiological parameter in sleep study. In [7], body position data during
sleep was collected to assess a user’s sleep quality, and in [22] and [8], researchers monitored body positions
during sleep to study how different body positions affected sleep-related diseases, such as breathing
disorders and back pains. Based on the 3-axis accelerometer data collected from the smartwatch worn
on a user’s wrist, SleepMonitor can detect the body position at each time step as one of the four basic
positions, including lying on the back, the chest, the left side and the right side (denoted as supine, prone,
left and right respectively).

When a user sleeps in different positions, his/her wrist (either left or right wrist) is normally at different
positions with different poses, and the wrist position and pose are related to the body position. Take the
left wrist as an example: when sleeping in supine, the user is likely to put his/her wrist at the left side of
the body or on the belly, with the palm facing down or sideways; when sleeping on left, the user is likely
to put his/her wrist at the left side of the body or close to the pillow, with the palm facing up. Thus,
body position can be detected by the position and pose of the wrist. In SleepMonitor, we first filter out
sampling windows which contain body movements (illustrated in Section 3.1). Then, in the preserved
sampling windows, we extract features which can reflect the wrist position and pose, and use various
classification algorithms to train classifiers for body position detection.

Although movement patterns of the left and right wrist are different during sleep, the technique used
for detecting body position is the same, regardless of the wrist. Only experimental parameters need to be
adjusted when the smartwatch is worn on different wrists. To simplify our representation, in this section,
the system is illustrated assuming that the smartwatch is worn on the left wrist.

4.1 Ground Truth

In order to train a classifier which can recognize body positions based on the extracted features, the
ground-truth body position at each time step must be collected. To obtain the ground truth, two
approaches are used in most of the existing works [5, 9, 14, 18, 30]. In [5, 9, 14], low-light cameras are
utilized to monitor the users’ sleep and their body positions are labeled based on the video data. In
[18, 30], users are asked to sleep in particular body positions under supervision in lab environment and
the ground truth is lab controlled. However, both have disadvantages. For the video based approach, it
is difficult to recruit volunteers due to privacy concerns. Besides, to label a user’s ground-truth body
positions, the video recorded during the whole night should be played and watched, which costs much
time and labor. For the lab-controlled approach, the body positions are not obtained while the users
are sleeping. Since a user may sleep differently under supervision in lab environment from normal days,
the experimental data collected using such approach may not accurately reflect the real body positions
during sleep. To overcome these problems, we designed our own approach.
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Fig. 7. The experimental setup to get the ground-truth body position.

Table 1. Angles between each axis and the upward direction in different body positions.
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As shown in Figure 7(a) and Figure 7(b), a smartwatch without band is attached to the user’s belly
while the user sleeps, and its pose varies when the user changes his/her body position. Based on the pose
of the smartwatch, we can detect the user’s body position correctly. Figure 7(c) shows the smartwatch’s
local coordinate system: when looking at the smartwatch screen in a normal way (e.g., checking the
time), X axis points towards the right side of the screen, Y axis points towards the top of the screen, and
7 axis is perpendicular to the screen and points towards the sky. Given such local coordinate system, the
smartwatch’s pose and the user’s body position can be detected through the angles between each axis and
the upward direction (denoted as 6, 8y, 6. respectively, shown in Figure 7(c)). For example, as shown
in Figure 7(a) and Figure 7(b), the smartwatch is placed on the user’s belly with its X axis pointing
towards the left side of the body and its Y axis pointing towards the user’s head. Ideally, if the user’s
torso is modeled as a rigid body, when the user is lying on the back, X and Y axis are perpendicular to
the upward direction, Z axis points upwards, and 0, = 5, 0, = § and 6, = 0; when the user is lying
on the left side, Y and Z axis are perpendicular to the upward direction, X axis points downwards, and
0, =m, 0, =7 and 0, = 5. In practice, the angles measured for a particular body position may vary
slightly around those in ideal case. For different body positions, Table 1 shows the corresponding angles
in ideal case and their ranges measured in our experiment.

