
RJ10501 (ALM1207-004) July 9, 2012
Computer Science

IBM Research Report

BTRFS: The Linux B-tree Filesystem

Ohad Rodeh
IBM Research Division

Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099
USA

Josef Bacik, Chris Mason
FusionIO

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

BTRFS: The Linux B-tree Filesystem

Ohad Rodeh
IBM

Josef Bacik
FusionIO

Chris Mason
FusionIO

Abstract

BTRFS is a Linux filesystem, headed towards mainline default sta-
tus. It is based on copy-on-write, allowing for efficient snapshots and
clones. It uses b-trees as its main on-disk data-structure. The de-
sign goal is to work well for many use cases and workloads. To this
end, much effort has been directed to maintaining even performance as
the filesystem ages, rather than trying to support a particular narrow
benchmark use case.

A Linux filesystem is installed on smartphones as well as enterprise
servers. This entails challenges on many different fronts.

• Scalability: The filesystem must scale in many dimensions: disk
space, memory, and CPUs.

• Data integrity: Losing data is not an option, and much effort
is expended to safeguard the content. This includes checksums,
metadata duplication, and RAID support built into the filesys-
tem.

• Disk diversity: the system should work well with SSDs and hard-
disks. It is also expected to be able to use an array of different
sized disks; posing challenges to the RAID and striping mecha-
nisms.

This paper describes the core ideas, data-structures, and algorithms
of this filesystem. It sheds light on the challenges posed by defrag-
mentation in the presence of snapshots, and the tradeoffs required to
maintain even performance in the face of a wide spectrum of workloads.

1

1 Introduction

BTRFS is an open source filesystem that has seen extensive development
since its inception in 2007. It is jointly developed by FujitsuTM , Fusion-
IOTM , IntelTM , OracleTM , Red HatTM , StratoTM , SUSETM , and many
others. It is slated to become the next major Linux filesystem. Its main
features are:

1. CRCs maintained for all metadata and data

2. Efficient writeable snapshots, clones as first class citizens

3. Multi-device support

4. Online resize and defragmentation

5. Compression

6. Efficient storage for small files

7. SSD optimizations and TRIM support

The design goal is to work well for a wide variety of workloads, and to
maintain performance as the filesystem ages. This is in contrast to storage
systems aimed at a particular narrow use case. BTRFS is intended to serve
as the default Linux filesystem; it is expected to work well on systems as
small as a smartphone, and as large as an enterprise production server. As
such, it must work well on a wide range of hardware.

The filesystem on disk layout is a forest of b-trees, with copy-on-write
(COW) as the update method. Disk blocks are managed in extents, with
checksumming for integrity, and reference counting for space reclamation.
BTRFS is unique among filesystems in its use of COW friendly b-trees [14]
and reference counting.

Filesystem performance relies on the availability of long contiguous ex-
tents. However, as the system ages, space becomes increasingly fragmented,
requiring online defragmentation. Due to snapshots, disk extents are poten-
tially pointed to by multiple filesystem volumes. This make defragmentation
challenging because (1) extents can only be moved after all source pointers
are updated and (2) file contiguity is desirable for all snapshots.

To make good use of modern CPUs, good concurrency is important.
However, with copy-on-write this is difficult, because all updates ripple up
to the root of the filesystem.

2

This paper shows how BTRFS addresses these challenges, and achieves
good performance. Compared with conventional filesystems that update
files in place, the main workload effect is to make writes more sequential,
and reads more random.

The approach taken in this paper is to explain the core concepts and
intuitions through examples and diagrams. The reader interested in finer
grain details can find the filesystem code publicly available from the Linux
kernel archives, and low level discussions in the kernel mailing list [1].

This paper is structured as follows: Section 2 describes related filesys-
tems. Section 3 describes basic terminology, presents the b-trees used to hold
metadata, and shows the fundamentals of copy-on-write updates. Section 4
is about the use of multiple devices, striping, mirroring, and RAID. Sec-
tion 5 describes defragmentation, which is important for maintaining even
filesystem performance. Section 6 talks about performance, and Section 7
summarizes.

3

2 Related work

On Linux, there are three popular filesystems, Ext4 [17], XFS [5], and
BTRFS [3]. In the class of copy-on-write filesystems, two important con-
temporary systems are ZFS [18], and WAFL [7, 11]. In what follows, we use
the term overwrite based filesystem to refer to systems that update files in
place. At the time of writing, this is the prevalent architectural choice.

BTRFS development started in 2007, by C. Mason. He combined ideas
from ReiserFS [8], with COW friendly b-trees suggested by O. Rodeh [14],
to create a new Linux filesystem. Today, this project has many contributers,
some of them from commercial companies, and it is on its way to becoming
the default Linux filesystem. As development started in 2007, BTRFS is
less mature and stable than others listed here.

