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Analyzing the Turbo Decoder Using the Gaussian
Approximation

Hesham EI GamaMember, IEEEand A. Roger Hammons, JJMember, IEEE

Abstract—in this paper, we introduce a simple technique sentation of convolutional codes [3] were two important steps
for analyzing the iterative decoder that is broadly applicable to toward generalizing the structure behind PCCC to what is now
different classes of codes defined over graphs in certain fading known as graphical codes. Over the past five years, different

as well as additive white Gaussian noise (AWGN) channels. The . .
technique is based on the observation that the extrinsic infor- constructions for regular graphical codes have been proposed

mation from constituent maximum a posteriori (MAP) decoders including serially concatenated convolutional codes(s) (SCCC)
is well approximated by Gaussian random variables when the [4], trellis constrained codes [5], and the high-rate graphical

inputs to the decoders are Gaussian. The independent Gaussiancodes proposed by Cheng and McEliece [6]. Interestingly, none
model implies the existence of an iterative decoder threshold that of these codes succeeded in providing performance superior

statistically characterizes the convergence of the iterative decoder.t th iginall d turb tructi f Berrial
Specifically, the iterative decoder converges to zero probability 0 e orginaily’ proposed turbo ConSIruclon oF Berkeaial.

of error as the number of iterations increases if and only if the [7] in the low signal-to-noise ratio (SNR) region. This result
channel E, /N, exceeds the threshold. Despite the idealization is somehow at odds with the fact that some of these codes
of the model and the simplicity of the analysis technique, the (e.g., SCCC) offer better distance spectrum than turbo codes
predicted threshold values are in excellent agreement with the [4]. Quite recently, a tighter upper bound on the probability
waterfall regions observed experimentally in the literature when f ) f PCCC ! d SCCC at SNR below the ch | cutoff
the codeword lengths are large. Examples are given for parallel oterror o ai N SIOW _e channel cLito
concatenated convolutional codes, serially concatenated convolu-fate was developed [8]. The new bound confirmed that SCCC
tional codes, and the generalized low-density parity-check (LDPC) would achieve superior performance to PCCC at low SNRs if
codes of Gallager and Cheng-McEliece. Convergence-basedmaximume-likelihood decoding were possible. In this paper,
design of aslymgjetnc prérallel concatenated convolutional codes \ye develop an idealized mathematical model of the iterative
(PCCC) s also discussed. _ ) ~ decoder, representative of the case in which codeword block
_ IndexTerms—Convergence-based design, graphical codes, itera- sjzes are large, that predicts a limit on performance in the low
tive decoding, low-density parity-check (LDPC) codes, turbo codes. g\ g regime due to convergence issues: empirically, this limit
is an accurate indication of the “waterfall” region observed for
|. INTRODUCTION large block lengths.
NE of the main reasons behind the impressive perfar- This paper is based on a simple but powerful technique orig-

mance achieved by graphical codes such as parallel Cgally developed by the first author in his Ph.D. dissertation

catenated convolutional code(s) (PCCC) is the elegant iterat élto evaluate the convergence characteristics of the iterative

decoding algorithm with the exchange of soft information be_ecoder for various graphical codes. The mathematical treat-

tween successive iterations. Recently, it has been shown thatm?ent given here is new as is the use of the tool as an aid to

S .
iterative decoding algorithm is an instance of Pearl belief procgnvergence-based code design. Independently and at roughly
agation in Bayesian networks [1]. Whereas belief propagation

e same time as [9], Richardson and Urbanke [10] developed
is known to converge to the maximuarposteriori(MAP) solu- a rigorous method of analysis for iterative decoding of LDPC

tion for graphs without loops, relatively little progress has beecrg)des' Their approach entails computation of density functions

. . . . : S they evolve from one iteration to the next and makes use of
achieved to date in understanding the theoretical behavior ofﬁ‘% concentration theorem of Luleg al. [11] to make rigorous
algorithm on graphs with loops, especially as a suboptimal de- : : ' ) .
cog der for co dgs r?avin suchp r;a h?cal re yresentationp[l] Fe asymptotic assumption of loop-free operation. The density
The rediscover 0% Galle? eF’s Iow—dpensit arit _C'hecﬁvolution approach was later argued to be applicable to turbo
(LDPC) codes [2] )z/and Wiber, g’s work on the Xaphicgl re rec_odes [12], [13]. The main thrust of our work is the analysis and
9 grap P design of general graphical codes with emphasis on PCCC. The
analysis technique proposed in this paper is simpler to evaluate
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Fig. 1. Cumulative density function of the sum-product algorithm output.

[14], where a similar approach, based on mutual information tioe performance of turbo codes. As shown in this section,
analyze the turbo decoder convergence, was used. In contrash®independent Gaussian approximation allows for complete
our work, no attempt was made in [14] to prove the existence cfiaracterization of the turbo decoder convergence in terms of a
convergence thresholds. single parameter: the extrinsic information SNR.

