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H I G H L I G H T S

• Participation of an aggregator of small prosumers in the energy market.

• The aggregator exploits the flexibility of prosumers’ appliances, in order to reduce market net costs.

• A two-stage stochastic optimization model to define demand and supply bids for the day-ahead energy market is presented.

• A model predictive control method to set the operation of flexible loads in real-time is presented.

• A case study of 1000 small prosumers from the Iberian market is used to compare the proposed methods to other benchmarks.
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A B S T R A C T

This paper addresses the problem faced by an aggregator of small prosumers, when participating in the energy
market. The aggregator exploits the flexibility of prosumers’ appliances, in order to reduce its market net costs.
Two optimization procedures are proposed. A two-stage stochastic optimization model to support the aggregator
in the definition of demand and supply bids. The aim is to minimize the net cost of the aggregator buying and
selling energy at day-ahead and real-time market stages. Scenario-based stochastic programing is used to deal
with the uncertainty of electricity demand, end-users’ behavior, outdoor temperature and renewable generation.
The second optimization is a model predictive control method to set the operation of flexible loads in real-time.
A case study of 1000 small prosumers from the Iberian market is used to compare four day-ahead bidding
strategies and two real-time control strategies, as well as the performance of combined day-ahead and real-time
strategies. The numerical results show that the proposed strategies allow the aggregator to reduce the net cost by
14% compared to a benchmark typically used by retailers (inflexible strategy).

1. Introduction

1.1. Motivation

Demand response is acknowledged as the inevitable solution to
enhance the economic effectiveness of electricity markets, increase the
integration of renewable energy resources and improve the operation of
electric power systems [1]. Several countries have already established
demand response programs that harness the largest and most energy
intensive industrial and commercial clients through dynamic tariff
schemes or direct use of load, as part of their system balancing activities
[2]. According to the international energy agency, industrial users
consume 32.1% of the total electricity demand in the developed
countries, whereas commercial services and residential consumers

account for 31.8% and 32.2%, respectively. Large consumers are al-
ready considered as a flexibility resource, while the major share of
electricity consumption, small services and residential consumers, re-
main untapped. However, the recent advances in real deployment of
smart home and grid technologies promise to leverage once and for all
the active participation of small consumers in demand response pro-
grams [3,4]. The smart home technologies include automation solu-
tions, such as home energy management systems (HEMS), photovoltaic
(PV) systems and smart appliances with communication, monitoring
and control functionalities. Therefore, the technical barriers of demand
response are no longer on the side of the automation solutions. The
main challenge is to transform these automation functionalities into
products that can be traded by an aggregator in the electricity markets.
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1.2. Related work

The participation of aggregators in the day-ahead (DA) energy
market has been the focus of many recent studies. In the electric mo-
bility context, Bessa et al. [5,6] proposed two deterministic optimiza-
tion models to define demand bids, based on point forecasted in-
formation of electric vehicles (EV) mobility patterns and energy prices.
Kristoffersen et al. [7] included battery wear costs in the DA optimi-
zation of EV charging. Vagropoulos and Bakirtzis [8] proposed a two-
stage stochastic model to optimize demand bids, considering the un-
certainty of EV mobility patterns and electricity prices through sce-
narios. Mohsenian-Rad [9] extended the aggregator portfolio to other
shiftable loads (SL), such as dishwashers and washing machines. A
time-coupled stochastic optimization problem was formulated to select
price and demand bids to the DA market and demand bids to the real-
time (RT) market. Ayón et al. [10] presented a deterministic model to
optimize demand bids for the DA energy market, based on forecasted
load flexibility. Under the assumption of direct control over thermo-
statically controlled loads (TCL), Chen et al. [11] proposed a stochastic
model to define DA demand bids, based on scenarios of DA energy
prices. Babar et al. [12] formulated an applied methodology for an agile
demand response using micromodels. The objective is to optimize de-
mand flexibility to be traded by an aggregator in the DA market. Saez-
Gallego et al. [13] developed a billevel optimization model that uses
price-consumption data to define demand bids that capture the price-
response of consumers.

Another group of papers has presented strategies to control ag-
gregated flexible resources, in order to comply with DA market com-
mitments. Many of these studies are focused on TCL [14–17]. For ex-
ample, Perfumo et al. [14] developed a model-based feedback control
strategy for load management of large groups of TCL. Mathieu et al.
[15] explored state estimation and control methods to manage RT en-
ergy imbalances. The authors also investigated how various levels of
monitoring and communications infrastructure affect the aggregated

control of TCL. Callaway [16] developed new methods to model and
control aggregated TCL with the objective of delivering regulation
services. Zhou et al. [17] proposed a two-level scheduling method to
reduce imbalance costs through the control of aggregated TCL. This
approach considers a model predictive control (MPC) optimization in
the upper level to set the aggregated demand and a priority list strategy
in the lower level to define ON/OFF set-points. Subramanian et al. [18]
developed scheduling algorithms to coordinate populations of SL and
storage devices, in order to minimize reserve deployment costs. Bessa
et al. [5] proposed a management procedure based on deterministic
optimization to set the operation of an EV fleet. In the topic of virtual
power plants, Vasirani et al. [19] presented a MPC approach that uses
the flexibility of EV to compensate the intermittent generation of wind
farms.

1.3. Contributions

The expected transformation of consumers into prosumers in the
coming years creates an opportunity for an aggregator to exploit dis-
tributed energy resources (i.e., loads and generators) as single products
in the electricity market. This paper presents a framework to enable the
participation of an aggregator of small prosumers on both sides of the
energy market. The aggregator relies on the agility of the smart home
appliances to provide flexibility and respond to fast market variations
without compromising the energy needs and preferences of the prosu-
mers. This load agility concept was proposed by Babar et al. in [12,20]
and is known as agile demand response.

The contributions of this paper are two optimization models. The
first contribution corresponds to a two-stage stochastic optimization
model to support the aggregator in the definition of demand and supply
bids to submit to the DA energy market. The aim is to minimize the net
cost of the aggregator buying and selling energy in the DA and RT
market stages. The bids result from the optimization of flexible and
inflexible net load (INL). The flexible net load includes EV, TCL and SL.