The Fourth Extended Filesystem (EXT4) is a mostly backward compat-
ible extension to the previous general purpose Linux filesystem, Ext3. It
was created to address filesystem and file size limitations, and improve per-
formance. Initially, Linux kernel developers improved and modified Ext3
itself, however, in 2006, Ext4 was forked in order to segregate development
and changes in an experimental branch. Today, Ext4 is the default Linux
filesystem. As it is an in-place replacement for Ext3, older filesystems can
seamlessly be upgraded. Ext4 is an overwrite based filesystem, that man-
ages storage in extents. It uses an efficient tree-based index to represent files
and directories. A write-ahead journal is used to ensure operation atomic-
ity. Checksumming is performed on the journal, but not on user data, and
snapshots are not supported.

XFS is a filesystem originally developed by SGITM . Development started
in 1993, for the IRIX operating system. In 2000, it was ported to Linux, and
made available on GNU/Linux distributions. The design goal of XFS is to
achieve high scalability in terms of IO threads, number of disks, file/filesystem
size. It is an overwrite class filesystem that uses B-tree of extents to man-
age disk space. A journal is used to ensure metadata operation atomicity.
Snapshots are not supported; an underlying volume-manager is expected to
support that operation.

ZFS is a copy-on-write filesystem originally developed by SUNTM for
its Solaris operating system. Development started in 2001, with the goal of
replacing UFS, which was reaching its size limitations. ZFS was incorporated
into Solaris in 2005. ZFS includes volume-manager functionality, protects
data and metadata with checksums, and supports space-efficient snapshots.
RAID5/6 is supported with RAID-Z, which has the interesting feature of
always writing full stripes. Space is managed with variable sized blocks,

4

which are powers of two; all space for a single file is allocated with one block
size. In terms of features, ZFS is generally similar to BTRFS, however, the
internal structures are quite different. For example, BTRFS manages space
in extents, where ZFS uses blocks. BTRFS uses b-trees, where ZFS uses
traditional indirect blocks.

WAFL is the filesystem used in the NetAppTM commercial file server;
development started in the early 1990’s. It is a copy-on-write filesystem that
is especially suited for NFS [2, 16] and CIFS [9] workloads. It uses NVRAM
to store an operation log, and supports recovery up to the last acknowledged
operation. This is important for supporting low-latency file write operations;
NFS write semantics are that an operation is persistant once the client
receives an acknowledgment from the server. WAFL manages space in 4KB
blocks, and indexes files using a balanced tree structure. Snapshots are
supported, as well as RAID. Free-space is managed using a form of bitmaps.
WAFL is mature and feature rich filesystem.

ReiserFS [8] is a general purpose Linux filesystem, which inspired some
of the BTRFS architecture and design. It was built by Hans Reiser and a
team of engineers at NamesysTM . It was the first journaled filesystem to be
included in the standard Linux kernel, and it was the default filesystem on
many Linux distributions for a number of years. ReiserFS uses a single tree
to hold the entire filesystem, instead of separate trees per file and directory.
In order to reduce internal fragmentation, tail packing is implemented. The
main idea is to pack the tail, the last partial block, of multiple files into a
single block.

5

3 Fundamentals

Filesystems support a wide range of operations and functionality. A full
description of all the BTRFS options, use cases, and semantics would be
prohibitively long. The focus of this work is to explain the core concepts,
and we limit ourselves to the more basic filesystem operations: file cre-
ate/delete/read/write, directory lookup/iteration, snapshots and clones. We
also discuss data integrity, crash recovery, and RAID. Our description re-
flects the filesystem at the time of writing.

The following terminology is used throughout:

Page, block: a 4KB contiguous region on disk and in memory. This is the
standard Linux page size.

Extent: A contiguous on-disk area. It is page aligned, and its length is a
multiple of pages.

Copy-on-write (COW): creating a new version of an extent or a page at
a different location. Normally, the data is loaded from disk to memory,
modified, and then written elsewhere. The idea is not to update the
original location in place, risking a power failure and partial update.

3.1 COW Friendly B-trees

COW friendly b-trees are central to the BTRFS data-structure approach.
For completeness, this section provides a recap of how they work. For a
full account, the interested reader is referred to: [14, 12, 13, 15]. The main
idea is to use standard b+-tree construction [6], but (1) employ a top-down
update procedure, (2) remove leaf-chaining, (3) use lazy reference-counting
for space management.

For purposes of this discussion, we use trees with short integer keys, and
no actual data items. The b-tree invariant is that a node can maintain 2 to
5 elements before being split or merged. Tree nodes are assumed to take up
exactly one page. Unmodified pages are colored yellow, and COWed pages
are colored green.

Figure 1(a) shows an initial tree with two levels. Figure 1(b) shows an
insert of new key 19 into the right most leaf. A path is traversed down the
tree, and all modified pages are written to new locations, without modifying
the old pages.

