
Computer Physics Communications 182 (2011) 266–269
Contents lists available at ScienceDirect

Computer Physics Communications

www.elsevier.com/locate/cpc

Hybrid CUDA, OpenMP, and MPI parallel programming on multicore GPU
clusters ✩

Chao-Tung Yang ∗, Chih-Lin Huang, Cheng-Fang Lin

Department of Computer Science, Tunghai University, Taichung City, 40704, Taiwan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 March 2010
Received in revised form 18 June 2010
Accepted 25 June 2010
Available online 16 July 2010

Keywords:
CUDA
GPU
MPI
OpenMP
Hybrid
Parallel programming

Nowadays, NVIDIA’s CUDA is a general purpose scalable parallel programming model for writing highly
parallel applications. It provides several key abstractions – a hierarchy of thread blocks, shared memory,
and barrier synchronization. This model has proven quite successful at programming multithreaded many
core GPUs and scales transparently to hundreds of cores: scientists throughout industry and academia are
already using CUDA to achieve dramatic speedups on production and research codes. In this paper, we
propose a parallel programming approach using hybrid CUDA OpenMP, and MPI programming, which
partition loop iterations according to the number of C1060 GPU nodes in a GPU cluster which consists
of one C1060 and one S1070. Loop iterations assigned to one MPI process are processed in parallel by
CUDA run by the processor cores in the same computational node.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Nowadays, NVIDIA’s CUDA [1] is a general purpose scalable
parallel programming model for writing highly parallel applica-
tions. It provides several key abstractions – a hierarchy of thread
blocks, shared memory, and barrier synchronization. This model
has proven quite successful at programming multithreaded many
core GPUs and scales transparently to hundreds of cores: scientists
throughout industry and academia are already using CUDA [1] to
achieve dramatic speedups on production and research codes.

This paper proposes a solution to not only simplify the use
of hardware acceleration in conventional general purpose applica-
tions, but also to keep the application code portable. In this paper,
we propose a parallel programming approach using hybrid CUDA,
OpenMP and MPI [3] programming, which partition loop iterations
according to the performance weighting of multicore [4] nodes in
a cluster. Because iterations assigned to one MPI process are pro-
cessed in parallel by OpenMP threads run by the processor cores in
the same computational node, the number of loop iterations allo-
cated to one computational node at each scheduling step depends
on the number of processor cores in that node.

In this paper, we propose a general approach that uses perfor-
mance functions to estimate performance weights for each node.
To verify the proposed approach, a cluster with hybrid CUDA was

✩ This work is supported in part by the National Science Council, Taiwan, under
grants Nos. NSC 98-2220-E-029-004- and NSC 99-2220-E-029-004-.

* Corresponding author. Tel.: +886 4 23590415; fax: +886 4 23591567.
E-mail address: ctyang@thu.edu.tw (C.-T. Yang).
0010-4655/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2010.06.035
built in our implementation. Empirical results show that in the hy-
brid CUDA clusters environments, the proposed approach improved
performance over all previous schemes.

The rest of this paper is organized as follows. In Section 2,
we introduce several typical and well-known parallel programming
schemes. In Section 3, we define our model and describe our ap-
proach. Our system configuration is then specified in Section 4,
and experimental results for three types of application program
are presented. Concluding remarks and future work are given in
Section 5.

2. Background review

2.1. CUDA programming

CUDA (an acronym for Compute Unified Device Architecture) is
a parallel computing [2] architecture developed by NVIDIA. CUDA
is the computing engine in NVIDIA graphics processing units or
GPUs that is accessible to software developers through industry
standard programming languages. CUDA architecture supports a
range of computational interfaces including OpenGL [9] and Direct
Compute. CUDA’s parallel programming model is designed to over-
come this challenge while maintaining a low learning curve for
programmers familiar with standard programming languages such
as C. At its core are three key abstractions – a hierarchy of thread
groups, shared memories, and barrier synchronization – that are
simply exposed to the programmer as a minimal set of language
extensions.

http://dx.doi.org/10.1016/j.cpc.2010.06.035
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
mailto:ctyang@thu.edu.tw
http://dx.doi.org/10.1016/j.cpc.2010.06.035


C.-T. Yang et al. / Computer Physics Communications 182 (2011) 266–269 267
These abstractions provide fine-grained data parallelism and
thread parallelism, nested within coarse-grained data parallelism
and task parallelism. They guide the programmer to partition the
problem into coarse sub-problems that can be solved indepen-
dently in parallel, and then into finer pieces that can be solved
cooperatively in parallel. Such a decomposition preserves language
expressivity by allowing threads to cooperate when solving each
sub-problem, and at the same time enables transparent scalabil-
ity since each sub-problem can be scheduled to be solved on any
of the available processor cores: A compiled CUDA program can
therefore execute on any number of processor cores, and only the
runtime system needs to know the physical processor count.