Nomenclature

Abbreviations and Superscripts

AR DE/ arrival/departure of electric vehicles
DA day-ahead
EV electric vehicle
HEMS home energy management system
INL inflexible net load
MPC model predictive control
PV photovoltaic
RT real-time
SL shiftable load
TCL thermostatically controlled load
^ point forecast
⊻ ⊼, load, generation
+ −, positive, negative imbalances

Indices and Sets

∈j S scenarios
∈t k w H, , time interval

∈v EV TCL SL INL{ , , , } type of load
∈i Lv loads

⊂H Hv sub-set of time intervals
⊂O H set of time intervals of active occupancy

availability to start HSL and complete H SL a working cycle
(sets)

∈y N prosumers

Parameters

C thermal capacitance °(kWh/ C)
COP coefficient of performance
CP contracted power (kW)
D number of time intervals of a working cycle
E maximum energy (kWh)
P maximum electric power (kW)
Pr power profile (kW)
SOC SOC, maximum, minimum state-of-charge (kWh)
R thermal resistance °( C/kW)
λ price (€/kWh)
π probability of occurrence of the scenarios
η efficiency

t kΔ ,Δ duration of time interval t h k h(1 ), (0.25 )
θ , θ maximum, minimum temperature °( C)
θo outdoor temperature °( C)

Variables

E energy (kWh)
I imbalance (kWh)
P electric power (kW)
SOC state-of-charge (kWh)
θ temperature °( C)
ψ sets the beginning of a working cycle (binary)
∅ auxiliary (binary)
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The INL includes renewable generation and inflexible load. Scenario-
based stochastic programing is used to tackle the uncertainties of end-
users’ behavior, renewable generation, electricity load and outdoor
temperature. The proposed approach differs from others [5–13] by
considering the participation of the aggregator in the supply and de-
mand side of the DA energy market and by including different sources
of flexibility and uncertainty in the joint optimization of demand and
supply bids.

The second contribution fulfils one of the gaps of [6–12] by con-
sidering a RT management phase, where the aggregator sets the op-
eration of the flexible loads. A MPC method based on deterministic
optimization is proposed to dispatch the flexible loads in a way that
minimizes the net cost of buying and selling energy in RT. This ap-
proach differs from the above mentioned methods [5,14–19] in various
ways. First, it considers the control of different types of flexible re-
sources (EV, SL and TCL), which makes its mathematical formulation
very different. Compared with the direct load control methods pre-
sented in [14–16,18], the proposed approach assists an aggregator to
arbitrage and thus contributes to balance the system in an indirect way.
Moreover, it exploits the aggregated load flexibility of the prosumers to
mitigate demand and generation imbalances, contrarily to other works
that are only focused on demand [5] or generation [19] imbalances.

In short, the proposed approaches allow prosumers to value their
load flexibility and generation surplus by transforming them into
market products. The adoption of these strategies may avoid prosumers
from investing in dedicated storage devices to store excess of renewable
generation.

The proposed bidding strategy is compared to other three bench-
marks characterized by different bid optimization procedures (de-
terministic [5–7,10] and inflexible models) and different forms of
dealing with uncertainty (point and perfect forecasted data). The RT
control strategy is compared to one benchmark, whose objective is to
minimize energy imbalances. Furthermore, the combined performance
of DA and RT strategies is also evaluated. A case study of 1000 small
prosumers from the Iberian market (MIBEL) is used to perform these
analyzes.

1.4. Paper organization

The remaining paper is organized as follows. Section 2 describes the
aggregator framework. Section 3 presents the DA optimization model.
Section 3 describes MPC method. The case study and results are pre-
sented in And 56. Finally, Section 7 presents the conclusions.

2. Participation of the aggregator in the energy market

2.1. Energy market framework

The participation of the aggregator in the DA energy market follows
the rules of the MIBEL [21]. However, the methodologies described in
this paper can be applied to other markets without substantial changes
(e.g., EPEX, ELSPOT from Nord Pool or PJM).

The MIBEL covers the Portuguese and Spanish control areas. The DA
energy market has a uniform price and double-side auction. The market
agents may present buy and sell hourly bids that cover all 24 h of the
next day. The bid prices can go from 0 up to 180 €/MWh, and the bid
quantities must be greater than 0.1 MWh. The volume of energy and
price of each hour are defined by the point of intersection between the
supply and demand curves, according to the EUPHEMIA algorithm
[22]. The gate closure occurs at 12th hour and the clearing prices are
published at 13th hour. Before the 14th hour, the physical bilateral
contracts are added to the cleared offers. Between the 14th and 16th
hours, the transmission system operator performs congestion manage-
ment analysis, and then proceeds to the generation of viable daily
schedules. In case of being detected any network problem, market
mechanisms are activated (e.g., market splitting). Fig. 1 shows the

timeline of these two market sessions.
The energy deviations between RT realizations and DA market

commitments are valued at imbalance prices. The methodologies to
define imbalance prices are diverse and depend mainly on the regula-
tion mechanisms of each country and market. The imbalance prices in
Portugal and Spain result from complex functions of energy and reg-
ulation prices, as described in [23,24]. In other markets, such as Nord
Pool and PJM, the two-price settlement mechanism is adopted. This
mechanism values energy deviations that support the system at energy
prices, and deviations that put the system off-balance at manual reserve
prices in case of the Nord Pool [25], and at RT prices in case of the PJM
market [8,26].

The cost and revenue of buying and selling energy are computed by
Eqs. (1) and (2). The first term of Eqs. (1) and (2) defines the cost and
revenue of buying ⊻E (kWh)t

DA, and selling ∧Et
DA, energy at energy price

λ (€/kWh)t
E in the DA market. The second term defines the imbalance

cost, due to deviations between DA market commitments and RT rea-
lizations of load ⊻Et

RT, and generation ∧Et
RT, . The imbalances It (kWh)

are valued at positive +λ (€/kWh)t and negative −λt imbalance prices.
Typically, ⩾−λ λt t

E and ⩽+λ λt t
E.
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= −⊻ ⊻ ⊻I E Et t
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DA, , (3)

= −∧ ∧ ∧I E Et t
RT

t
DA, , (4)

2.2. Aggregator framework

The aggregator assumes the role of retailer and supplier, since it
buys and sells energy. It exploits the flexibility of the prosumers’ re-
sources to decrease its costs in the energy market. In exchange, the
aggregator may offer attractive tariffs or monthly discounts in the
electricity bill (e.g., [11]). The remuneration mechanisms of the ag-
gregator are out of the scope of this paper and will be addressed in
future work.

The aggregator acts as a price taker by submitting non-priced de-
mand and supply bids to the DA energy market. This means that de-
mand bids are submitted at market cap price (180 €/MWh), whereas
supply are presented at floor price (0 €/MWh). Fig. 1 shows a diagram
with the sequence of aggregator’s tasks. Before the 12th hour, the ag-
gregator defines and submits the demand and supply bids. During the
operating day, the aggregator sets the operation of the flexible loads.
The optimization procedures to define the energy bids and to control
the operation of the flexible loads in RT are described in Sections 3 and
4, respectively.

Fig. 2 describes the hierarchical management and control structure
adopted in this paper. Similar frameworks were proposed by the Eur-
opean projects VIMSEN [27] and SEMIAH [28].
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Fig. 1. Diagram with the sequence of aggregator’s tasks and relevant market sessions,
based on MIBEL timeline [21].
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The aggregator interfaces with the prosumers through a HEMS in-
stalled by it. The HEMS is responsible for acquiring and processing data
collected from appliances (e.g., sensors and smart loads), monitoring
and controlling flexible appliances, as well as establishing interactions
between the aggregator, users and appliances. The users interact with
the HEMS through a smartphone application. More details about the
HEMS functionalities required in the DA and RT stages are provided in
Sections 3.1 and 4.1.