6

(a) (b)

Figure 1: (a) A basic b-tree (b) Inserting key 19, and creating a path of
modified pages.

In order to remove a key, copy-on-write is used. Remove operations
do not modify pages in place. For example, Figure 2 shows how key 6 is
removed from a tree. Modifications are written off to the side, creating a
new version of the tree.

(a) (b)

Figure 2: (a) A basic tree (b) Deleting key 6.

In order to clone a tree, its root node is copied, and all the child pointers
are duplicated. For example, Figure 3 shows a tree Tp, that is cloned to tree
Tq. Tree nodes are denoted by symbols. As modifications will be applied to
Tq, sharing will be lost between the trees, and each tree will have its own
view of the data.

7

P

B C

D E G H

P Q

B C

D E G H

(a) Tree Tp (b) Tp cloned to Tq

Figure 3: Cloning tree Tp. A new root Q is created, initially pointing to the
same blocks as the original root P . As modifications will be applied, the
trees will diverge.

Since tree nodes are reachable from multiple roots, garbage collection is
needed for space reclamation. In practice, file systems are directed acyclic
graphs (DAGs). There are multiple trees with shared nodes, but there are no
cycles. Therefore, reference-counters (ref-counts) can and are used to track
how many pointers there are to tree nodes. Once the counter reaches zero, a
block can be reused. In order to keep track of ref-counts, the copy-on-write
mechanism is modified. Whenever a node is COWed, the ref-count for the
original is decremented, and the ref-counts for the children are incremented.
For example, Figure 4 shows the clone example with a ref-count indication.
The convention is that pink nodes are unchanged except for their ref-count.

P,1

B,1 C,1

D,1 E,1 G,1 H,1

P,1 Q,1

B,2 C,2

D,1 E,1 G,1 H,1

(a) Tree Tp (b) Tp cloned to Tq

Figure 4: Cloning tree Tp. A new root Q is created, initially pointing to
the same blocks as the original root P . The ref-counts for the immediate
children are incremented. The grandchildren remain untouched.

Figure 5 shows an example of an insert-key into leaf H, tree q. The nodes
on the path from Q to H are {Q,C,H}. They are all modified and COWed.

8

P,1 Q,1

B,2 C,2

D,1 E,1 G,1 H,1

P,1 Q,0

B,2 C,2

Q',1

D,1 E,1 G,1 H,1

(a) Initial trees, Tp and Tq (b) Shadow Q

P,1 Q,0

B,2 C,1

Q',1

C',1

D,1 E,1 G,2 H,2

P,1 Q,0

B,2 C,1

Q',1

C',1

D,1E,1 G,2 H,1 H',1

(c) shadow C (d) shadow H

Figure 5: Inserting a key into node H of tree Tq. The path from Q to H
includes nodes {Q,C,H}, these are all COWed. Sharing is broken for nodes
C and H; the ref-count for C is decremented.

Figure 6 shows an example of a tree delete. The algorithm used is a
recursive tree traversal, starting at the root. For each node N :

• ref-count(N) > 1: Decrement the ref-count and stop downward traver-
sal. The node is shared with other trees.

• ref-count(N) == 1 : It belongs only to q. Continue downward traver-
sal and deallocate N.

9

P,1 Q,1

B,1 C,2 X,1

D,1 E,1 G,1 Y,2 Z,1

P,1 Q,0

B,1 C,1 X,0

D,1 E,1 G,1 Y,1 Z,0

(a) Initial trees Tp and Tq (b) Deleting Tq

P,1

B,1 C,1

D,1 E,1 G,1 Y,1

(c) Removing unallocated nodes

Figure 6: Deleting a tree rooted at node Q. Nodes {X,Z}, reachable solely
from Q, are deallocated. Nodes {C, Y }, reachable also through P , have their
ref-count reduced from 2 to 1.

3.2 Filesystem B-tree

The BTRFS b-tree is a generic data-structure that knows only about three
types of data structures: keys, items, and block headers. The block header
is fixed size and holds fields like checksums, flags, filesystem ids, generation
number, etc. A key describes an object address using the structure:

struct key {
u64: objectid; u8: type; u64 offset;

}

An item is a key with additional offset and size fields:

struct item {
struct key key; u32 offset; u32 size;

}

Internal tree nodes hold only [key, block-pointer] pairs. Leaf nodes
hold arrays of [item, data] pairs. Item data is variable sized. A leaf stores
an array of items in the beginning, and a reverse sorted data array at the

10

end. These arrays grow towards each other. For example Table 7 shows
a leaf with three items {I0, I1, I2} and three corresponding data elements
{D2, D1, D0}.

block header I0 I1 I2 free space D2 D1 D0

Figure 7: A leaf node with three items. The items are fixed size, but the
data elements are variable sized.