In order to use Table 1 to infer the user’s body position, the angles between the smartwatch’s three
axes and the upward direction must be obtained. When a smartwatch is static, the total acceleration,
which is calculated from the accelerations measured along X, Y and Z axis, is equal to the gravity in
magnitude but points to the opposite. Since the gravity is always downwards, the total acceleration
measured from a static smartwatch always points upwards. In this case, the angles between each axis
and the upward direction can be calculated as:
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Ope = arccos(L) (12)
ax€{z,y,z} /a% + az + az

During sleep, except for some occasional body movements, the user’s body remains static for most of
the time and the accelerometer of the attached smartwatch is only affected by the gravity and respiration.
Since the acceleration caused by the respiration is much smaller than that caused by gravity, the effect of
the respiration can be ignored and we can use Equation 12 to calculate the angles and further detect
the user’s body positions. In our scheme, similar to that described in Section 3, the accelerometer data
collected from the belly is segmented as the same size windows as those collected from the wrist, and the
windows containing body movements are discarded. Then, for the preserved windows, we use Equation
12 to calculate the angles and use Table 1 to infer the corresponding body positions.

To verify our scheme, we used a camera to record a user’s sleep for one night, and compared the ground
truth obtained from the video data with that from our scheme (denoted as Video and Acc respectively).
Figure 8 shows 30-minute data of the accelerations, the calculated angles and the body positions labeled
using Video and Acc. As can be seen from Figure 8(d), all body positions labeled by Acc are consistent
with those labeled by Video. Some short periods around the body movements are not labeled by Acc
because it labels body positions based on 30-second-long windows. Except for these short periods, the
ground truth obtained by Video and Acc are consistent for most of the time. Thus, we use the smartwatch
attached to the user’s belly to obtain ground truth in our experiment.

4.2 Feature Extraction and Classification

Extracting the proper features is important for classifying body positions. Since the position and pose of
a user’s wrist are related to his/her body position during sleep, given the accelerometer data collected in
SleepMonitor, we are interested in extracting the features which can distinguish the different positions
and poses of the smartwatch when the user is in different body positions.

We extract the standard deviation of the accelerometer data in a window as a feature to distinguish
the wrist positions. When a user puts his/her wrist at different positions during sleep, the amplitudes of
the wrist movement caused by respiration may be different, and thus the intensities of the fluctuations in
the collected accelerometer data may be different. For example, as shown in Figure 9, the accelerometer
data collected when the wrist is put on the belly fluctuates much stronger than that collected when the
wrist is at the side of the body. Since standard deviation can be used to measure the intensity of the
fluctuation in a signal, we use it as a feature to distinguish the wrist positions.

As illustrated in Section 4.1, the wrist pose can be described by the angle between each axis and the
upward direction, which can be calculated by Equation 12. However, the angle is calculated based on
each acceleration sample, which is not a window based feature. To extract a window based feature, we
need to average all the calculated angles in a window. Since the sampling window processed here does
not, contain body movement and the wrist pose does not change very much, we can first average all the
accelerations along each axis and then use Equation 12 to reduce the computation overhead. Further,
since the wrist is almost static when the window is sampled, the magnitude of the total variation is equal
to the gravity, which is a constant. Thus, we can ignore the denominator in Equation 12 and use the
mean value of the accelerations along each axis as a feature to distinguish the wrist poses.

Besides mean and standard deviation, we also extract the 20th percentile, median, 80th percentile of
the accelerometer data along each axis and the covariance and correlation between accelerometer data
along every two different axes as features in our system.

After the features are extracted from each window, different machine learning techniques can be used
to construct the body position classifier. In our system, we implement 4 commonly used classification
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Acc. In Acc, angles between each axis and the upward direction (green
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algorithms: Naive Bayes (NB), Bayesian Network (BN), Decision Tree (DT) and Random Forest (RF),
and compare their performances in Section 5.

5 PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of SleepMonitor based on the data collected in real
experiments.

5.1 Experimental Setup

To evaluate the performance of our system, we implemented SleepMonitor on two Android Wear based
smartwatches: Sony Smartwatch 3 and Huawei Watch.