2.2. OpenMP programming

In contrast, Open Multi-Processing (OpenMP) [6], a kind of
shared memory architecture API [3,5], provides a multithreaded
capacity. A loop can be parallelized easily by invoking subroutine
calls from OpenMP thread libraries and inserting the OpenMP com-
piler directives. In this way, the threads can obtain new tasks, the
un-processed loop iterations, directly from local shared memory.

OpenMP is an open specification for shared memory paral-
lelism. The basic idea behind OpenMP is data-shared parallel ex-
ecution. It consists of a set of compiler directives, callable runtime
library routines and environment variables that extend FORTRAN, C
and C++ programs. OpenMP is portable across the shared memory
architecture. The unit of workers in OpenMP is threads. It works
well, when accessing shared data costs you nothing. Every thread
can access a variable in shared cache or RAM.

The OpenMP (Open Multi-Processing) is an application pro-
gramming interface (API) that supports multi-platform shared
memory multi-processing programming in C, C++ and FORTRAN on
much architecture, including UNIX and Microsoft Windows plat-
forms. It consists of a set of compiler directives, library routines,
and environment variables that influence run-time behavior.

2.3. MPI programming

Message Passing Interface (MPI) is a specification for message
passing operations. It defines each worker as a process. MPI is
currently the de-facto standard for developing HPC applications
on distributed memory architecture. It provides language bindings
for C, C++, and FORTRAN. MPI [7] offers portability, standardiza-
tion, performance, and functionality, and includes point-to-point
message passing and collective (global) operations, all scoped to
user-specified groups of processes. MPI provides a substantial set
of libraries for writing, debugging, and performance-testing dis-
tributed programs. Our system currently uses MPICH, a portable
implementation of the MPI standard. MPICH is a freely available,
portable implementation of MPI, a standard for message-passing
for distributed-memory applications used in parallel computing
[2]. MPICH is Free Software and is available for most flavors of
UNIX (including Linux and Mac OS X) [10] and Microsoft Windows.
Moreover, MPICH [8] is a developed program library.

The advantage for the user is that MPI is standardized on many
levels. For example, since the syntax is standardized, you can be
sure your MPI code will execute under any MPI implementation
running on your architecture. Since the functional behavior of MPI
calls is also standardized, your MPI calls should behave the same
regardless of the implementation, thus guaranteeing the portability
of your parallel programs. Performance, however, may vary from
implementation to implementation.

The MPI library is often used for parallel programming [11] in
cluster systems because it is a message-passing programming lan-
guage. However, MPI is not the most appropriate programming
language for multicore [4] computers because even when there
Fig. 1. System model: The hybrid CUDA GPU cluster.

are still many tasks assigned to overloaded slave processors re-
maining in shared memory, other slave MPI processors on the
same computing node cannot access the tasks. Instead, all slave
processors must communicate directly with the master MPI pro-
cessor to obtain new tasks. In large cluster systems, the master
processor may become a bottleneck on system performance be-
cause of excessive amounts of communication. The cluster compu-
tations exploit message-passing, because computers in cluster have
distributed memory. When one process needs data from another
one then you should manage data passing over the network. It is
time-consuming operation. So, if you want to write such hybrid
program, you should implement data broadcasting operations (e.g.
MPI_Bcast from MPI) for each data access in OpenMP. This will kill
parallel performance at all.

3. System hardware

3.1. Tesla C1060 GPU computing processor

The NVIDIA® Tesla™ C1060 transforms a workstation into a
high-performance computer that outperforms a small cluster. This
gives technical professionals a dedicated computing resource at
their desk-side that is much faster and more energy-efficient than
a shared cluster in the data center. The NVIDIA® Tesla™ C1060
computing processor board which consists of 240 cores is a PCI Ex-
press 2.0 form factor computing add-in card based on the NVIDIA
Tesla T10 graphics processing unit (GPU). This board is targeted as
high-performance computing (HPC) solution for PCI Express sys-
tems. The Tesla C1060 [15] is capable of 933 GFLOPs/s [13] of
processing performance and comes standard with 4 GB of GDDR3
memory at 102 GB/s bandwidth.

A computer system with an available PCI Express ×16 slot
is required for the Tesla C1060. For the best system bandwidth
between the host processor and the Tesla C1060, it is recom-
mended (but not required) that the Tesla C1060 be installed in a
PCI Express ×16 Gen2 slot. The Tesla C1060 is based on the mas-
sively parallel, many-core Tesla processor, which is coupled with
the standard CUDA C programming [14] environment to simplify
many-core programming.