Item data is variably sized, and various filesystem data structures are
defined as different types of item data. The type field in the key indicates
the type of data stored in the item.

The filesystem is composed of objects, each of which has an abstract
64bit object id. When an object is created, a previously unused object id is
chosen for it. The object id makes up the most significant bits of the key,
allowing all of the items for a given filesystem object to be logically grouped
together in the b-tree. The type field describes the kind of data held by an
item; an object typically comprises several items. The offset field describes
data held in an extent.

Figure 8 shows a more detailed schematic of a leaf node.

header item 0 item 1 ... item N free space data N ... data 1 data 0

btrfs_key _le32 offset _le32 size

_le64 objectid u8 type _le64 offset

u8 csum u8 fsid _le64 flags __le64 generation ...

Figure 8: A detailed look at a generic leaf node holding keys and items.

Inodes are stored in an inode item at offset zero in the key, and have a
type value of one. Inode items are always the lowest valued key for a given
object, and they store the traditional stat data for files and directories. The
inode structure is relatively small, and will not contain embedded file data
or extended attribute data. These things are stored in other item types.

11

Small files that occupy less than one leaf block may be packed into the
b-tree inside the extent item. In this case the key offset is the byte offset of
the data in the file, and the size field of the item indicates how much data
is stored. There may be more than one of these per file.

Larger files are stored in extents. These are contiguous on-disk areas that
hold user-data without additional headers or formatting. An extent-item
records a generation number (explained below) for the extent and a [disk

block, disk num blocks] pair to record the area of disk corresponding
to the file. Extents also store the logical offset and the number of blocks
used by this extent record into the extent on disk. This allows performing
a rewrite into the middle of an extent without having to read the old file
data first. For example writing 10MB into extent 0 - 64MB can cause the
creation of three different extents: 0 - 10MB, 10-20MB, 20-64MB.

Some filesystems use fixed size blocks instead of extents. Using an extent
representation is much more space efficient, however, this comes at the cost
of more complexity.

A directory holds an array of dir item elements. A dir item maps a file-
name (string) to a 64bit object id. The directory also contains two indexes,
one used for lookup, the other for iteration. The lookup index is an array
with pairs [dir item key, filename 64bit hash], it is used for satisfying
path lookups. The iteration index is an array with pairs [dir item key,

inode sequence number], it is used for bulk directory operations. The
inode sequence number is stored in the directory, and is incremented every
time a new file or directory is added. It approximates the on-disk order of the
underlying file inodes, and thus saves disk seeks when accessing them. Bulk
performance is important for operations like backups, copies, and filesystem
validation.

3.3 A Forest

A filesystem is constructed from a forest of trees. A superblock located at
a fixed disk location is the anchor. It points to a tree of tree roots, which
indexes the b-trees making up the filesystem. The trees are:

Sub-volumes: store user visible files and directories. Each sub-volume is
implemented by a separate tree. Sub-volumes can be snapshotted and
cloned, creating additional b-trees. The roots of all sub-volumes are
indexed by the tree of tree roots.

Extent allocation tree: tracks allocated extents in extent items, and
serves as an on-disk free-space map. All back-references to an ex-

12

tent are recorded in the extent item. This allows moving an extent if
needed, or recovering from a damaged disk block. Taken as a whole,
back-references multiply the number of filesystem disk pointers by two.
For each forward pointer, there is exactly one back-pointer. See more
details on this tree below.

Checksum tree: holds a checksum item per allocated extent. The item
contains a list of checksums per page in the extent.

Chunk and device trees: indirection layer for handling physical devices.
Allows mirroring/striping and RAID. Section 4 shows how multiple
device support is implemented using these trees.

Reloc tree: for special operations involving moving extents. Section 5 de-
scribes how the reloc-tree is used for defragmentation.

For example, Figure 9(a) shows a high-level view of the structure of a
particular filesystem. The reloc and chunk trees are omitted for simplic-
ity. Figure 9(b) shows the changes that occur after the user wrote to the
filesystem.

13

superblock

tree of tree roots

subvol1

data extents

extent tree checksum tree

(a)

superblock

tree of tree roots

subvol1

data extents

extent tree checksum tree

(b)

Figure 9: (a) A filesystem forest. (b) The changes that occur after modifi-
cation; modified pages are colored green.

Modifying user-visible files and directories causes page and extent up-
dates. These ripple up the sub-volume tree until its root. Changes also occur
to extent allocation, ref-counts, and back-pointers. These ripple through the
extent tree. Data and metadata checksums change, these updates modify
the checksum tree leaves, causing modifications to ripple up. All these tree
modifications are captured at the top most level as a new root in the tree of
tree roots. Modifications are accumulated in memory, and after a timeout, or

14

enough pages have changed, are written in batch to new disk locations, form-
ing a checkpoint. The default timeout is 30 seconds. Once the checkpoint
has been written, the superblock is modified to point to the new checkpoint;
this is the only case where a disk block is modified in place. If a crash occurs,
the filesystem recovers by reading the superblock, and following the point-
ers to the last valid on-disk checkpoint. When a checkpoint is initiated, all
dirty memory pages that are part of it are marked immutable. User updates
received while the checkpoint is in flight cause immutable pages to be re-
COWed. This allows user visible filesystem operations to proceed without
damaging checkpoint integrity.