As illustrated in Section 4.1, a smartwatch without band can be attached to the user’s belly to collect
ground-truth data for body position. It can also be used to collect ground-truth data for respiratory
rate. As shown in Figure 10, since respiration causes strong movement of the belly, in the corresponding
accelerometer data, the fluctuation indicating respiratory cycles is also strong. Thus, the filtering and
frequency analysis technique described in Section 3 can be applied to the accelerometer data collected
from the belly to estimate respiratory rate accurately, and the results can be used as the ground truth.
Different from the ground truth collection approaches in [15, 23], which are lab-controlled by asking users
to artificially breathe to a metronome, our approach is able to collect the ground-truth respiratory rate
when users breathe naturally during sleep with only a smartwatch attached to the belly.
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Table 2. Overview of the experiment setup.

User | Nights | Gender | Age | Smartwatch (belly) | Smartwatch (wrist) | Respiration pattern
1 8 M 20-30 Sony Huawei/Sony Normal
2 4 F 30-40 Sony Huawei/Sony Normal
3 5 M 20-30 Sony Huawei/Sony Normal
4 4 F 20-30 Sony Huawei/Sony Normal
5 8 M 30-40 Sony Huawei/Sony Normal
6 6 M 20-30 Sony Huawei/Sony Normal
7 5 M 30-40 Sony Huawei/Sony Normal
8 3 F 30-40 Sony Huawei/Sony Normal
9 1 M 20-30 Sony Huawei Normal

10 2 M 20-30 Sony Huawei Normal

11 6 F 20-30 Sony Huawei Artificial
12 2 M 20-30 Sony Huawei Artificial
13 4 M 30-40 Sony Huawei Artificial
14 4 M 20-30 Sony Huawei Artificial
15 4 F 40-50 Sony Huawei Abnormal
16 4 M 50-60 Sony Huawei Abnormal

As shown in Table 2, we recruited 16 people and collected 70 nights of sleep data in our experiment.
Among these users, user 15 and user 16 are sleep-impaired, and one of them has sleep apnea (denoted as
Abnormal in the last column of Table 2). Users 11 to 14 are artificially irregular breathing users, who
were asked to intentionally change respiratory rate for half an hour before falling asleep (denoted as

Artificial in Table 2).

During the experiment, each user was given two smartwatches: one worn on the left wrist and the other
one attached to the belly. These two smartwatches were synchronized before given to the user. After
each night, we collected smartwatches from the user and read accelerometer data from both smartwatch’s
SD cards. The collected accelerometer data was processed separately to obtain experimental results and
ground truth. The experiment has been approved by our IRB (Institutional Review Board).

5.2 Respiratory Rate
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52.1 Comparison with BioWatch. We use Bland-Altman plot [3] to evaluate the estimation accuracy of
SleepMonitor and compare it with that of BioWatch [13]. As shown in Figure 11, the Bland-Altman plot
is modified a little bit by using the groundtruth as the X-axis and the estimation difference between the
evaluated system and groundtruth as the Y-axis. In our comparison, we apply FFT to the accelerometer
data along three axes and select the estimate from the one with the maximum magnitude in frequency
domain as BioWatch’s respiratory rate estimation.

As shown in Figure 11(a), when using SleepMonitor, most of the estimations are within the limits of
agreement (i.e., interval between +1.96 std and -1.96 std). Comparing Figure 11(a) with Figure 11(b),
the mean and standard deviation of the estimation difference between SleepMonitor and groundtruth
(mean = 0.0274 and std = 1.0235) are much smaller than those between BioWatch and groundtruth
(mean = —0.4714 and std = 2.4841), indicating that SleepMonitor estimates respiratory rate more
accurately than BioWatch. This is because SleepMonitor leverages estimates from three axes and fuses
them together to reduce errors, while BioWatch only uses the accelerometer data from one axis, without
taking advantage of information from other axes.

5.2.2  Effect of window size. Figure 12 shows the mean absolute estimation error and the range of
the absolute error when using SleepMonitor and BioWatch respectively under different window sizes.
As discussed in Section 5.2.1, since the weighted arithmetic mean and Kalman filter are implemented
in SleepMonitor to fuse estimates from different axes together, SleepMonitor performs much better
than BioWatch under various window sizes. For both SleepMonitor and BioWatch, the mean absolute
error decreases and the absolute error varies within a shorter range when the window size is increased.

PACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 0, No. 0, Article 0. Publication date: 2017.



SleepMonitor: Monitoring Respiratory Rate and Body Position During Sleep Using Smartwatch

Difference (bpm)

Difference (bpm)

== -+1.96std
—1.96 std

12 14 16 18 20 22
Groundtruth (bpm)

(a) Supine

== =+1.96 std
~1.96 std

12 14 16 18
Groundtruth (bpm)

(c) Left

10 ---+1096std

- 1.96 std

Difference (bpm)

& 10 12 14 1 18
Groundtruth (bpm)

(b) Prone

0 - - -+1.96std
+ - 1.96 std

Difference (bpm)

8 10 12 14 16 18
Groundtruth (bpm)

(d) Right

0:15

Fig. 13. Bland-Altman plot for respiratory rate estimation when using SleepMonitor in different body positions.

[IsleepMonitor [ sleepMonitor
oWatch Watch

[
@
=3

_————
——————
—_————
——————
-—--y
-——--
——————

o
@
N

Mean absolute error (bpm)
.-
Absolute error (bpm)
IS

supine prone left right supine prone left right

(a) (b)

Fig. 14. Effect of body position on respiratory rate estimation.

This is because in both SleepMonitor and BioWatch, FFT is applied to the accelerometer data for
respiratory rate estimation, and the frequency resolution of FFT is decided by the sampling rate and the
number of samples used in FFT. At a fixed sampling rate (i.e., 16 Hz in our experiment), the frequency
resolution is increased with more samples used in FFT (i.e., larger window), and thus the respiratory
rate estimation is more accurate with a larger window. However, increasing the window size will need
more computing resource and consume more power, which is limited on smartwatch. As show in Figure
12, when 30-second-long window is used, the estimation error falls to an acceptable range with a mean
absolute error of 0.72 bpm. Thus, in our system, the window size is set to 30 seconds.

5.2.3  Effect of body position. Figure 13 shows the Bland-Altman plot for respiratory rate estimation
when using SleepMonitor in different body positions. As shown in the figure, no matter in which position
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the user sleeps, most of the estimation errors are within around +2 bpm, indicating that SleepMonitor
can estimate respiratory rate accurately regardless of the sleep position. Figure 14 shows the mean
absolute error and the range of the absolute error of respiratory rate estimation when using SleepMonitor
and BioWatch in different body positions. As can be seen, for both SleepMonitor and BioWatch, the
estimation is more accurate in supine than in other body positions. This is because users are more
likely to put the wrist on the belly in supine than in other body positions, which leads to stronger wrist
movement and thus more accurate estimation. When users are in right, the left arm is likely to be put on
the torso, leading to stronger movement on the left wrist than on the right. In our experiment, users wear
smartwatches on their left wrists, and thus the fluctuation in the accelerometer data collected in right is
stronger than that in the data collected in left, resulting in less estimation error in right than in left.

5.2.4  Effect of respiration pattern. To evaluate our system under different respiration patterns, we
use the first half hour’s sleep data from users 11 to 14 (artificially irregular breathing users) and the
whole night’s sleep data from user 15 and user 16 (sleep-impaired patients) as a dataset, and compare
the respiratory rate estimation using this dataset (denoted as Artificial + Abnormal) with that using
the sleep data from users 1 to 10 (denoted as Normal). As shown in Figure 15, although the estimation
accuracy in Artificial + Abnormal is not as good as that in Normal, SleepMonitor can still estimate
respiratory rate accurately when the respiration pattern varies, with a mean absolute error of 1.08 bpm.
To study how SleepMonitor tracks rapid, unpredictable changes in breathing patterns while lying down,
we use one night of user 11’s sleep data and show the respiratory rate estimation at different time in
Figure 16(a). In the figure, we only use the 30-minute sleep data when the user changes his respiratory
rate. As can be seen, even if the user’s respiratory rate varies, SleepMonitor can capture the variations
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and return estimation with mean absolute error of 0.311 bpm. To understand SleepMonitor’s performance
for people with sleep diseases, we use one night of user 16’s sleep data and show the respiratory rate
estimation in Figure 16(b). As shown in the figure, for most of the time, SleepMonitor can estimate the
respiratory rate with small errors. The mean absolute error based on the 300-minute-long sleep data is
less than 1 bpm (i.e., 0.748 bpm).