The rest of this paper is organized as follows. In Section Il, the The accuracy of the Gaussian approximation has been val-
mathematical model for the iterative decoder is developed aidéted experimentally for different classes of graphical codes.
basic theorems regarding convergence characteristics of the idig- 1 compares the cumulative density function (cdf) of the ex-
alized decoder are proven. The application of the proposed ctninsic information produced by the sum-product algorithm for
vergence analysis technigue to various graphical codes is dissheck node of an LDPC code with four independent Gaussian
cussed in Section Ill. In addition to an analysis of code desigmgputs and the cdf of a Gaussian random variable with the same
available in the literature, which demonstrates the utility andean and variance. Figs. 2 and 3 show bit-error rate (BER)
accuracy of the new technique, we also present in this sectgpatter diagrams (predicted versus measured) for the extrinsic
an interesting new code designed based on convergence énformation produced by the ensemble of all rags-eight-state
siderations that improves upon prior state of the art. Section &hd 16-state constituent MAP decoders, respectively, under the
discusses extensions to slow and fast-fading channels. The ladependent Gaussian assumption. These scattering diagrams
section presents a few concluding remarks. were generated by feeding independent Gaussian intrinsic and
extrinsic information with different SNRs to the decoders. The
predicted BERs were computed from the output extrinsic infor-
mation’s measured SNR assuming a Gaussian distribution [i.e.,

Iterative decoding on graphs can be viewed as a multistafle= Q(v2SNR)]. The average relative errors in the predicted
decoding operation where soft information is exchang®ERs are 1.4% and 1.8% for the eight-state and 16-state de-
between the different stages. The algorithm performed @woders, respectively.
each iteration can be either the sum-product or the min-sumin this paper, we only consider the sum-product algorithm.
algorithm [3]. It was shown in [3] that the soft-output ViterbiThis choice is motivated by the equivalence of the sum-product
(SOVA) and the maximum MAP decoding algorithms are direealgorithm to MAP decoding for codes with loop-free graphical
applications of the min-sum and the sum-product algorithmepresentations [3]. In this context, we define a constituent code
to trellis-based codes. It was observed in [3] and [15] that, & one having a loop-free graphical representation and, there-
inputs to either decoding algorithm are independent Gaussfare, we assume that the constituent codes are decoded by a
random variables, then the output can be tightly approximatedft-input/soft-output (SISO) MAP decoder. The model devel-
by a Gaussian random variable. In fact, it was pointed out in [8ped in this section is intended to cover graphical codes that
that the Gaussian approximation can he helpful in analyziegjoy some symmetry in their structure (e.g., regular LDPC

Il. MATHEMATICAL MODEL FORDECODERCONVERGENCE
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Fig. 2. Scattering diagram of the Gaussian approximation predicted BERs versus measured BERs for eight-state codes.
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Fig. 3. Scattering diagram of the Gaussian approximation predicted BERs versus measured BERs for 16-state codes.
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codes, symmetrical turbo codes, symmetrical trellis-constraingd: AWGN channel, it has been observed experimentally that
codes); however, with minor modifications, the proposed tectite extrinsic information variables are also approximately
nigue can be extended to handle certain irregular codes. In S8aussian. For randomly interleaved codes of sufficiently long
tion 1, the necessary modifications required to model the itodeword length, it is reasonable to assume that the loops in the
erative decoding of asymmetric parallel concatenated convohipartite graph describing the code can be made relatively long,
tional codes and serially concatenated convolutional codes aoethat the extrinsic information is approximately independent
described. No attempt is made to analyze irregular LDPC codmger some number of decoding steps. In the case of LDPC
since these codes are relatively well understood due to the cedes, Richardson and Urbanke [10] (following work by Luby
cent work by Richardsoat al.[10], [16]. et al. [11]) prove that the loop-free assumption holds in an

In our model, each symbol is processedMdyidentical con- asymptotic sense that enables a rigorous convergence analysis
stituent decoders at decoding stegmd each constituent decodefor these codes. In the case of turbo codes, however, the
processes the information farsymbols. Thenth constituent loop-free assumption has only heuristic justification.

decoder accepts intrinsic information Motivated by the fact that SNR is a simple sufficient statistic
for Gaussian random variables, we formalize the Gaussian and
Y={y1,y2, -5 Yn} loop-free assumptions as follows.
(log-likelihood values associated with the channel variables) ndependent Gaussian Assumptiofhe random se-
and extrinsic information quences
. . —+(0 —=(1 =1
ey — {20 0B LD, LB {weYiey, E0 Y Y e

are jointly Gaussian and statistically independent in the
sense that any finite collection of tlg{aandgé(z)m are jointly
Gaussian and pairwise independent.

(log-likelihood values supplied by the other constituent
decoders at the previous decoding step for use gsiori
information) and produces updated extrinsic information for

then symbols. The vector For each Gaussian random variableith meany and vari-
anceo?, we associate a SNR SNR) = 1?/o2. Under the in-
g (g(i) (%) @) @ (i) ) dependent Gaussian assumption, the behavior of the constituent
L, m 0,10 56,20 "0y S m—17 S8 m+410 "y S8 M

MAP decoder is completely determined by the SNRs of the

comprises the extrinsic information produced by the offer1  input variables; and the bit-error probabilify}"’ is completely

constituent decoders for the binary data variahleluring the determined by the SNR of the output log-likelihood ratﬂé?.

ith decoding step. By symmetry of the general decoder model, the SNR of the ex-
The extrinsic informatio@/)m is the additional likelihood in- trinsic information&’g’)j is the same for alj. Since theM con-

formation produced by theuth constituent decoder beyond thastituent encoders are statistically equivalent, we will simplify

provided by the channel measuremgntinda priori informa- the notation hereafter by dropping the subsctipin reference

tion £7~1_ In particular to the extrinsic information.
’ The following proposition follows from the fact that the con-
o _; p (dé —1y— {ye},&(ﬁ_l) _ {—Z;})}) stituent MAP decoder is optimal.
£,m = 108 ; — : Proposition 1: Under the independent Gaussian assumption
’ - _ _ (i—1) _ JzG-1) p - 4 p puon,
o (d[ =1~ {ueh Em { tm }) the SNR(z") and SNR¢") are nondecreasing functions of

the input SNRs SNRy) and SNR(¢) for y € Y —{y} and

After theith decoding step, the best estimate dpiis given Seg(i,l)_{géi_l)}_ Furthermore, SNRTEZ)) — o0 (and, thus,

oy P —0) asi— oo if and only if SNR(¢{) — 00 asi— o,
a0 = sen (x(f,)) Proof. Consider two scenarios in which only the SNR for
¢ ¢ input variabler is different. Let SNR7’) < SNR(r) denote the
where two different values of signal- to-noise ratio ferwith corre-

sponding output SNRrEi)) and SNF{xZ)), respectively.