Sub-volume trees can be snapshoted and cloned, and they are therefore
ref-counted. All other trees keep meta-data per disk range, and they are
never snapshoted. Reference counting is unnecessary for them.

A filesystem update affects many on-disk structures. For example, a
4KB write into a file changes the file i-node, the file-extents, checksums, and
back-references. Each of these changes causes an entire path to change in its
respective tree. If users performed entirely random updates, this would be
very expensive for the filesystem. Fortunately, user behavior normally has
a lot of locality. If a file is updated, it would be updated with lots of new
data; files in the same directory have a high likelihood of co-access. This
allows coalescing modified paths in the trees. Nonetheless, worst cases are
considered in the filesystem code. Tree structure is organized so that file
operations normally modify single paths. Large scale operations are broken
into parts, so that checkpoints never grow too large. Finally, special block
reservations are used so that a checkpoint will always have a home on disk,
guaranteeing forward progress.

Using copy-on-write as the sole update strategy has pros and cons.
The upside is that it is simple to guarantee operation atomicity, and data-
structure integrity. The downside is that performance relies on the ability
to maintain large extents of free contiguous disk areas. In addition, ran-
dom updates to a file tend to fragment it, destroying sequentiality. A good
defragmentation algorithm is required; this is described in section 5.

Checksums are calculated at the point where a block is written to disk.
At the end of a checkpoint, all the checksums match, and the checksum at
the root block reflects the entire tree. Metadata nodes record the generation
number when they were created. This is the serial number of their check-
point. B-tree pointers store the expected target generation number, this
allows detection of phantom or misplaced writes on the media. Generation
numbers and checksums serve together to verify on disk block content.

15

3.4 Extent allocation tree

The extent allocation tree holds extent-items, each describing a particular
contiguous on-disk area. There could be many references to an extent, each
addressing only part of it. For example, consider file foo that has an on-disk
extent 100KB - 128KB. File foo is cloned creating file bar. Later on, a range
of 10KB is overwritten in bar. This could cause the following situation:

File On disk extents
foo 100-128KB

bar 100-110KB, 300-310KB, 120-128KB

Figure 10: Foo and its clone bar share parts of the extent 100-128KB. Bar
has an extent in the middle that has been overwritten, and is now located
much further away on disk

There are three pointers into extent 100-128KB, covering different parts
of it. The extent-item keeps track of all such references, to allow moving
the entire extent at a later time. An extent could potentially have a large
number of back references, in which case the extent-item does not fit in a
single b-tree leaf node. In such cases, the item spills and takes up more than
one leaf.

A back reference is logical, not physical. It is constructed from the
root object id, generation id, tree level, and lowest object-id in the pointing
block. This allows finding the pointer, after a lookup traversal starting at
the root object-id.

3.5 Fsync

fsync is a operation that flushes all dirty data for a particular file to disk.
An important use case is by databases that wish to ensure that the database
log is on disk, prior to committing a transaction. Latency is important; a
transaction will not commit until the log is fully on disk. A naive fsync
implementation is to checkpoint the entire filesystem. However, that suffers
from high latency. Instead, modified data and metadata related to the
particular file are written to a special log-tree. Should the system crash, the
log-tree will be read as part of the recovery sequence. This ensures that only
minimal and relevant modifications will be part of the fsync code path.

16

3.6 Concurrency

Modern systems have multiple CPUs with many cores. Taking advantage
of this computing power through parallelism is an important consideration.

Old generations are immutable on disk, and their access does not require
locking. The in-memory under-modification pages requires protection. Since
data is organized in trees, the strategy is to use a read/write locking scheme.
Tree traversal is initiated in read mode. When a node that requires update
is encountered, the lock is converted to write mode. If a block B requires
COW, traversal is restarted. The new traversal stops at parent(B), COWs
B, modifies the parent pointer, and continues down.

Tree traversals are top-down. They start at the top, and walk down the
tree, it is unnecessary to walk back up.

17

4 Multiple Device Support

Linux has device-mapper (DMs) subsystems that manage storage devices.
For example, LVM and mdadm. These are software modules whose primary
function is to take raw disks, merge them into a virtually contiguous block-
address space, and export that abstraction to higher level kernel layers.
They support mirroring, striping, and RAID5/6. However, checksums are
not supported, which causes a problem for BTRFS. For example, consider
a case where data is stored in RAID-1 form on disk, and each 4KB block
has an additional copy. If the filesystem detects a checksum error on one
copy, it needs to recover from the other copy. DMs hide that information
behind the virtual address space abstraction, and return one of the copies.
To circumvent this problem, BTRFS does its own device management. It
calculates checksums, stores them in a separate tree, and is then better
positioned to recover data when media errors occur.