5.2.5  Effect of device. To evaluate our system across devices, two smartwatches, Sony Smartwatch
3 and Huawei Watch (denoted as Sony and Huawei respectively), are tested and their performance on
respiratory rate estimation is shown in Figure 17. As can be seen, although Huawei performs a little
bit better than Sony, both of them can estimate respiratory rate accurately when using SleepMonitor,
verifying that our system can work on different types of smartwatches for respiratory rate monitoring.

5.2.6  Effect of blanket. In practice, people use blankets during sleep. To evaluate the effect of using
blanket on the accuracy of respiratory rate estimation, we asked users to sleep with blanket and without
blanket for 20 minutes respectively and estimated the respiratory rate based on these two datasets. In
each experiment, users slept in the supine position and put wrist on the belly. As shown in Figure 18, in
both cases, SleepMonitor can estimate respiratory rate with high accuracy (less than 0.7 bpm). Although
the accuracy with blanket is a little bit worse than that without blanket, there is no major difference,
demonstrating that our system can work well in practice when people use blankets.

5.2.7 Effect of A\. The raw accelerometer data collected from wrist during sleep is very noisy and
we need to filter out the noise before any further techniques can be applied. To implement the filter,
as discussed in Section 3.1, an appropriate value for the regularization parameter A is important. In
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Table 3. The overall detection results using different classification algorithms.

NB BN DT RF
TPR | FPR | TPR | FPR | TPR | FPR | TPR | FPR
supine | 0.70 | 0.24 | 0.84 | 0.18 | 0.93 | 0.08 | 0.95 | 0.05
prone | 0.56 | 0.26 | 0.77 | 0.05 | 0.84 | 0.06 | 0.90 | 0.03

left 0.61 | 0.14 | 0.81 | 0.12 | 0.87 | 0.02 | 0.92 | 0.02
right 0.54 | 0.07 | 0.80 | 0.03 | 0.88 | 0.02 | 0.90 | 0.02

Position

order to evaluate the effect of A\ on respiratory rate estimation, we collect sleep data from users and
set A to different values. As shown in Figure 19, the mean absolute error when A is set to 10 (i.e., too
large) or 1 (i.e., too small) is larger than that when A is set to 5, which is consistent with the analysis in
Section 3.1. Compared with A = 10, the respiratory rate estimated when A = 1 is more accurate. This is
because when A is small, even some noise cannot be filtered, the respiration signal in the raw data is still
preserved, which can be used to estimate respiratory rate, but when A\ is large, the respiration signal may
be removed as noise.

5.3 Body Position

5.3.1 Overall performance. We use True Positive Rate (TPR) and Fualse Positive Rate (FPR) to evaluate
the performance of our system on body position monitoring. After extracting features from sampling
windows, we use Weka [11] to implement four commonly used classification algorithms, Naive Bayes,
Bayesian Network, Decision Tree and Random Forest (denoted as NB, BN, DT and RF respectively), and
the overall performance of each algorithm based on leave-one-user-out strategy is shown in Table 3. For
a particular user, we use data collected from the other users to train classification models and use data
from this user to test. The process is repeated to cross validate the classification algorithms across users.

As can been seen, RF outperforms all the other schemes, and 95% of supine, 90% of prone, 92% of left
and 90% of right can be correctly classified using our extracted features. DT can also recognize different
kinds of body positions with TPR larger than 84%. For all 4 classification algorithms, supine is classified
more accurately than other body positions, but it also has lager FPR, than others, indicating that many
other body positions are misclassified as supine.
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5.3.2 Effect of training dataset. For a specific user, the classifiers can be trained by using different
datasets: dataset collected from other users and dataset collected only from this user. To evaluate the
effect of dataset on the performance of body position classification, we focus on a particular user and
train model by using dataset from all the other users and dataset from this user (denoted as universal
and individual respectively). For individual, we use the leave-one-night-out strategy to cross validate
across nights. Each time, data collected from one night is used for testing and data collected from the
remaining nights is used for training. This process is repeated so that each night’s data is used exactly
once as the testing data. Since DT and RF perform much better than NB and BN, we use DT and RF as
the classification algorithms and the results are shown in Figure 20. As can be seen, for both DT and RF,
individual achieves better performance than universal. More than 87% of different kinds of body positions
can be correctly classified in individual, and the FPR is less than 7% in individual. This is because
different users have different sleeping patterns, and compared with universal, the features extracted from
a specific user in individual are more distinctive and more reliable to describe the relationship between
the body position and the corresponding wrist position and pose.