(&) _ (@) i) For either scenario, the constituent MAP decoder must pro-
g =ye+& ,+ 1 -

¢ <t lm ];l S W) duce the smallest possible value of BER Thus, we must have
SNR(z{”) < SNR(z{"). Otherwise, for the scenario with
The BERP[(i) associated withl, is the probability thatZEi) + SNR(r),a decode/r strategy in which noise is injected to reduce
d,. The constituent MAP decoders are optimal in that no dé1€ SNR to SNRy”) before performing MAP decoding would
coding rule for the constituent decoders is capable of producit§!d & smaller BER than)opt'ma' MAP decoding. This contra-
a smallerP[(i). diction shows that SNRz,") is a nondecreasing function of the

The statistical behavior of the MAP decoder is determindBPut SNRs as claimed. . o
by the statistical distribution of the input variables. For the The constituent MAP decoder forms the linear combination

additive white Gaussian noise (AWGN) channel, the intrinsi@) of the log-likelihood informatiory,, ¢, andg”); to pro-
informationy € ) are Gaussian random variables. Also foduce the decision statistizcgz) yielding the smallest BER. For
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Gaussian random variables, the optimal linear combination prodf the thresholdr(v) is finite for some input SNR = v,
ducing the highest SNR (and hence lowest BER) is (up to a ptben, by Proposition 1, the bit-error probability fGris bounded
portionality constant) the weighted sum away from0 no matter how many decoding iterations are per-
) ) ) ) ) formed. Conversely, if (v) is infinite, Proposition 1 implies that
2 = Aye) -y + A ( é(z)) 9 4 Z A (SEZ)J) SEZ)J (2) the bit-error probability converges tbas the number of itera-
J#Em tions goes to infinity.
Thus, the behavior at one input SNR determines the behavior

where the coefficienk(r) = E{r}/Var{r} is the mean-to-vari- . X
ance ratio of random variable Thus, under the independentfor all smaller or larger values of input SNR [depending on

) . - ) whether < oo or = oo]. Sincer(0) = 0, the supremum
Gaussian assumption, the decision stattsi??: is a scaled ver- 7(v) <00 ] m(0) P
sion ofz/). [Note that this implies that th&r) values are equal.

This is similar to [16] in which for Gaussian log-likelihood ra-

tios, one has\(r) = 1/2 as a consequence of the consistenc A :
condition that the probability density function (pdf) oflog-like-lg well-defined and serves as a fundamental threshold deter

X : . _ mining the convergence of the iterative decoder under the in-
J— xr
lihood rau?) m] essages must satigfiir) = ¢ f(—x). Hence, dependent Gaussian assumption.

(D) _ 9,(
e = 22 @) Summarizing these results, we have the following proposi-
It is well known that the SNR of; " is the sum of the SNRS tjgn.

of each term. We therefore conclude that the value of S&ﬁ”p{)

changes in the same direction as the value of :&t\iﬁ). Hence, 7(v) = oo. Thus, under the independent Gaussian assumption,

N . .
SNR(_Q )is al_so a non_decr_easmg fu(rzj)cnon of _the SNRs (_)ft fie iterative decoder converges with zero error probability if the
other 'QZP)Ut variables. Likewise, SNR,”) — oo ifand only if jnt SNR is greater tham, but converges with nonzero error
SNR(¢,7) — oc. O  probability if the input SNR is less than

Given intrinsic information having a common SNRwe  Proposition 3 allows for a complete characterization of the
can now view the essential action of the constituent decodelisho decoder convergence properties using a simple technique.
as enhancing the SNR of the extrinsic information. In thig is sufficient to characterize the extrinsic information SNR
regard, lets{” (v) denote the SNR of the extrinsic informationinput/output relation of the basic constituent decoder(s) to deter-
5/) associated withd, after theith decoding step, where mineifthe turbo decoder will converge or not at &y/Ny. The
v = SNR,, represents the decoder initial condition. Then, theharacterization is possible either through approximate numer-

v =sup{v: 7(v) < o} (3)

Proposition 3: If v < v, then7(v) < ~o. If v > v, then

sequence{Sé(i)(v)};’;O evolves recursively ical analysis or, more accurately, through simple Monte Carlo
simulation. In this paper, we will rely on the simulation ap-

Sé(o)(v) =0 proach to benefit from its accuracy. The simulation required

S(i)(v) — 4, (S(Fl)(v) U) . i_n this case is muc_h simpler than the itera_tive decoder sir_nu!a—