A machine may be attached to multiple storage devices; BTRFS splits
each device into large chunks. The rule of thumb is that a chunk should be
about 1% of the device size. At the time of writing 1GB chunks are used
for data, and 256MB chunks are used for metadata.

A chunk tree maintains a mapping from logical chunks to physical chunks.
A device tree maintains the reverse mapping. The rest of the filesystem sees
logical chunks, and all extent references address logical chunks. This allows
moving physical chunks under the covers without the need to backtrace and
fix references. The chunk/device trees are small, and can typically be cached
in memory. This reduces the performance cost of an added indirection layer.

Physical chunks are divided into groups according to the required RAID
level of the logical chunk. For mirroring, chunks are divided into pairs. Ta-
ble 1 presents an example with three disks, and groups of two. For example,
logical chunk L1 is made up of physical chunks C11 and C21. Table 2 shows
a case where one disk is larger than the other two.

18

logical chunks disk 1 disk 2 disk 3

L1 C11 C21

L2 C22 C31

L3 C12 C32

Table 1: To support RAID1 logical chunks, physical chunks are divided into
pairs. Here there are three disks, each with two physical chunks, providing
three logical chunks. Logical chunk L1 is built out of physical chunks C11

and C21.

logical chunks disk 1 disk 2 disk 3

L1 C11 C21

L2 C22 C31

L3 C12 C23

L4 C24 C32

Table 2: One large disk, and two small disks, in a RAID1 configuration.

For striping, groups of n chunks are used, where each physical chunk is
on a different disk. For example, Table 3 shows stripe width of four (n = 4),
with four disks, and three logical chunks.

logical chunks disk 1 disk 2 disk 3 disk 4

L1 C11 C21 C31 C41

L2 C12 C22 C32 C42

L3 C13 C23 C33 C43

Table 3: Striping with four disks, stripe width is n = 4. Three logical chunks
are each made up of four physical chunks.

At the time of writing, RAID levels 0,1, and 10 are supported. In
addition, there is experimental code by IntelTM that supports RAID5/6.
The core idea in higher RAID levels is to use chunk groups with Reed-
Solomon [10] parity relationships. For example, Table 4 shows a RAID6 con-
figuration where logical chunks L1,2,3 are constructed from doubly protected
physical chunks. For example, L1 is constructed from {C11, C21, C31, C41}.
Chunks {C11, C12} hold data in the clear, C31 = C21 ⊕ C11, and C41 =

19

Q(C21, C11). Function Q is a defined by Reed-Solomon codes such that any
double chunk failure combination would be recoverable.

physical disks

logical chunks D1 D2 P Q

L1 C11 C21 C31 C41

L2 C12 C22 C32 C42

L3 C13 C23 C33 C43

Table 4: A RAID6 example. There are four disks, {D1, D2, P,Q}. Each
logical chunk has a physical chunk on each disk. For example, the raw data
for L1 is striped on disks D1 and D2. C31 is the parity of C11 and C21, C41

is the calculated Q of chunks C11 and C12.

Replicating data and storing parity is costly overhead for a storage sys-
tem. However, it allows recovery from many media error scenarios. The
simplest case is RAID1, where each block has a mirror copy. When the
filesystem tries to read one copy, and discovers an IO or checksum error, it
tries the second copy. If the second copy also has an error, then the data is
lost. Back references have to be traced up the filesystem tree, and the file
has to be marked as damaged. If the second copy is valid, then it can be
returned to the caller. In addition, the first copy can be overwritten with
the valid data. A proactive approach, where a low intensity scrub operation
is continuously run on the data, is also supported.

There is flexibility in the RAID configuration of logical chunks. A sin-
gle BTRFS storage pool can have various logical chunks at different RAID
levels. This decouples the top level logical structure from the low-level reli-
ability and striping mechanisms. This is useful for operations such as:

1. Changing RAID levels on the fly, increasing or decreasing reliability

2. Changing stripe width: more width allows better bandwidth

3. Giving different subvolumes different RAID levels. Perhaps some sub-
volumes require higher reliability, while others need more performance
at the cost of less reliability.

The default behavior is to use RAID1 for filesystem metadata, even if
there is only one disk. This gives the filesystem a better chance to recover
when there are media failures.

20

Common operations that occur in the lifetime of a filesystem are device
addition and removal. This is supported by a general balancing algorithm
that tries to spread allocations evenly on all available disks, even as the
device population changes. For example, in Table 5(a) the system has two
disks in a RAID1 configuration; each disk holds 1

2 of the raw data. Then,
a new disk is added, see Table 5(b). The goal of the balancing code is to
reach the state shown in Table 5(c), where data is spread evenly on all three
disks, and each disk holds 1

3 of the raw data.