3.2. Tesla S1070 GPU computing system

The NVIDIA® Tesla™ S1070 [12] computing system speeds the
transition to energy-efficient parallel computing [2]. With 960 pro-
cessor cores and a standard C compiler that simplifies application
development, Tesla S1070 scales to solve the world’s most im-
portant computing challenges – more quickly and accurately. The
NVIDIA® Tesla™ S1070 Computing System is a 1U [12] rack-mount
system with four Tesla T10 computing processors. This system con-
nects to one or two host systems via one or two PCI Express cables.
A Host Interface Card (HIC) [5] is used to connect each PCI Express
cable to a host. The host interface cards are compatible with both
PCI Express 1x and PCI Express 2x systems.

The Tesla S1070 GPU computing system is based on the T10
GPU from NVIDIA. It can be connected to a single host system via



268 C.-T. Yang et al. / Computer Physics Communications 182 (2011) 266–269
Fig. 2. Matrix multiplication with problem sizes from 256 to 2048. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

Fig. 3. Md5 hashing on 10 to 2,098,651 words. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

Fig. 4. Sorting numbers 640 times from 65,536 to 16,777,216 floating point numbers. (For interpretation of the colors in this figure, the reader is referred to the web version
of this article.)



C.-T. Yang et al. / Computer Physics Communications 182 (2011) 266–269 269
two PCI Express connections to that host, or connected to two sep-
arate host systems via one PCI Express connection to each host.
Each NVIDIA switch and corresponding PCI Express cable connects
to two of the four GPUs in the Tesla S1070. If only one PCI Express
cable is connected to the Tesla S1070, only two of the GPUs will
be used. To connect all four GPUs in a Tesla S1070 to a single host
system, the host must have two available PCI Express slots and be
configured with two cables.

3.3. System model and approach

The system model is presented in Fig. 1, a hybrid CUDA GPU
cluster is built with two GPU Servers as shown as S1070 and
S1060, which connected with a Gigabit Swatch. The S1070 1U
server attached to Intel i7 Server is connected with double PCI ex-
press channel for enhancing the internal-communication. We take
the Intel Core i7 which contains four cores as the control group
for comparing with the performance for GPU and CPU. In order to
execute MPI and OpenMP application by CUDA, the simplest way
forward for combining MPI and OpenMP upon CUDA GPU is to use
the CUDA compiler-NVCC [16] for everything. The NVCC compiler
wrapper is somewhat more complex than the typical mpicc com-
piler wrapper, so it’s easier to translate MPI and OpenMP codes
into.cu and compile with NVCC than the other way around.

4. Experimental results

We built a hybrid CUDA GPU cluster consisting of one Tesla
C1060 and a Tesla S1070, each with Gigabit Ethernet NIC inter-
connected via a D-LINK DGS-3100-24 Gigabit switch. To verify
our approach, illustrate our cluster environment, and describe the
terminology for our application, we implemented programs with
MPI/OpenMP for execution on our testbed. We then verify the per-
formance of our scheme upon the hybrid CUDA GPU cluster to
solve problems in Matrix Multiplication, MD5 and Bubble Sorting.
From Figs. 2 to 4, we take log of 10 at execution time to empha-
size the differences. Fig. 2 shows that the performance of GPU on
processing the massively parallel execution as the application of
Matrix Multiplication form 256 to 2048. In this case, the execu-
tion results on MPI and OpenMP upon GPU are close. Comparing
to the performance between GPU and CPU with this instance, the
performance of GPU obviously exceeds GPU. With the small prob-
lem size such as 256 by 256 Matrix Multiplication; the speedup of
performance is negligible. The degree of speedup accumulates with
the increasing of the problem size. Also, Fig. 3 reveals that single
GPU presents better performance than single CPU with multiple
threads on MD5 hashing computation. Again, the performance of
GPU could not be observed in the small problem size due to the
constraint on the internal overhead of starting execution. Finally,
Fig. 4 shows that the comparison of performance on multiple GPU
with MPI and OpenMP. The results of MPI and OpenMP are ap-
proximate to each other.

5. Conclusion

In conclusion, we propose a parallel programming approach us-
ing hybrid CUDA and MPI programming, which partition loop it-
erations according to the number of C1060 GPU nodes in a GPU
cluster which consists of one C1060 and one S1070. During the
experiments, loop iterations assigned to one MPI process are pro-
cessed in parallel by CUDA run by the processor cores in the same
computational node. The experiments reveal that the hybrid paral-
lel multicore GPU currently processing with OpenMP and MPI as a
powerful approach of composing high performance clusters.

References

[1] Download CUDA, http://developer.nvidia.com/object/cuda.htm.
[2] D. Göddeke, R. Strzodka, J. Mohd-Yusof, P. McCormick, S. Buijssen, M. Grajewski,

S. Tureka, Exploring weak scalability for FEM calculations on a GPU-enhanced
cluster, Parallel Comput. 33 (Nov. 2007) 685–699.