¢ ¢ ’ tion. Here, to obtain the input/output relation at each intrinsic

SNR, we only need to simulate one constituent decoder, as-
suming symmetry, with Gaussian extrinsic and intrinsic inputs
and measure single parameterthe output extrinsic informa-
tion SNR. Then, the convergence threshold is evaluated from the
éréputlputpgt charr_:lcteristics_, of the extrinsic informatic_)n_ SNR as
is nondecreasing, it must in fact convergerte) from below. descr!bed in Section Ill. This der_nonstratgs the simplicity of our
Thus,(v) = Sup<>0{Sé(i)(v)}. technlqut_a compared to the density evolut!on approach where the
(= pdf is estimated at each step. As shown in Section lll, for all of
Proposition 2: 7(v) is a nondecreasing function of Thus, the major classes of codes admitting iterative decoding via con-
if 7(v) < oo for somew, thenr(s) < oo forall s < v; and, stituent MAP decoders, the threshelds found experimentally
conversely, ifr(v) = oo for somew, thent(s) = oo for all  to be finite and greater than zero. Indeed, for almost all known

By the independence assumption, the funcffipis the same for
all decoding steps. ‘

By the Heine—Borel property, the sequer{cﬁz)(v) . el
ther has an accumulation poinfv) < oo or is unbounded
(7(v) = o0). Since, by the previous proposition, the sequen

s > w. graphical codes of suitably large codeword lengtls found to
Proof: Letv' < w. Sincef, is a nondecreasing functioncorrespond to the sharp “waterfall region” of the performance
of both arguments, we have characteristic.
‘ ‘ ‘ Itis worth noting that the thresholddepends on the structure
fe (S[(Z)(U/)a v') < fe (S[(Z)(U/)a U) < fe (S[(Z)(U), v) . of the constituent codesather than that of the composite code.
Thus, for the class of graphical codes obtained by certain con-
Thus, catenation of interleaved convolutional codes, analysis based on

the independent Gaussian assumption indicates that the water-

fall region determined by is not a function of the code weight

spectrum and thus cannot be improved by turbo code interleaver

optimizations aimed at improving the weight spectrum. Rather,

(') = sup {Sé(i)(vl)} < sup {Sé(i)(v)} — (). O the Wfiterfall region is de_termi.ned more by how amenable the
constituent codes are to iterative decoding.

SV < SE ().

Taking the supremum ovelyields the desired result

i>0 i>0
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Fig. 4. Extrinsic information SNR input/output relations for Berrou’s 16-state.

[Il. A PPLICATION TO DIFFERENT CODE CONSTRUCTIONS denote measured SNRs obtained via simulation by inverting
a{he observed BER using the Gaussi@afunction, whereas
éh& various dashed and solid lines represent curve fits. Since

various graphical codes. Our primary focus will be PCCC ahe input extrinsic information to one constituent decoder is
though representative examples for SCCC and regular L,Dae interleayed version of the other decog)er output, the turbo
codes will also be discussed to emphasize the broad applid§coder will converge asymptotically ®,” — 0 after a
bility of the proposed technique. For all of the cases consider&dTicient number of iterations if and only if the constituent

the convergence results predicted by the proposed techniquedgecder characteristioes notntersect the (In= Out) line; the

within a very small fraction of a decibel from the simulatioﬁlnterseCtio_n pointis the ﬁnite accgmulat_ion_ po’rr_;tand hence,
results reported in the literature [4], [17], [6], [2]- The pccdhe noneX|§tence_0f_ the intersection point |mpl|e_s that oc.
results constitute an exhaustive study of rate-and 4 /3 sym- Fr(Q)m the figure, it is clear that the decoder will converge to
metric codes with four, eight, and 16-state constituent codds. = 0 for £,/No = 0.6 and 0.7 dB; but, foiE;, /Ny = 0.4
Based on these convergence results, we design an interesgig 0-> dB the probability of error will be bounded away from
asymmetric PCCC that outperforms the asymmetric code pA&'© even if the number of iterations is unbounded. Therefore,

In this section, we analyze in detail the effect of the iter
tive decoder convergence characteristics on the performanc

posed by Takeshitet al.[18] in the waterfall region. a coarse estimate for the convergence threshold predicted by
the independent Gaussian assumption is that it lies between 0.5
A. Symmetric PCCC and 0.6 dB.

L . : A more precise threshold can be calculated from the obser-
For simplicity, we consider the classical turbo code [7] con-_.. o . . .
- ; : . .~ yation that the extrinsic information SNR input/output relation
sisting of two identical constituent encoders. The extensmn.\fo . .
: . ) iSlocally quadratic (true to a high degree for all PCCC that we
multiple PCCC is straightforward. ; : 2 : )
: . . . .have studied), allowing the minimum signed distance between
The analysis technique is best illustrated through a detall& L .
. : e SNR characteristic and (¥ Out) line to be accurately de-
example. Consider the ratg3 PCCC built from the 16-state : viicallv. The mini : ) I
convolutional code with transfer function termme_d analytically. T_e minimum S|gned_d|stan_ces (so-called
H-metrics) are plotted in Fig. 5 as a function of inpu//Ng.
a(D) = _14D4+D*4D* The convergence threshold is ti#% /N, value for which the
( ) 1’ 1+ D+ D24+ D3+ D4 L. . . . . .
H-metric is0 and is easily determined by interpolation (the
originally introduced by Berrou [7]. Due to symmetry of thecurves are again locally quadratic). From Fig. 5, a more pre-
code construction, it is sufficient to study the input/outputise threshold for the Berrcet al. code isE; /Ny = 0.57 dB.
characteristic of the constituent decoder. Fig. 4 shows the SNRJsing our analysis technique, we conducted an exhaustive
input/output relation for the extrinsic information from thesearch for symmetric rate/3 and 41/2 PCCC with conver-
MAP decoder for this constituent code as a function of differegence thresholds less than or equal to 0 and 0.7 dB, respectively
bit-energy-to-noise ratid®, /Nog. In the figure, the symbols (i.e., within 0.5 dB from the Shannon limit for binary signaling).
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Fig. 5. TheH-metric for Berrou's 16-state code.