(a) 2 disks logical chunks disk 1 disk 2

L1 C11 C21

L2 C12 C22

L3 C13 C23

(b) disk added disk 3

L1 C11 C21

L2 C12 C22

L3 C13 C23

(c) rebalance

L1 C11 C21

L2 C22 C12

L3 C13 C23

Table 5: Device addition. Initially (a), there are two disks. In state (b),
another disk is added, it is initially empty. State (c) shows the goal: data
spread evenly on all disks. Here, physical chunks C12 and C23 were moved
to disk 3.

When a device is removed, the situation is reversed. From a 1
3 ratio

(as in Table 5(c)), the system has to move back to 1
2 ratio. If there are

unused chunks on the remaining disks, then the rebalancer can complete
the task autonomously. However, we are not always that fortunate. If data
is spread across all chunks, then trying to evict a chunk requires traversal
through the filesystem, moving extents, and fixing references. This is similar
to defragmentation, which is described in Section 5.

21

5 Defragmentation

At the time of writing, the defragmentation problem is addressed in two
separate ways. In order to defrag a file, it is read, COWed, and written to
disk in the next checkpoint. This is likely to make it much more sequential,
because the allocator will try to write it out in as few extents as possible.
The downside is that sharing with older snapshots is lost. In many cases, this
simple algorithm is sufficient. In some cases, a more sophisticated approach,
that maintains sharing, is needed.

When shrinking a filesystem, or evicting data from a disk, a relocator is
used. This is an algorithm that scans a chunk and moves the live data off of
it, while maintaining sharing. Relocation is a complex procedure, however,
and disregarding sharing could cause an increase in space usage, at the point
where we were trying to reduce space consumption.

The relocator works on a chunk by chunk basis. The general scheme is:

1. Move out all live extents (in the chunk)

2. Find all references into a chunk

3. Fix the references while maintaining sharing

The copy-on-write methodology is used throughout; references are never
updated in place. Figure 11 shows a simple example. One data extent,
colored light blue, needs to be moved.

superblock

tree of tree roots

subvol1

X Y

A B CD E

Figure 11: Do a range lookup in the extent tree, find all the extents located
in the chunk. Copy all the live extents to new locations.

22

In order to speed up some of the reference tracking, we follow back-
references to find all upper level tree blocks that directly or indirectly refer-
ence the chunk. The result is stored in a DAG like data structure called a
backref cache, see Figure 12.

tree of tree roots

subvol1

X Y

Figure 12: Upper level nodes stored in a backref cache.

A list of sub-volume trees that reference the chunk from the backref cache
is calculated; these trees are subsequently cloned, see Figure 13. This op-
eration has two effects: (1) it freezes in time the state of the sub-volumes
(2) it allows making off-to-the-side modifications to the sub-volumes while
affording the user continued operation.

superblock

tree of tree roots

subvol1

X Y

reloc

A B CD E

Figure 13: Reloc trees. In this example, sub-volume1 is cloned. Changes
can be made to the clone.

Next, all the references leading to the chunks are followed, using back-
references. COW is used to update them in the reloc trees, see Figure 14.

23

superblock

tree of tree roots

subvol1

X Y

reloc

Y

A B C D E C D

Figure 14: Fix references in the reloc tree using COW.

The last step is to merge the reloc trees with the originals. We traverse
the trees. We find sub-trees that are modified in the reloc tree but where
corresponding parts in the fs tree are not modified. These sub-trees in the
reloc tree are swapped with their older counterparts from the fs tree. The
end result is new fs-trees. Finally, we drop the reloc trees, they are no longer
needed. Figure 15 depicts an example.

superblock

tree of tree roots

subvol1

X Y

A B ECD

Figure 15: Merge reloc trees with corresponding fs trees, then drop the reloc
trees.

24

The new filesystem DAG is now in memory, and has the correct sharing
structure. It takes the same amount of space as the original, which means
that filesystem space usage stays the same. Writing out the DAG to disk can
be done onto contiguous extents resulting in improved sequentiality. Once
that is done, the old chunk can be discarded.

25

6 Performance

There are no agreed upon standards for testing filesystem performance.
While there are industry benchmarks for the NFS and CIFS protocols, they
cover only a small percent of the workloads seen in the field. At the end of
the day, what matters to a user is performance for his particular applica-
tion. The only realistic way to check which filesystem is the best match for
a particular use case, is to try several filesystems, and see which one works
best.

As we cannot cover all use cases, we chose several common benchmarks,
to show that BTRFS performs comparably with its contemporaries. At
the time of writing, the major Linux filesystems, aside from BTRFS, are
XFS and Ext4. These are significantly more mature systems, and we do
not expect to perform orders of magnitude better. Our contribution is a
filesystem supporting important new features, such as snapshots and data
checksums, while providing reasonable performance under most workloads.