3. Day-ahead bidding optimization

3.1. System architecture and information chain

For the short-term time horizon (up to 48 h ahead), the aggregator
buys and sells energy in DA market. The aggregator exploits the flex-
ibility of the AC, TCL and SL, based on information collected from the
HEMS of each prosumer. Fig. 3 describes the system architecture and
information chain. At the beginning of the DA stage, the HEMS of each
prosumer communicates the following information:

– Physical parameters of flexible loads and rooms. The parameters of
the flexible loads are maximum changing and discharging power of
the EV, maximum power of the TCL and efficiencies of the charging
and discharging processes. The parameters of the rooms are esti-
mated values of the thermal resistance and capacitance. These
physical parameters can be provided by manufacturers or computed
using estimation techniques [29].

– Scenarios of INL, dwelling active occupancy, EV and SL require-
ments. The EV and SL requirements define their flexibility, as well as
the preferences of the prosumers. The methodologies used to

generate the scenarios are described in ection 5.3.
– Temperature preferences specified by the prosumers. The pre-
ferences are temperature ranges. They define the flexibility of the
TCL.

In the same period, the aggregator forecasts energy and imbalance
prices, using the algorithms described in Section 5.5, and the weather
service provider communicates scenarios of outdoor temperatures to
the aggregator. Afterwards, the aggregator optimizes and submits the
demand and supply bids to the DA energy market. This optimization
procedure must occur between the 0th and 12th hours, as described in
Fig. 1.

3.2. Description of the bidding optimization model

The aggregator defines demand and supply bids Et
DA to submit to

the DA energy market by solving the two-stage stochastic optimization
model (5)–(19). The aim is to minimize the net cost of the aggregator
buying and selling energy in DA and RT market stages. The objective
function (5) has two terms:

1. The first term is the net cost of buying and selling energy Et
DA at

forecasted price ̂λt
DA E,

in the DA energy market. Positive values of
Et

DA are buying bids and negative values are selling bids;
2. The second term defines the expected imbalance cost, due to de-

viations between RT realizations and DA market commitments.
Positive imbalance +I (kWh)j t, means surplus of generation >∧( )I 0t
or shortage of demand <⊻I( 0)t . Negative imbalance −I j t, means
shortage of generation <∧( )I 0t or surplus of demand >⊻I( 0)t .

Energy imbalances are valued at positive ̂ +
λt

DA,
and negative ̂ −

λt
DA,

forecasted imbalance prices;

The uncertainties are modeled through a set of scenarios ∈j S with
probability of occurrence π .j The bids are optimized along the optimi-
zation period H. Time intervals t of 1 h with length t hΔ ( ) are used, since
market prices vary in an hourly basis.

̂ ̂ ̂∑ ∑+ −
∈ ∈

− − + +Min λ E π λ I λ I( ( ))
t H

t
DA E

t
DA

j S
j t

DA
j t t

DA
j t

, ,
,

,
,

(5)

The market trading constraint (6) defines energy imbalances. Con-
straints (7) and (8) set the limits of the energy bids and imbalances. The
maximum values ∧E and ⊻E are defined, according to the contracted
power for generation and demand of all prosumers.

− = − ∀ ∈ ∈− +I I E E j S t H, ,j t j t j t
RT

t
DA

, , , (6)

− ⩽ ⩽ ∀ ∈⊼ ⊻E E E t H,t
DA (7)

⩽ ⩽ ∀ ∈ ∈+ − ⊻ ⊼I I E E j S t H0 , max( , ) , ,j t j t, , (8)

Constraint (9) sets the expected net load in RT equals to the sum of

HEMS

Appliances

User

Aggregator

Interactions

Fig. 2. Hierarchical management and control structure.

1
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2

1. Data
2. Optimization of the energy bids
3. Energy bids

Weather 
service 

provider

Day-ahead 
energy market

3

1

HEMS HEMS HEMS

Prosumers
Fig. 3. System architecture and information chain in the DA stage.
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INL and net consumption of the flexible loads. The electric power
P kW( )j i t

v
, , of load ∈i Lv is positive for demand and negative for gen-

eration.

∑ ∑=
∀ ∈ ∈

∈
∈

E P t
j S t H

v EV TCL SL INL
( Δ ),

,
{ , , , }j t

RT

v i L
j i t
v

, , ,
v (9)

The complete formulation includes load constraints. The optimiza-
tion of EV charging and discharging requires five constraints.
Constraints (10) and (11) ensure that the charging ⊻Ej i t

EV
, ,

, and dischar-
ging ∧Ej i t

EV
, ,

, energy do not exceed the maximum values of ⊻P tΔi
EV , and

∧P tΔi
EV , , respectively. The binary variable ∅j i t, , imposes one of the two

constraints, i.e., it defines the mode of operation of the EV, charging or
discharging. The net power of the EV is given by

= −⊻ ⊼P E E t( )/Δj i t
EV

j i t
EV

j i t
EV

, , , ,
,

, ,
, . Constraints (12) and (13) set the SOC (kWh)

within its limits SOC SOC[ , ]j i j i, , . The parameters ⊻ηi and ∧ηi are the ef-
ficiency of the charging and discharging processes. Constraint (14) sets
the target SOC at departure time tj i

DE
, , and ensures that the preferences of

the prosumers are satisfied. The preferences are represented by the
parameters tj i

DE
, and SOC .j i

DE
, The availability of the EV to charge and

discharge is defined by Hj i
EV
, . The scenario-based inputs related to the

EV requirements are ∀t t SOC SOC H j i{ , , , , , , }.j i
DE

j i
AR

j i
DE

j i
AR

j i
EV

, , , , ,

⩽ ⩽ ∅ ∀ ∈ ∈ ∈⊻ ⊻E P t j S i L t H0 Δ , , ,j i t
EV

j i t i
EV EV

j i
EV

, ,
,

, ,
,

, (10)

⩽ ⩽ −∅ ∀ ∈ ∈ ∈∧ ∧E P t j S i L t H0 (1 ) Δ , , ,j i t
EV

j i t i
EV EV

j i
EV

, ,
,

, ,
,

, (11)

= + − ∀ ∈ ∈ ∈+
⊻ ⊻ ⊼ ⊼SOC SOC η E E η j S i L t H/ , , ,j i t j i t i j i t

EV
j i t
EV

i
EV

j i
EV

, , 1 , , , ,
,

, ,
,

,

(12)

⩽ ⩽ ∀ ∈ ∈ ∈+SOC SOC SOC j S i L t H, , ,i j i t i
EV

j i
EV

, , 1 , (13)

= ∀ ∈ ∈SOC SOC j S i L, ,j i t j i
DE EV

, , ,j i
DE
, (14)

The TCL model adopted in this paper describes the operation of an
inverter heat pump. However, the model can be adapted to another
type of TCL. The optimization of TCL requires three constraints.
Constraint (15) ensures that the electric power Pj i t

TCL
, , of the TCL does not

exceed the maximum value of Pi
TCL. The physically-based load equation

(16) sets the temperature inside the room +θj i t, , 1 °( C) [11,16]. The
parameters in (16) are thermal resistance °R ( C/kW)i , capacitance

°C (kWh/ C)i of the room, coefficient of performance COPi and outdoor
temperature θj t,

0 . Constraint (17) guarantees the preferences of the
prosumers, when the room (or house) is occupied Oj i, . The preferences
are an interval of temperatures predefined by the prosumer θ θ[ , ]i i . The
scenario-based inputs are dwelling active occupancy and outdoor
temperature ∀O θ j i{ , , }j i j,

0 .