[3] P. Alonso, R. Cortina, F.J. Martínez-Zaldívar, J. Ranilla, Neville elimination on
multi- and many-core systems: OpenMP, MPI and CUDA, J. Supercomputing,
in press, doi:10.1007/s11227-009-0360-z, SpringerLink Online Date: Nov. 18,
2009.

[4] Francois Bodin, Stephane Bihan, Heterogeneous multicore parallel program-
ming for graphics processing units, J. Sci. Programming 17 (4) (2009) 325–336,
doi:10.3233/SPR-2009-0292.

[5] Specification Tesla S1070 GPU Computing System, http://www.nvidia.com/
docs/IO/43395/SP-04154-001_v02.pdf.

[6] OpenMP Specification, http://openmp.org/wp/about-openmp/.
[7] Message Passing Interface (MPI), http://www.mcs.anl.gov/research/projects/

mpi/.
[8] MPICH, A Portable Implementation of MPI, http://www.mcs.anl.gov/research/

projects/mpi/mpich1/index.htm.
[9] OpenGL Architecture Review Board, Dave Shreiner, Mason Woo, Jackie Nei-

der, Tom Davis, OpenGL(R) Programming Guide: The Official Guide to Learning
OpenGL(R), Version 2.1, 6th edition, Addison–Wesley Professional, Reading, MA,
ISBN 0321481003, 2007.

[10] Intel 64 Tesla Linux Cluster Lincoln webpage, [online] available: http://
www.ncsa.illinois.edu/UserInfo/Resources/Hardware/Intel64TeslaCluster/, 2008.

[11] R. Dolbeau, S. Bihan, F. Bodin, HMPP: A hybrid multi-core parallel program-
ming environment, in: The Proceedings of the Workshop on General Purpose
Processing on Graphics Processing Units (GPGPU 2007), Boston, Massachussets,
USA, October 4th, 2007, http://www.caps-entreprise.com/upload/ckfinder/
userfiles/files/caps-hmpp-gpgpu-Boston-Workshop-Oct-2007.pdf.

[12] The NVIDIA Tesla S1070 1U computing system – scalable many core su-
percomputing for data centers, http://www.nvidia.com/object/product_tesla_
s1070_us.html.

[13] Top 500 supercomputer sites, what is Gflop/s, http://www.top500.org/faq/
what_gflop_s.

[14] NVIDIA CUDA programming guide, http://developer.download.nvidia.com/
compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.3.pdf.

[15] NVIDIA Tesla C1060 Computing Processor, http://www.nvidia.com/object/
product_tesla_c1060_us.html.

[16] The CUDA Compiler Driver NVCC, http://moss.csc.ncsu.edu/~mueller/cluster/
nvidia/2.0/nvcc_2.0.pdf.

http://developer.nvidia.com/object/cuda.htm
http://dx.doi.org/10.1007/s11227-009-0360-z
http://dx.doi.org/10.3233/SPR-2009-0292
http://www.nvidia.com/docs/IO/43395/SP-04154-001_v02.pdf
http://www.nvidia.com/docs/IO/43395/SP-04154-001_v02.pdf
http://openmp.org/wp/about-openmp/
http://www.mcs.anl.gov/research/projects/mpi/
http://www.mcs.anl.gov/research/projects/mpi/
http://www.mcs.anl.gov/research/projects/mpi/mpich1/index.htm
http://www.mcs.anl.gov/research/projects/mpi/mpich1/index.htm
http://www.ncsa.illinois.edu/UserInfo/Resources/Hardware/Intel64TeslaCluster/
http://www.ncsa.illinois.edu/UserInfo/Resources/Hardware/Intel64TeslaCluster/
http://www.caps-entreprise.com/upload/ckfinder/userfiles/files/caps-hmpp-gpgpu-Boston-Workshop-Oct-2007.pdf
http://www.caps-entreprise.com/upload/ckfinder/userfiles/files/caps-hmpp-gpgpu-Boston-Workshop-Oct-2007.pdf
http://www.nvidia.com/object/product_tesla_s1070_us.html
http://www.nvidia.com/object/product_tesla_s1070_us.html
http://www.top500.org/faq/what_gflop_s
http://www.top500.org/faq/what_gflop_s
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.3.pdf
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.3.pdf
http://www.nvidia.com/object/product_tesla_c1060_us.html
http://www.nvidia.com/object/product_tesla_c1060_us.html
http://moss.csc.ncsu.edu/~mueller/cluster/nvidia/2.0/nvcc_2.0.pdf
http://moss.csc.ncsu.edu/~mueller/cluster/nvidia/2.0/nvcc_2.0.pdf

	Hybrid CUDA, OpenMP, and MPI parallel programming on multicore GPU clusters
	Introduction
	Background review
	CUDA programming
	OpenMP programming
	MPI programming

	System hardware
	Tesla C1060 GPU computing processor
	Tesla S1070 GPU computing system
	System model and approach

	Experimental results
	Conclusion
	References