CONSTITUENT CODES FORSYMMETRIC RATE-1/3 -:II—.é-BSLI'ETEIPCCCWITH CONVERGENCETHRESHOLDS< 0 dB
G(D) in octal representation | Threshold in dB Remarks
37/25 -0.15 16-state, non-primitive
27/25 -0.13 16-state, non-primitive
35/25 -0.13 16-state, non-primitive
31/37 -0.081 16-state, non-primitive
23/37 -0.079 16-state, non-primitive
33/37 -0.061 16-state, non-primitive
35/37 -0.060 16-state, non-primitive
27/37 -0.057 16-state, non-primitive
21/37 -0.055 16-state, non-primitive, Berrou’s code
27/21 -0.040 16-state, non-primitive
35/21 -0.027 16-state, non-primitive

We restricted our search to constituent codes having at méetdback polynomials. On the other hand, for the fgteease,

2¥ < 16 states and feedback polynomial of the form two eight-state codes with primitive feedback polynomial ex-
hibit convergence thresholds within 0.5 dB from the capacity
limit. Since primitive feedback polynomials are advantageous
The rate1/2 PCCC are obtained from the rat¢3 PCCC by with respect to high SNR asymptotic performance [18], [19],
periodically puncturing the output of the constituent codes dsble Ill provides a survey of the convergence thresholds for
described in [7]. Tables | and Il report the octal representatitine best raté-/3 primitive PCCC available in the literature.

of the generator polynomials for best constituent codes, frofinese results suggest that the eight-state ¢6d&3 chosen for

a convergence point of view, found in our search. For tgte- the third-generation wireless standards achieves the best perfor-
PCCC, all the constituent codes are 16-state with nonprimitimeance tradeoff both for rate/2 and -1/3 codes [20] (i.e., the

14+ aD+axD?>+ -+ D",
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CONSTITUENT CODES FORSYMMETRIC RATE-1/2 IGAzIr_AETE IIIDCCCWITH CONVERGENCETHRESHOLDSX 0.7 dB
G(D) in octal representation | Threshold in dB Remarks
27/37 0.56 16-state, non-primitive
21/37 0.57 16-state, non-primitive, Berrou’s code
35/37 0.58 16-state, non-primitive
31/37 0.59 16-state, non-primitive
31/27 0.60 16-state, non-primitive
33/37 0.61 16-state, non-primitive
37/27 0.62 16-state, non-primitive
23/35 0.62 16-state, non-primitive
26/37 0.64 16-state, non-primitive
25/35 0.64 16-state, non-primitive
25/27 0.64 16-state, non-primitive
37/35 0.65 16-state, non-primitive
32/37 0.65 16-state, non-primitive
22/37 0.66 16-state, non-primitive
31/33 0.67 16-state, non-primitive
13/15 0.68 8-state, primitive
15/13 0.70 8-state, primitive, CDMA2000
TABLE Il

CONVERGENCETHRESHOLDS FORBEST PRIMITIVE SYMMETRIC RATE-1/3 PCCC

G(D) in octal representation | Threshold in dB Remarks
35/23 0.096 16-state Takeshita et al[18]
37/23 0.102 16-state, Benedetto-Montorsi [21]
33/23 0.11 16-state, Divsalar et al [17]
15/13 k 0.02 8-state, primitive, Eroz-Hammons [20]
5/7 0.134 4-state

code has a primitive feedback polynomial and its convergencedes in the waterfall region is very close to the convergence
thresholds are among the best for both rit2-and 1 /3 codes). analysis prediction even for relatively small block lengths.

Figs. 6 and 7 compare the convergence thresholds obtained@he extrinsic information SNR transfer characteristic also
by our technique with simulation results for ratg3 PCCC provides useful information regarding rates of convergence (im-
with various block lengths. In Fig. 6, we report simulation provement in BER as a function of the number of iterations).
results for the primitive four-state and eight-state codes in [7], Berrouet al. observed that the performance of a certain
Table Ill, whereas in Fig. 7 we compare the 16-state PCOGur-state PCCC was better than their powerful 16-state PCCC
with the best convergence threshdlil/25) with the primi- in the first few iterations but ultimately failed to converge to
tive 16-state PCCC with the best distance spectf@fy23) small probability of error with increasing numbers of iterations.
[21]. For the 65536 block lengths, all codes achiewe® This behavior is readily explained by the SNR input/output char-
BER within less than 0.1 dB from the predicted convergeneeteristics for the two codes shown in Fig. 8. From the figure, it
thresholds. This small offset is similar to that shown in [165 clear that the iterative decoder will convergeFgy Ny = 0.7
for the irregular LDPC codes with 1 000 000 block length. It igB only for the 16-state code since the SNR input/output rela-
also shown that the relative performance between the differgiain of the four-state code intersects the £nOut) line. Note

that the improvement in the extrinsic information output SNR
1in all our simulations we assumed random interleaving and 18 decodingi§- higher for the four-state decoder at relatively small input ex-
erations. trinsic information SNRs, while the situation is reversed in favor
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of the 16-state decoder at higher input extrinsic informatidn the early decoding iterations of the four-state PCCC. How-
SNRs. Thus, there will be more improvement in performanever, this code will ultimately fail to converge fQ(Z) =0.
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B. Asymmetric and Irregular PCCC constituent code would converge to the desiféa = 0. This
is predicted by the extrinsic information characteristic of Fig. 9