⩽ ⩽ ∀ ∈ ∈ ∈P P j S i L t H0 , , ,j i t
TCL

i
TCL TCL

i
TCL

, , (15)

= + − + = ∀ ∈

∈ ∈

+
−θ β θ β θ COP R P β e j S i

L t H

(1 )( · · ), , ,

,

j i t i j i t i j t
o

i i j i t
TCL

i
t

C R

TCL
i
TCL

, , 1 , , , , ,
Δ
i i

(16)

⩽ ⩽ ∀ ∈ ∈ ∈+θ θ θ j S i L t O, , ,i j i t i
TCL

j i, , 1 , (17)

The scheduling of SL requires two constraints. Constraint (18) de-
fines the electric power Pj i t

SL
, , imposed by the power profile Prj i w

SL
, , . The

binary variable ψj i t, , schedules the beginning of a working cycle of
duration Dj i, . Constraint (19) ensures that one working cycle is started
at each availability period H j i

SL
, . The scenario-based inputs related to

the SL requirements are availability period to complete a working cycle,
power profile, availability to start a working cycle and number of time
intervals of a working cycle ∀H Pr H D j i{ , , , , , }.j i

SL
j i
SL

j i
SL

j i, , , , The availability
period to complete a working cycle defines the preferences of the
prosumers.

∑= ∀ ∈ ∈ ∈
=

−

−P Pr ψ j S i L t H, , ,j i t
SL

w

D

j i w
SL

j i t w
SL

j i
SL

, ,
0

1

, , , , ,

j i,

(18)

∑ = ∀ ∈ ∀ ∈
∈

ψ j S i L1 , ,
t H

j i t
SL

, ,
j i
SL
, (19)

The uncertainty of the INL is modeled through scenarios of power
profiles ∀Pr j i{ , , }j i

INL
, . The electric power of the INL is given by

=P Prj i t
INL

j i t
INL

, , , , .

4. Real-time optimization

4.1. System architecture and information chain

During the operating day, the aggregator sets the operation of the
flexible loads using a MPC method [30,31]. The aim is to control the
aggregated net consumption of the flexible loads, in order to minimize
the net cost of the aggregator buying and selling energy in RT. The
sequential steps of the proposed MPC method are illustrated in Fig. 4
and described below:

1. At the beginning of each time interval t, the following parameters
are communicated and updated by the HEMS of each prosumer: TCL
– temperature of the room θi and dwelling occupancy Oi defined by
the user or forecasted by the HEMS; INL – forecasted power profile

̂Pri
INL; EV – SOC of the plugged EV and information from the re-

cently plugged EV, such as actual SOC, departure time ti
DE and de-

sired SOC at ti
DE; SL – information about the working cycles (state of

the cycle, power profile Pri
SL availability to start Hi

SL and finish
Hi

SL). The weather service provider communicates updated forecasts
of outdoor temperature ̂θt

o
, if available;

2. The aggregator dispatches the flexible loads by solving the de-
terministic optimization model described in Section 4.2 with this
new information. The aggregator forecasts new imbalance prices, if
new market information is available.

3. Power (EV) and temperature (TCL) set-points, as well as start orders
(SL) are communicated by the aggregator to the HEMS, which
conveys the set-points to the appliances; this sequential process is
repeated for the next time interval, +t 1 (go to step 1).

The MPC method runs in continuous mode during the operation day
in cycles of 15 min. The SL and EV are initially scheduled, when the
users define their preferences and turn on the appliances. The TCL are
scheduled in continuous mode. The dispatch of the flexible loads takes
into account the uncertainty of the INL and outdoor temperatures
through point forecasts. All the other load parameters are perfectly
known.

4.2. Formulation of the deterministic optimization problem of the model
predictive control method

The deterministic optimization problem is formulated with the ob-
jective of minimizing the net cost of the aggregator in RT. The objective

2

1

Aggregator

1. Updated data
2. Optimization of the flexible loads
3. Flexible load set-points

Weather service 
provider

3

1

HEMS HEMS HEMS

Prosumers

Fig. 4. System architecture and information chain in the RT stage.
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function (20) has three terms. The first term is the cost and revenue of
buying and selling energy ++ +E E E t ktt k t

RT
t k t
RT RT

| | at energy clearing price

+λt k t
RT E

|
, . The second and third terms are the regulation costs for negative

+
−It k t| and positive +

+It k t| energy imbalances. The imbalance prices +̂
−

λt k t
RT

|
,

and +̂
+

λt k t
RT

|
,
are point forecasts predicted in RT stage. Time intervals t and

k of 15 min k(Δ ) are considered.

̂
̂∑

⎛

⎝
⎜⎜

+ −

+ −

⎞

⎠
⎟⎟∈

+ + +
−

+ +
−

+ +
+

+
+

Min
λ E λ λ I

λ λ I

( )·

( )·k H

t k t
RT E

t k t
RT

t k t
RT

t k t
RT E

t k t

t k t
RT E

t k t
RT

t k t

|
,

| |
,

|
,

|

|
,

|
,

| (20)

The market trading constraint (21) sets the energy imbalances and
constraint (22) defines their limits. In the RT stage, the energy bids

+Et k t
DA

| are values resulting from the DA optimization, instead of decision
variables.

− = − ∀ ∈+
−

+
+

+ +I I E E k H,t k t t k t t k t
RT

t k t
DA

| | | | (21)

⩽ ⩽ ∀ ∈+
+

+
− ⊻ ⊼I I E E k H0 , max( , ) ,t k t t k t| | (22)

Constraint (23) sets the RT net load of all prosumers’ resources. The
electric power +Pi t k t

v
, | is positive for demand and negative for generation.

∑ ∑= ∀ ∈
∈+

∈
+E P k k H

v EV TCL SL INL( Δ ), { , , , }t k t
RT

v i L
i t k t
v

| , |
v (23)

Constraint (24) sets the limits of the net load of each prosumer y,
based on their contracted power of consumption ⊻CP kW( )y and gen-
eration ∧CPy .