5.3.3 Effect of device. Figure 21 shows the TPR and FPR of different body positions when using
different classification algorithms and different types of smartwatches. Similar to Section 5.2.5, there is no
major difference in the performance of Sony and Huawei. Both of them can correctly identify more than
87% of body positions when using DT and more than 88% when using RF. No matter which classification

PACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 0, No. 0, Article 0. Publication date: 2017.



0:20 e X. Sun et al.

T T T T T o« 2
— total acceleration ﬁ 28 |
20l —threshold y ] :x 0 ) ) . ) )
"o 5 10 15 20 25 30
Time (sec)
<, 15 —~ -895
; | |
£ 9 ]
g ‘ H\ ‘ J‘ | “\ | | £ I I [T L]
@ 10 il Iy iamiaine| i & —gosl (W TT VWV VT TV, ™ vV W WV
‘ 0 5 10 15 20 25 30
Time (sec)
5 o -17
Q2
£ -175 |
N L L L L L
0 ! Ti 3h ° ° 8y 5 10 15 20 25 30
ime (hour) Time (sec)

Fig. 22. The total acceleration collected from a user's wrist during

. . Fig. 23. The accelerometer data collected from a
his entire sleep.

user's wrist when he wears the smartwatch loosely.

algorithm (i.e., DT or RF) is used, both Sony and Huawei can achieve FPR less than 9%. Therefore,
SleepMonitor can work on different types of smartwatches for body position monitoring.

5.4 Discussions

SleepMonitor is designed to work in an unobtrusive way. The user only needs to start it by a simple click
before sleep and stop it after getting up. Although the user may not go to motionless sleep immediately
after starting SleepMonitor and may occasionally turn around during sleep, these events can be filtered
out by using a predefined threshold ~ (see Section 3.1) and they will not affect the respiratory rate
estimation during motionless sleep. Figure 22 shows the total acceleration collected from a user’s wrist
during his entire sleep. As can be seen, for most of the time, the user is in motionless sleep that can be
detected by threshold -, demonstrating that our system is suitable for monitoring the respiratory rate
during sleep.

SleepMonitor estimates a user’s respiratory rate during sleep by capturing the slight periodic wrist
movement caused by the repeated inhalation and exhalation process during respiration. However, there
are cases when a user wears the smartwatch loosely, which makes it difficult to capture the wrist movement
through smartwatch’s accelerometer data. As shown in Figure 23, when a user wears the smartwatch
loosely, we cannot detect respiration cycles since the accelerometer readings along three axes are too
weak. We can use mean and variance-based thresholds to detect such situation and display a warning
signal (or vibration) to let the user tighten the smartwatch.

6 CONCLUSIONS

In this paper, we designed SleepMonitor, a smartwatch based system which can monitor a user’s respiratory
rate and body position during his/her sleep by leveraging the accelerometer data collected from the wrist.
Filtering and frequency analysis techniques are applied to estimate the respiratory rate as the frequency
of the wrist movement along each axis caused by respiration during sleep. A multi-axis fusion approach is
further designed to improve the estimation accuracy. Features which describe the wrist position and pose
are extracted from the accelerometer data, and machine learning techniques are applied to detect the
body position. We have implemented our system on Android Wear based smartwatches and evaluated its
performance in real experiments. The results show that our system can monitor respiratory rate and body
position during sleep with high accuracy under various conditions. Although our system is illustrated
based on smartwatch, it can also work on other wrist-worn devices (e.g. Fitbit or Jawbone) since the only
sensor used in SleepMonitor is 3-axis accelerometer, which is equipped on almost all wearable devices.
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