In [19], it was argued that symmetric PCCC should be buiéind can be easily verified through simulation. This says that,
using constituent codes with primitive feedback polynomialgthere were a way in the initial iterations to aid this 16-state
because of their favorable asymptotic performance in the “eriigravoiding the intersection point, the PCCC would eventually
floor” region. However, it was observed through simulatioreach the desired zero error convergence point. In the previous
that primitive PCCC exhibit relatively poorer performance igection, we noted that carefully chosen codes with different
the “waterfall” region compared to other known nonprimitivenemory size exhibit different rates of convergence. This ob-
PCCC [18]. This phenomenon was validated by our resulgrvation suggests that the second constituent code should be
in the previous section which show that the best symmetiiosen to yield high-quality extrinsic information in the input
PCCC from a convergence point of view have nonprimitivgNR range where the 16-state is close to thel@ut) line.
feedback polynomials. In [18], Takeshihal. proposed a new This second code will then help bootstrap the convergence of the
construction for asymmetric PCCC that uses one primitiveerative decoder. The best eight-state code found in our search
and one nonprimitive constituent code. Their proposed cogat suits this requirement has the transfer functigfil 1.
was shown through simulation to “split” the performance of A slightly different analytical approach is required to find
the corresponding codes both in the waterfall and error flogiie convergence threshold for asymmetric PCCC. It is no
regions [18]. longer sufficient to compare the extrinsic information SNR

It is not necessary to make this compromise, however, @put/output relation of one constituent code with the €n
it is possible to design better asymmetric codes using convedt) line. To analyze asymmetric PCCC convergence, the
gence threshold analysis. For example, let us take the primitiedrinsic information SNR input/output relations of both de-
16-state code with best convergence threshold as the first of toslers are evaluated. To determine whether the turbo decoder
constituent codes. This is tH#/23 code from Table Il with will converge or not at any particulak, /Ny, the extrinsic
a convergence threshold of 0.096 dB (the same primitive codidormation SNR input/output relations of the two decoders are
used by Takeshitat al.). Fig. 9 shows the extrinsic information plotted on reverse axes (i.e., the input axis of one decoder is the
SNR input/output relation for this code &Y /Ny = 0 dB. From output axis of the other decoder and vice versa). Based on the
the figure, it is clear that if a genie were to provide the iteratii@dependent Gaussian model, it is easy to see that the asym-
decoder with extrinsic information having SNR 0.4 in the metric PCCC decoder will convergeRg(Z) = 0 with sufficient
first iteration only, the symmetric PCCC built from this 16-stataumber of iterations if and only if the two characteristics do
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Fig. 9. Extrinsic information SNR input/output relation for the primitive 16-state code, afV, = 0 dB.

not intersect. The rest of the procedure is the same as that useAl first step toward the design of irregular PCCC was taken
for symmetric PCCC. by Frey and MacKay [22] in which they allowed the symbol
The convergence threshold for the new asymmetric codenigdes to have variable degrees. However, their construction
found to be—0.066 dB. This threshold is superior to that of botlwas limited by having a single constituent code [22]. Al-
the symmetric 16-state and the symmetric eight-state PC@®ing more than one constituent code, with possibly different
built from the two constituent codes. The simulation results onstraint lengths, would provide for additional degrees of
Fig. 10 confirm that the asymmetric code is superior to bofreedom in the design, perhaps making it possible to optimize
16-state and eight-state symmetric codes in terms of perftlhie degree sequences of both the symbol and check nodes to
mance in the waterfall region. This result is rather unexpectgitld better convergence characteristic in the waterfall region.
in that it indicates that good asymmetric codes can be obtainde are currently in the process of investigating irregular codes
by mixing the constituent codes from two inferior symmetridesigned in this fashion.
codes. As a final note, it is clear from Fig. 12 that the same rela-
Fig. 11 compares the performance of three codes: the ntve performance predicted by the convergence threshold anal-
asymmetric code, the asymmetric code of Takedttital, and ysis holds in the waterfall region for a relatively small block
the symmetric code with the best convergence threshold fraize 1024. This observation contrasts the case of irregular LDPC
Table I. The relative performance of the three codes in tleedes constructed by optimizing the degree sequences for both
waterfall region is in excellent agreement with the convergentiee symbol and check nodes to allow for better convergence
threshold analysis. The three codes convergd(to® BER characteristics of the iterative decoder [16]. The performance
within 0.2 dB from their convergence thresholds, respectivelgf an exemplary raté;/2 code constructed using this technique
at this particular frame size (16 384). The new asymmetneas shown to be within 0.1 dB from the Shannon limit with a
code offers performance improvement over the current stdtlock length of 1 000 000. For small block lengths, however, the
of the art. The new code outperforms the asymmetric cogerformance of regular PCCC was shown to be still superior to
of Takeshitaet al. in the waterfall region. Its convergenceirregular LDPC codes [16]. Therefore, irregular PCCC hold the
threshold is 0.162 dB lower than that of the best symmetgiromise of achieving superior performance to irregular LDPC
primitive 16-state PCCC, listed in Table IIl, and is within 0.08@0odes for small and large block lengths.
dB of the convergence threshold of the best symmetric PCCC
in Table I. Due to the strength of the primitive constituent cod%. scce
the new asymmetric code also avoids the very poor asymptotic
performance of the symmetric nonprimitive codes as shown inFor PCCC, the constituent codes produce parity symbols that
Fig. 11. are not shared or exchanged; hence, the constituent decoders
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produce extrinsic information for the data symbols only. Thihe data symbols, and the output stream is then interleaved and
situation is different in the SCCC case. In the SCCC encodencoded by the inner code. At the receiver, the inner constituent
the parity symbols added by the outer code are multiplexed witlecoder provides extrinsic information for both the data and the
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outer code’s parity symbols each iteration, while the outer coRCCC is required to analyze the SCCC convergence. The ex-
stituent decoder provides extrinsic information for the data syrrinsic information SNR input/output relations of both the inner
and outer decoders are evaluated first. For the outer decoder,
To account for the asymmetry in the operation of the two cothe input extrinsic information is added to the intrinsic infor-
stituent decoders, the analytical approach used for asymmeination of both the data and parity symbols, whereas the input

bols only.