∑ ∑− ⩽ ⩽
∀ ∈ ∈

∈
⊼

∈
+

⊻CP P CP
y N k H

v EV TCL SL INL
,

,
{ , , , }y

v i L
i t k t
v

y, |
y
v (24)

The optimization of EV charging and discharging requires five
constraints. Constraints (25) and (26) define if the EV charges or dis-
charges. Constraints (27) and (28) set the SOC within its limits. Con-
straint (29) sets the SOC at departure time and ensures the preferences
of the prosumers.

⩽ ⩽ ∅ ∀ ∈ ∈+
⊻

+
⊻E P k i L k H0 Δ , ,i t k t

EV
i t k t i

EV EV
i
EV

, |
,

, |
, (25)

⩽ ⩽ −∅ ∀ ∈ ∈+
∧

+
∧E P k i L k H0 (1 ) Δ , ,i t k t

EV
i t k t i

EV EV
i
EV

, |
,

, |
, (26)

= + − ∀ ∈ ∈+ + + +
⊻ ⊻

+
⊼ ⊼SOC SOC E η E η i L k H/ , ,i t k t i t k t i t k t

EV
i i t k t

EV
i

EV
i
EV

, 1| , | , |
,

, |
,

(27)

⩽ ⩽ ∀ ∈ ∈+ +SOC SOC SOC i L k H, ,i i t k t i
EV

i
EV

, 1| (28)

= ∀ ∈ ∈SOC SOC i L k H, ,i t i
DE EV

i
EV

, i
DE (29)

The scheduling of TCL requires three constraints. Constraint (30)
ensures the power limits of the TCL. Constraint (31) sets the tempera-
ture inside the room. Constraint (32) ensures the preferences of the
prosumers, when the home/room is occupied.

⩽ ⩽ ∀ ∈ ∈+P P i L k H0 , ,i t k t
TCL

i
TCL TCL

i
TCL

, | (30)

̂⎜ ⎟⎜ ⎟= + ⎛
⎝

− ⎞
⎠

⎛
⎝

+ ⎞
⎠

= ∀ ∈ ∈

+ + + + +

−

θ β θ β θ COP R P

β e i L k H

1 · · ,

, ,

i t k t i i t k t i t k t
o

i i i t k t
TCL

i
k

C R TCL
i
TCL

, 1 , ,

Δ
i i (31)

⩽ ⩽ ∀ ∈ ∈+ +θ θ θ i L k O, ,i i t k t i
TCL

i, 1| (32)

The scheduling of SL requires two constraints. Constraint (33) sets
the electric power. Constraint (34) ensures that the working cycle is
started within the availability period Hi

SL. The availability period to
complete a working cycle Hi

SL defines the preferences of the prosumers.
The INL is given by ̂=+ +P Pri t k t

INL
i t k t
INL

, | , | .

∑= ∀ ∈ ∈+
=

−

+ −P Pr ψ i L k H, ,i t k t
SL

w

D

i w
SL

i t k w t
SL

i
SL

, |
0

1

, , |

i

(33)

∑ = ∀ ∈
∈

+ψ i L1 ,
k H

i t k t
SL

, |
i
SL (34)

5. Case study

5.1. Short Description

The aggregator of small prosumers participates in the energy market
of MIBEL. The prosumers are from Porto (Portugal) and the analyzed
period corresponds to the first week of December 2015. The aggregator
manages 1000 small prosumers characterized by 1000 PV systems and
3000 flexible loads. Each prosumer has 1 PV system and three flexible
loads (1 EV, 1 TCL and 1 SL). The contracted power of each prosumer is
13.8 kVA.

5.2. Physical parameters of thermostatically controlled loads and electric
vehicles

The parameters of the TCL and rooms are presented in Table 1. The
room parameters R and C were computed, based on physical char-
acteristics of Portuguese buildings. The parameters of the TCL (COP and
P TCL) were collected from 10 manufactures (e.g., [32]). The physical
parameters were randomly selected. The intervals of thermal flexibility
θ θ[ , ] were randomly selected between 19 and 23 °C.

The discharging and charging power rates of the EV P( )EV were
randomly selected by choosing one of the two values 3.7 or 7 kW. The
efficiency of the charging ⊻η and discharging ∧η processes is 0.93.

5.3. Generation of scenarios

Twenty scenarios with equal probability of occurrence πj were
computed, based on scenarios of outdoor temperature ∀θ j{ , }j

0 ,
dwelling active occupancy ∀O j i{ , , }j i, , EV requirements

∀t t SOC SOC H j i{ , , , , , , }j i
DE

j i
AR

j i
DE

j i
AR

j i
EV

, , , , , , INL ∀Pr j i{ , , }j i
INL
, and SL require-

ments ∀H Pr H D j i{ , , , , , }j i
SL

j i
SL

j i
SL

j i, , , , . Depending of the adopted framework,
the scenarios may be generated by the aggregator or HEMS.

5.3.1. Dwelling active occupancy
The scenarios of dwelling active occupancy were generated, based

on daily routines of Portuguese families. Typically, a Portuguese family
leaves home to go to work at 8th hour and arrives at home at 20th hour.

5.3.2. Outdoor temperature
The scenarios of outdoor temperature were generated using the

Gaussian copula method (described in [33,34]). The probabilistic
forecasts were produced by the quantile regression method using
forecasted outdoor temperature as explanatory variable (available in
[35]). Fig. 5 shows an example of twenty scenarios of outdoor tem-
perature for November 30th in Porto.

5.3.3. Electric vehicle requirements
The EV requirements consists of four parameters: departure t DE and

arrival t AR times, SOC at arrival time SOC( )AR and desired SOC at de-
parture time SOC( )DE . The availability of the EV to charge and dis-
charge is defined by the period between the arrival and departure times
H( ).EV

The synthetic annual time series of EV driving patterns were gen-
erated by a discrete-time-space Markov chain. More detailed

Table 1
Physical parameters of the TCL and rooms.

°R ( C/kW) °C (kWh/ C) COP P

6.7–50.1 0.5–3.6 4.6–4.8 0.9–1.25
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information about the methodology and the generated time series can
be found in [36,37]. Based on the generated time series, scenarios of EV
requirements were computed by a seasonal naïve forecasting algorithm.
Fig. 6 shows one scenario of EV requirements. The EV is plugged-in
when the availability is equal to one.

5.3.4. Inflexible net load
The scenarios of INL were generated by the Gaussian copula

method. The probabilistic forecasts were produced by the quantile re-
gression method using time of the day and season as explanatory
variables. The past observations of INL were defined based on load and
microgeneration profiles available in the website of the Portuguese
transmission system operator [38] and energy regulator [39]. Fig. 7
shows an example of twenty scenarios of INL for November 30th in
Porto (one prosumer).

5.3.5. Shiftable load requirements
The SL requirements consist of two parameters Pr D( , )SL and two sets

of time intervals H H( , )SL SL . The scenarios of SL requirements were
computed by a seasonal naïve forecasting algorithm. The inputs are
synthetic annual time series of SL requirements. Fig. 8 shows one sce-
nario of SL requirements.

The synthetic annual time series of SL requirements were generated
by a three-step approach. Firstly, the start time of the events (or
working cycles) for one year were determined by a cumulative dis-
tribution function available in [40]. Secondly, the power profile of the
events PrSL and the respective durations D were defined, based on
values randomly selected from intervals of [0.2, 2] kW and [2,8] time
slots of 15 min [41]. Thirdly, the availability periods to start (HSL) and
complete (H SL) the working cycles were computed. Periods between 4
and 8 h were used to set HSL. The H SL was defined based on D and HSL

⊂H H( )SL SL .

5.4. Information in the real-time stage

The EV and SL requirements were computed based on the generated
time series. For simplification purposes, real values of INL and outdoor
temperatures were considered.

5.5. Forecasting of electricity prices

The DA and RT optimization procedures consider two type of prices:
MIBEL energy prices and Portuguese imbalance prices. The energy
prices only assume non-negative values. The imbalance prices can as-
sume positive and negative values.

The DA optimization uses as inputs forecasts of energy and im-
balance prices ( ̂ ̂ ̂− +

λ λ λ, ,t
DA E

t
DA

t
DA, , ,

). The electricity prices were fore-
casted for a time horizon of 48 h ahead using the gradient boosting
algorithm [42] from the python package “scikit-learn” [43]. The fol-
lowing explanatory variables were used: energy prices – forecasted
demand, wind and solar generation of the Iberian Peninsula and time of
the day; imbalance prices – forecasted demand, wind and solar gen-
eration of the Portuguese control area, forecasted energy price and time
of the day.

The RT optimization uses as inputs energy clearing prices and
forecasted imbalance prices ( ̂ ̂− +

λ λ λ, ,t
RT E

t
RT

t
RT, , ,

). The imbalance prices
were forecasted for a time horizon of 24 h ahead using the gradient
boosting algorithm and the following explanatory variables: clearing
energy prices; forecasted demand, wind and solar generation of the
Portuguese control area; and time of the day.

One year of market data (2015) collected from the ENTSO-E website
[44] was used to forecast the MIBEL energy prices and the Portuguese
imbalances prices. Table 2 shows the average values of the mean ab-
solute error (MAE) and spearman’s rank correlation [45] for the first
week of December 2015.
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Fig. 5. Twenty scenarios of outdoor temperature for November 30th, 2015 (Porto).
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Fig. 7. Twenty scenarios of INL for November 30th, 2015 (one prosumer).
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5.6. Benchmarks

The proposed DA bidding and RT control strategies are compared to
other theoretical benchmark approaches in Section 6. Four DA bidding
strategies are analyzed.

Table 3 compares the main characteristics of the bidding strategies.
Perfect and deterministic strategies optimize the energy bids in order to
minimize the net costs of buying and selling energy in the DA market.
They adopt deterministic models similar to the approaches described in
[5–7,10]. The only difference between these two strategies is the input
data. Perfect strategy uses perfectly forecasted information (i.e., price
and load parameters), whereas deterministic strategy considers point
forecasted information (or one single scenario). The smart strategy
optimizes the bids with the aim of minimizing the net cost of buying
and selling energy in the DA and RT market stages and models the load
uncertainty through multiple scenarios. The inflexible strategy does not
optimize the flexibility of the prosumers, i.e., considers that all net load
is inflexible. Typically, this is the strategy adopted by retailers.

Two RT control strategies are analyzed. Table 4 compares the main
characteristics of the RT control strategies. Both strategies consider the
MPC method described in Section 4.1. The different between smart and
flexible strategies is the objective function of the deterministic opti-
mization model. The smart strategy aims to minimize the net cost of the
aggregator buying and selling energy in RT, while flexible strategy aims
to minimize RT energy imbalances. The smart strategy requires the
forecasting of imbalance prices in RT. The flexible strategy emulates the
direct load control methods [14–17], whose objective is to deliver
products traded in the DA markets.

The DA bidding strategies are compared in Section 6.1, while RT
control strategies are compared in Section 6.2. Additionally, a com-
parison between combinations of DA and RT strategies is made in
Section 6.3. Table 5 presents the combined strategies that are com-
pared.

6. Results

6.1. Comparison between day-ahead bidding strategies

6.1.1. Daily day-ahead bidding results
Fig. 9 illustrates the supply and demand bids of smart, deterministic

and inflexible strategies for November 30th (Monday). Positive values

are demand bids and negative values are supply bids. As shown, the
“inflexible” demand bids are placed in hours of high energy prices. On
the other hand, with optimized strategies (perfect, smart and determi-
nistic), the demand bids are mostly placed in hours of low energy prices
and supply bids in hours of high energy prices. Between the 10th and
14th hours, the aggregator submits bids on the supply side of the
market, because it corresponds to the time of the day with the highest
forecasted PV generation. At night, the supply bids result from EV
featuring vehicle-to-grid.

The smart strategy introduces one additional term compared to the
deterministic strategy, the sensitivity to imbalance costs, which affects
the definition of the bids. In the 1st hour, the demand bid placed by
smart strategy is slightly lower than by deterministic strategy. This
placement is due to the penalty price for positive load imbalances
( − =−λ λ 11.1 €/MWht t

E ), which is lower than for negative load im-
balances ( − =+λ λ 12.0 €/MWht

E
t ). This means that is more advanta-

geous for the aggregator to present a short demand position than a long
position in the 1st hour. A similar type of reasoning can be applied to
the supply side, based on the generation imbalance mechanism de-
scribed by Eq. (2).

6.1.2. Weekly day-ahead bidding results
Table 6. compares the cumulative DA bidding results obtained from

perfect, smart, deterministic and inflexible strategies for the first week
of December 2015. The deterministic strategy presents the lowest bid-
ding net cost (6.43 k€) followed by smart, perfect and inflexible stra-
tegies (6.46, 7.06 and 7.93 k€). However, it should be noted that the
overall performance of the bidding strategies can only be effectively
assessed in RT, due to the uncertainties of electricity prices and net
consumption. This assessment is made in Section 6.3.

The smart strategy shows a conservative behavior during the first
week of December, since it has a positive expected imbalance cost of
0.05 k€. The imbalance cost is due to the positive difference between
expected net load and net bids ( =−I 0.34 MWh). This means that it is
more profitable for the aggregator to present a short position. Fig. 10
demonstrates the conservative behavior of the smart strategy. The
smart strategy places lower quantities of demand and supply bids than
the deterministic strategy almost all days. This behavior is due to two
reasons:

• The stochastic nature of the optimization model adopted by the
smart strategy, which incorporates the uncertainty of the net con-
sumption through multiple scenarios;

• The imbalance cost term in the objective function, which values the
uncertainty of the net consumption.