683
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TABLE IV
CONVERGENCETHRESHOLDS FORREGULAR LDPC CODES

M | rate | Gaussian Approximation Threshold in dB | Density Evolution Threshold in dB
3 0.5 1.21 1.11
4 | 05 1.69 1.618
5| 05 2.13 2.04
3 0.4 1.10 0.969
4 |0.333 1.80 1.6744
3| 0.25 1.15 1
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Fig. 14. Eight-state serially concatenated convolutional code extrinsic information SNR charactefistiys: = 0 dB.

extrinsic information to the inner decoder is added only to tHe. Gallager LDPC Codes

intrinsic information of the data symbols. To determine whether

the turbo decoder will converge or not at any particllgf Ny, In Gallager’s regular LDPC codes, each data or parity symbol
the extrinsic information SNR input/output relations of the inndras the same degred (i.e., connected to exactly/ check
and outer decoders are plotted on reverse axes. As an exanfpdgles in the bipartite graph). For a rateode, the degree of
we consider the raté/4 SCCC using the eight-state constituengéach check node is’-. Therefore, each constituent decoder
codes studied in [17]. Figs. 13 and 14 show the extrinsic infdnasn = % inputs. In the iterative decoder, each symbol is es-
mation SNR input/output relations of the inner and outer démated by different and independent decoders. Each check
coders att, /Ny = 0 dB andE;, /Ny = —0.5 dB, respectively. node calculates each symbol output extrinsic information from
From these diagrams, it is clear that the decoder will convertjee other% — 1 inputs. The input extrinsic information to any
at £, /Ny = 0 dB and will not converge &k, /Ny = —0.5 dB. decoder is obtained from the oth&f — 1 outputs. Table IV
The result is in excellent agreement with the simulation resukbows the convergence thresholds for several LDPC codes ob-
presented in [17], where the decoder was shown to convetgied through our technique and the density evolution tech-
at —0.25 dB. It is also clear from the figures that the 0.25-dBique [10], respectively. In all the cases considered, the differ-
margin was only chosen for demonstration purposes. ence between the two estimated is within 0.15 dB.
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TABLE V Hence, fading causes the effective SNR to vary from one code-
CONVERGENCETHRESHOLDS FORCHENG AND McC ELIECE HIGH-RATE CODES word to the next according to the distribution of the square
M | Threshold in dB of the fading amplitude. From the AWGN analysis, it is clear
6 1.8 that the iterative decoder will converge for a particular code-
word with a fixed fading amplitude if and only if the effective
7 2 SNR for this codeword exceeds the convergence threshold. Let
8 2.3 a be the fading amplitudey; /Ny be the transmitted symbol en-

ergy-to-white-noise ratio, anflr;, /Ny be the minimum symbol
energy-to-white-noise ratio required for iterative decoder con-

Cheng and McEliece introduced their higher rate versiagrgence in the AWGN channel. Then, the frame error proba-
of Gallager's LDPC codes in [6]. The difference between thisility for the quasi-static Rayleigh fading channel is given by
coding scheme and the LDPC codes is that each parity symbol E _ Ep
is involved in only one check equation. Hence, in the bipartite Py=Pr <a < 1/ﬂ> =1l-ec E 4)
graph, the parity nodes and the check nodes are the same. The s
authors’ expectation in [6] was that increasing the connectivilyne importance of this result is twofold. First, it provides a
degree would improve the distance spectrum and, hence, $ii@ple and general technique of characterizing the performance
performance. They found that the effect of increasing tif¥ graphical codes over slow-fading channels. Second, it shows
connectivity degree is to lower the error floor and shift ththat the performance of graphical codes in slow-fading channels
waterfall threshold to a higher SNR. While the improvement it§ largely determined by the iterative decoder convergence char-
the weight spectrum is supported by the improved asymptogéteristics at high as well as low SNRs. This suggests that, for
performance at high SNRs, the degradation in the waterfalpw Rayleigh-fading channels, itis more important to optimize
region with increasing connectivity was not explained. for decoder convergence than code weight spectrum.

The iterative decoder for Cheng—McEliece codes is easily ac-
commodated in the general decoder model and analyzed viathe
independent Gaussian assumption technique. Assuming that thieor the fast-fading channel, each symbol is multiplied by a
degree of each data node ¢, and the code rate is, then different and statistically independent Rayleigh fading ampli-
the degree of each parity/check nodeﬁg + 1 and each con- tude. In this case, we modify the independent Gaussian assump-
stituent decoder will havéZ- + 1 inputs. The iterative decodertion so that, even though the channel variables are no longer
in this scheme is different from Gallager's LDPC decoder in orféaussian, the extrinsic information variables are still assumed
major aspect. Unlike the former codes case, the constituent tiebe Gaussian. Under this model, Proposition 1 is still true. Es-
coders provide extrinsic information for the data symbols onligentially, the same proof shows that the SNRs of the decision
Hence, the parity symbols will be coupled with intrinsic inforstatistiCxE”) and the extrinsic informatioﬁ/) are both non-
mation only. However, similar to Gallager's LDPC codes, thdecreasing functions of the input SNRs, and the one SNR in-
extrinsic information for the information symbols is obtaine@reases to infinity if and only if the other does. But, since the
from the othel M — 1) decoders. Taking that into account, thelecision statisticrg”) is no longer Gaussian, it no longer imme-
convergence points predicted under the independent Gaussgjitely follows as in the AWGN case thﬁ’[(dg’) £d;) — 0as
assumption for codes with different connectivity degrétare SNR(JCEZ‘)) s soor SNR(@"/)) N
reported in Table V. To repair that part of the proof, we note that

The detrimental effect of increasing the connectivity degree , 00 »
on the ability of the turbo decoder to converge to the ML sof (déz) b dz) = / P (déz) # dzlaz) P(ag)dag
lution is clear from the table. Since the performance in the low 0

Fast-Fading Channels

SNR region is largely determined by the decoder convergence, <I(a™)+P (Czéi) # delag = a*) (1-1I(a"))
the predicted convergence points explain the degradation in pRfrereq* is arbitrary and
formance observed in [6]. o
I{a") = / P(a)da.
0
V. EXTENSION TO FADING CHANNELS By conditioning ona,, we can apply Proposition 2.1 to show

Available research [10] on the behavior of iterative decodif§at P(d}’ # d¢la*) — 0 as the extrinsic SNR SNR{) —
thus far has not considered the fading channel scenario.cn Thus, we can maké’(déz) # d¢) < e by first choosingz*
this section, we extend our convergence analysis to certgiithat/(a*) < ¢/2 and then choosing SN@é(i)) sufficiently
frequency nonselective slow and fast Rayleigh fading modelgrge so tharp(czgi) £ dgla*) < ¢/2. This establishes the de-

the extension to Rician channels is straightforward. Perfegtaq result thaP(cZ(i) £ dg) — 0as SNR¢ i)) — ~ [and
channel state information is assumed to be available at Wgnce as SNRe i))é_> ] ¢
' .

recelver. The rest of the analysis in Section |l regarding the existence

of thresholds-(v) andr then follows exactly as in the AWGN

case. Empirically, it is found that the Rayleigh-fading conver-
In this model, the fading amplitude is constant across ogence threshold is also finite and nonzero. For example, in

code word and is independent from one codeword to the nef@3], Hall et al. noted that the performance of PCCC in the fast

A. Quasi-Static Fading Channels
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Rayleigh-fading channel exhibits a waterfall behavior similar [2] D. J. C. MacKay. (1996) Near Shannon limit performance of low den-

to that in the AWGN case but with a larger threshold value.
Our analysis based on the independent Gaussian assumpti
as modified for the Rayleigh-fading channel predicts threshold

sity parity check codesEEE Commun. LetfOnline] Available: http://
131.111.48.24/ mackay/ homepage.html

Qj N. Wiberg, “Codes and decoding on general graphs,” Linkdping Studies

in Sci. and Technol., Linkdping, Sweden, Ph.D. dissertation 440, 1996.

values in excellent agreement with the simulation results of[4] S.Benedetto, G. Montorsi, D. Divsalar, and F. Pollara, “Serial concate-

[23].

V. CONCLUSION

The main result established in this paper is that the perfor-
mance of graphical codes in the low SNR region is governed

nation of interleaved codes: Performance analysis, design, and iterative
decoding,"Telecom. and Data Acquisition Progress Reps., Jet Propul-
sion Lab, pp. 42-126, Aug. 1996.

B. Frey and D. MacKay, “Trellis constrained codes,” froc. 35th
Allerton Conf. Communications, Control and Computigt. 1997.
Available: [Online] http://131.111.48.24/mackay/homepage.html.

[6] J. F. Cheng and R. J. McEliece. (1996, Oct.) Some high rate near ca-

pacity codes for the Gaussian chanr@bc. 34th Allerton Conf. Com-
munications, Control and Computiri®nline] Available: http://www.
systems.caltech.edu/systems/jfc/index.html

by the convergence characteristics of the iterative decoder inde7) c. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit

pendent of the distance spectrum of the code. Thus, traditional
optimization of the code parameters with respect to the distanc?s]
spectrum will not in general improve the performance in the
low SNR region. To improve the performance in this region,
different optimization should be considered to allow for better
convergence characteristics of the turbo decoder. This explain
for example, why more sophisticated code constructions such
as SCCC which aim to improve asymptotic code performancém]
do not outperform Berrou’s original construction in the low
SNR region. The simple method developed in this paper to andt1]
lyze the iterative decoder convergence is based on the Gaussian
approximation and yields very accurate results compared with
the literature. Based on the insights obtained from such analt2]
ysis, we presented an interesting construction for asymmetric
PCCC that enjoys a favorable performance in the waterfall rep 3
gion. This construction provides a new ingredient to add to Frey
and MacKay irregular PCCC design [22] and improves upon4

the asymmetric code proposed by Takesaital.[18]. Finally,

we extended our analysis to fast- and slow-fading channels. TH&5]
fast-fading scenario turns out to be very similar to the AWGN

case in which decoder convergence characteristics determine tfig;
waterfall threshold, while the performance at high SNR is gov-

erned by the code weight spectrum. In contrast, for slow-fadin
channels, the performance of graphical codes is largely det
mined by the decoder convergence characteristics for all input

SNRs.
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