The inflexible strategy places low quantities of supply bids, since it
does not exploit the flexibility of the EV to store and inject energy into
the grid.

Table 2
MAE and spearman’s correlation of forecasted electricity prices.

̂λt
DA E, ̂ −

λt
DA, ̂ +

λt
DA, ̂ −

λt
RT, ̂ +

λt
RT,

MAE (€/MWh) 3.1 8.6 8.3 7.2 8.5
Spearman’s correlation 0.90 0.55 0.43 0.57 0.49

Table 3
Main characteristics of the four DA bidding strategies.

Optimization model Load uncertainty Price uncertainty

Smart Two-stage stochastic optimization model described in Section 3.2 Multiple scenarios Point forecasts

Deterministic Deterministic optimization model with the objective function

̂∑ ∈Min λ E (35)t H t
DA E

t
DA,

subject to = ∑ ∑ ∈E P t( Δ )t
DA

v i Lv i t
v
0, , and (10)–(19)

Point forecasts (or one scenario ⇒ =j 0) Point forecasts

Perfect Optimization model adopted by the deterministic strategy Perfect forecasts Perfect forecasts

Inflexiblea No optimization Point forecasts Not considered

a It is also considered in RT.
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6.2. Comparison between real-time control strategies

6.2.1. Daily real-time results
Fig. 11 compares the energy imbalances computed through smart

and flexible control strategies for November 30st (Monday). The energy
imbalances were computed based on the energy bids defined by the DA
smart strategy (in Section 6.1.1). The positive values are positive im-
balances and the negative values are negative imbalances.

The smart strategy optimizes the net consumption of the aggregated
flexible loads, based on energy clearing prices and forecasted imbalance
prices. This means that the smart strategy may deviate from DA bids in
time intervals of low prices, if it is profitable. One example of this be-
havior is the 4th hour, where the aggregator increases consumption.
The flexible strategy minimizes the energy imbalances without con-
sidering their economic value. The period between 6th and 9th hours
represents this behavior, since flexible strategy increases the net con-
sumption in hours of high prices. However, smart and flexible strategies
may present similar behaviors, when the flexibility of the prosumers is
limited, as shown in the period between 17th and 19th hours.

6.2.2. Weekly real-time results
Table 7 compares the cumulative RT results obtained from smart

and flexible strategies for the first week of December 2015. The smart
strategy presents lower net cost (7.41 k€) than flexible strategy (7.72 k
€). However, it presents the highest regulation cost (0.36 k€). This
shows that smart strategy arbitrages to reduce the total net cost of the
aggregator. The flexible strategy generally presents low imbalances,
since its main objective is to minimize energy imbalances.

Fig. 12 compares the cumulative RT net cost and net consumption of
smart and flexible strategies along the week. The smart strategy out-
performs or equals flexible strategy every day, even when it presents

Table 4
Main characteristics of the two RT control strategies.

Optimization model of the MPC method Load uncertainty Price uncertainty

Smart Deterministic optimization model described in ection 4.2 Real data and point forecasts Point forecasts of imbalance prices and energy clearing prices
Flexible Deterministic optimization model with the objective function

∑ +∈ +
−

+
+Min I I (36)k H t k t t k t| |

subject to (21)–(34)

Real data and point forecasts No prices are considered

Table 5
Combined DA and RT strategies.

Name Perfect Smart_1 Smart_2 Deter_1 Deter_2 Inflexible

DA bidding strategy Perfect Smart Smart Deterministic Deterministic Inflexible
RT control strategy – Smart Flexible Smart Flexible Inflexible
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Fig. 9. Demand and supply bids obtained from perfect, smart, deterministic and inflexible strategies for November 30th (Monday). The positive values are demand bids and the negative
values are supply bids.

Table 6
Cumulative DA bidding results obtained from perfect, smart, deterministic and inflexible
strategies for the first week of December 2015.

Perfect Smart Deterministic Inflexible

Net cost (k€) 7.06 6.46 6.43 7.93
Energy cost (k€) 9.09 8.62 9.16 8.06
Energy revenue (k€) 2.03 2.21 2.73 0.13
Expected imbalance cost (k€) – 0.05 – –
Demand bids (MWh) 174.50 168.59 180.07 132.76
Supply bids (MWh) 30.36 33.88 42.15 2.17
Expected net load (MWh) – 135.04 – –
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Fig. 10. Cumulative supply and demand bids of smart and deterministic strategies for the
first week of December 2015.The positive values are demand bids and the negative values
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similar values of net consumption (e.g., Monday and Sunday). The daily
net costs follow the same trend of the weekly net costs. Therefore, it is
more beneficial for the aggregator to use always the smart strategy. The
only situation where the adoption of the flexible strategy would make
sense is when the aggregator does not have access to the electricity
prices. However, this is a very unlikely scenario.

6.3. Comparison between combined day-ahead and real-time strategies

Table 8 presents the cumulative RT results of six combined strate-
gies for one week. The perfect strategy presents the lowest net cost
(7.07 k€), as expected, since it considers perfect information. However,
perfect forecasts will never be possible due to the uncertain nature of
the optimization input information. Therefore, this result should be
interpreted, as the minimum theoretical net cost that the aggregator can
obtain.

Under uncertainty conditions, smart_1 strategy presents the lowest
net cost (7.41 k€). Both smart strategies (1 and 2) outperform the re-
spective deterministic strategies. The cost term that experienced the
highest reduction with the adoption of smart strategies was the reg-
ulation term, which was reduced by 30.7% (0.16 k€) and 45.8% (0.18 k
€), when compared to the respective deterministic strategies. This
proves that the proposed two-stage stochastic model provides a better
bidding strategy than deterministic models. The RT smart strategy
outperforms flexible strategy by reducing the net cost of smart_1 and
deter_1 strategies in 3.9% (0.30 k€) and 4.4% (0.35 k€), when com-
pared to smart_2 and deter_2 strategies. Therefore, RT arbitrage reduces
the net cost of the aggregator. The margin for improvement of smart_1
is small (4.7%, 0.35 k€), based on the results of the perfect strategy.
However, it is still possible to increase its performance by improving
the electricity prices forecasting and the modeling of net load un-
certainty.

Fig. 13 compares the cumulative RT net cost and consumption of six
combined strategies for the first week of December 2015. The daily net
costs follow the same trend of the weekly net costs described in Table 8.
The optimized strategies outperform inflexible strategy every day, even
when they present higher net consumption. Perfect strategy presents
higher net cost than smart_1 strategy on Monday and Saturday, because
of the higher net consumption. The difference of net consumption be-
tween strategies is mainly due to the inter-day trading behavior of the
EV.

The adoption of optimized strategies reduces the net cost of the
aggregator. In comparison with the inflexible approach, the maximum
weekly savings under uncertainty conditions is 1.19 k€ with smart_1
(13.8%). The aggregator may keep part of the savings as profits and use
the other part to remunerate the flexibility provided by its clients. The
aggregator can remunerate the flexibility of the clients by offering
cheaper retailing tariffs or a discount in the monthly electricity bill.

6.4. Evaluation of a different mix of distributed energy resources

The proposed case study consists of 1000 small prosumers from
MIBEL. The first scenario of distributed energy resources analyzed is
characterized by 1000 PV systems and 3000 flexible loads (1000 EV,
1000 TCL and 1000 SL), as described in Section 5.1. To demonstrate the
effectiveness and replicability of the proposed strategies, another
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Fig. 11. Positive and negative imbalances obtained from smart and flexible strategies for November 30th (Monday). The positive values are positive imbalances and the negative values
are negative imbalances.

Table 7
Cumulative RT results obtained from smart and flexible strategies for the first week of
December 2015.

Smart Flexible

Net cost (k€) 7.41 7.72
Energy cost (k€) 9.05 9.10
Energy revenue (k€) 2.00 1.59
Regulation cost (k€) 0.36 0.21

Net load (MWh) 142.69 147.58
Energy imbalance (MWh) 22.19 13.06
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Fig. 12. Cumulative RT net cost and net consumption of smart and flexible strategies for
the first week of December 2015.

Table 8
Cumulative RT results obtained from six combined strategies for the first week of
December 2015.

Combined strategy Perfect Smart_1 Deter_1 Smart_2 Deter_2 Inflexible

DA strategy Perfect Smart Deter. Smart Deter. Inflexible
RT strategy – Smart Smart Flexible Flexible Inflexible

Net cost (k€) 7.07 7.41 7.59 7.72 7.95 8.60
Energy cost (k€) 9.09 9.05 9.14 9.10 9.32 8.51
Energy revenue (k€) 2.02 2.00 2.07 1.59 1.76 0.09
Regulation cost (k€) 0.00 0.36 0.52 0.21 0.39 0.18

Load (MWh) 174.50 172.47 174.70 171.56 175.85 134.38
Generation (MWh) 30.36 29.78 30.89 23.99 26.60 1.39
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scenario of distributed energy resources is analyzed in this section. This
second scenario consists of 700 PV systems and 1300 flexible loads (600
EV, 400 TCL and 300 SL).

Table 9 shows the cumulative DA and RT net costs of the six com-
bined strategies for the first week of December of 2015 and for the
second scenario of distributed energy resources. Perfect strategy out-
performs the other strategies with the lowest RT net cost of 5.62 k€.
Under uncertainty conditions, smart_1 presents the lowest RT net cost
of 5.25 k€. The net costs of the second scenario are lower than the net
costs of the first scenario due to the lower number of distributed energy
resources considered. The DA and RT net costs of both scenarios present
the same order in terms of profit (see Tables 6 and 8). This demon-
strates the effectiveness and replicability potential of the proposed
strategies.

The maximum weekly savings under uncertainty conditions is
0.92 k€ with smart_1 strategy (13.7%), when inflexible approach is
used as benchmark. The difference of cost savings with smart_1 be-
tween the first and second scenarios is 0.27 k€, which corresponds to a
decrease of 22.7%. This shows that exploiting the flexibility of a higher
number of distributed energy resources may increase the profits (i.e.,
savings) of the aggregator. Therefore, it may be beneficial for the ag-
gregator to transform a large share of the savings into economic in-
centives for the customers, in order to attract more clients.

6.5. Computational performance

The optimization problems were solved using the python API of IBM
ILOG CPLEX™ 12.7 solver on a 64-bit MS Windows©2008 Server

machine with 96 GB RAM and an Intel© Xeon™ E-5680 CPU clocked at
3.33 GHz.

The problem size and execution time of the DA and RT optimiza-
tions are presented in Table 10. They result from solving the case study
described in Section 5.1. The numerical results show suitable execution
times for the market timeline. The computation time of the two-stage
stochastic optimization model (DA smart) can be further reduced, if
scenario reduction techniques are applied [46]. However, this issue is
not in the scope of this paper.

7. Conclusions

The expected transformation of small consumers into prosumers,
together with the deployment of smart home technologies, represents
an opportunity for an aggregator to trade prosumers’ flexibility in the
energy market. At the same time, it gives the chance to prosumers value
their flexibility and excess of generation without relying on storage
technologies. To enable these new activities of the aggregator, two
optimization procedures were proposed in this work: a two-stage sto-
chastic optimization model to define demand and supply bids and a
MPC method to control aggregated flexible loads in RT.

Under uncertainty conditions, the proposed strategies (named
smart) outperform other theoretical benchmarks, such as deterministic,
flexible and inflexible approaches. The two-stage stochastic optimiza-
tion model increases the robustness of the energy bids by incorporating
the uncertainty of flexible and INL in the optimization process. This
reduces the net cost of the aggregator, namely the regulation costs. The
proposed MPC method enables energy arbitrage in RT, which con-
tributes to mitigate DA forecasting errors and to reduce the net cost of
the aggregator. The numerical results show that smart_1 strategy re-
duces the net cost of the aggregator in average in 14%, when compared
to a typical strategy used by retailers (inflexible strategy). Furthermore,
the results also show that managing a higher number of distributed
energy resources contributes to increase the savings (i.e., profits) of the
aggregator. Therefore, it may be beneficial for the aggregator to
transfer a large share of the savings to the prosumers (i.e., pay more for
the flexibility provided by the customers), in order to attract more
clients.

Future work will focus on developing new optimization models to
support the participation of an aggregator of small prosumers in mul-
tiple market sessions, such as energy and reserves. Furthermore, re-
muneration mechanisms will be investigated too.
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Fig. 13. Cumulative RT net cost and consumption obtained from six combined strategies for the first week of December 2015.

Table 9
Cumulative DA and RT net costs obtained from six combined strategies for the first week
of December of 2015 and for the second scenario of distributed energy resources.

Combined strategy Perfect Smart_1 Deter_1 Smart_2 Deter_2 Inflexible

DA strategy Perfect Smart Deter. Smart Deter. Inflexible
RT strategy – Smart Smart Flexible Flexible Inflexible

DA net cost (k€) 5.62 5.25 5.21 5.25 5.21 6.24
RT net cost (k€) 5.62 5.80 5.91 5.95 6.05 6.72

Table 10
Problem size and execution time of the DA and RT optimizations (average values).

DA smart DA deterministic RT smart RT flexible

Continuous variables 1,816,042 93,649 91,793 91,733
Binary variables 304,146 16,212 15,118 15,077
Constraints 2,728,824 141,119 143,004 142,941
Execution time 6.3 min 3.1 s 4.6 s 2.6 min
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