Two storage configurations were chosen: a hard disk, and an SSD.

6.1 Hard disk

All of the hard disk tests where run on a single socket 3.2 Ghz quad core
x86 processor with 8 gigabytes of ram on a single SATA drive with a 6gb/s
link.

The first test was a Linux kernel make, starting from a clean tree of
source files. A block trace was collected, starting with the make -j8 com-
mand. This starts eight parallel threads that perform C compilation and
linking with gcc. Figure 16 compares throughput, seek count, and IOps
between the three filesystems. Ext4 has slightly higher throughput than
BTRFS and XFS, averaging a little less than twice as much throughput.
All filesystems maintain about the same seeks per second, with BTRFS on
average seeking less. The spike at the beginning of the run for BTRFS is
likely to do with the initial bit of copy-on-writing that bounces between dif-
ferent block groups. Once additional block groups are allocated to deal with
the meta-data load, everything smooths out. The IO operations per second
are a little closer together, but again Ext4 wins out overall. The compile
times are all within a few seconds of each other. The kernel compile test
tends to be a bit meta-data intensive, and it is a good benchmark for an
application that has a heavy meta-data load. The overall picture is that the
filesystems are generally on par.

26

Figure 16: A Kernel compile, all filesystems exhibit similar performance.

The FFSB test attempts to mimic a mail server. It creates 500000 files
in 1000 directories all ranging from 1KB to 1MB in size, weighted more
towards 32KB size or less. Once it creates the files, it spends 300 seconds
doing either creates, deletes or reading entire files, all with a block size of
4KB. The test weighs reading higher than creating, and creating higher than
deleting in order to try and represent how a mail server would work. The
test can be modified to use any number of threads, for simplicity, we used
one thread. FFSB measures throughput and transactions per second, shown
in 17, and 18.

27

Figure 17: Throughput during an FFSB mail server run. XFS uses the least
bandwidth, Ext4 uses the most, and BTRFS is in the middle.

Figure 18: Transactions per second in the FFSB. BTRFS shows comparable
performance.

28

This workload favors Ext4, with BTRFS trailing slightly behind and
XFS performing at half the speed of BTRFS.

The final test deals with write performance. Tiobench writes a given size
to a file with a specified number of threads. We used a 2000MB file and ran
with 1, 2, 4, 8, and 16 threads. Both tests show BTRFS running the fastest
overall, and in the random case dominating the other two file systems. The
random case is probably much better for BTRFS due to its write anywhere
nature, and also because we use range locking for writing instead of a global
inode lock which makes it do parallel operations much faster. Performance
declines somewhat with additional threads due to contention on the shared
inode mutex.

Figure 19: TIO benchmark, sequential.

29

Figure 20: TIO benchmark, random

These are just three tests and by no means exercise all the various ways
one can use a filesystem. Hopefully, they are representative of the ways most
file systems are used. In all these cases, BTRFS was in the same ballpark
as its more mature counterparts.

6.2 Flash disk

Flash disks are becoming ubiquitous, replacing traditional hard disks in
many modern laptops. Smartphones and embedded devices running Linux
commonly use flash disks as well. This has motivated an ongoing effort to
optimize BTRFS for Solid State Drives (SSDs). Here, we describe some of
this work; the code is now part of Linux kernel 3.4. The hardware used was
a FusionIOTM device.

Figure 21 depicts performance for the Linux 3.3 kernel, with BTRFS
creating 32 million empty files. The graph was generated by Seekwatcher [4],
a tool that visualizes disk head movement. In the top graph X axis is
time, the Y axis is disk head location, reads are colored blue, and writes
are colored green. The bottom graph tracks throughput. The filesystem
starts empty, filling up with empty files as the test progresses. The pattern
emerging from the graph is a continuous progression, writing new files at the
end. File metadata is batched and written sequentially during checkpoints.

30

Checkpoints take place every thirty seconds. They incur many random
reads, appearing as a scattering of blue dots. The reads are required to
access the free space allocation tree, a structure too big to fit in memory.
The additional disk seeks slow down the system considerably, as can be seen
in the throughput graph. The reason writes do not progress linearly is that
checkpoints, in addition to writing new data, also free up blocks; these are
subsequentally reused.

Figure 21: Performance in the kernel 3.3. File creation rate is unsteady,
throughput is a series of peaks and valleys.

In order to improve performance, the number of reads had to be reduced.
The core problem turned out to be the way the Linux virtual memory (VM)
system was used. The VM assumes that allocated pages will be used for
a while. BTRFS, however, uses many temporary pages due to its copy-on-
write nature, where data can move around on the disk. This mismatch was
causing the VM to hold many out of date pages, reducing cache effectiveness.
This in turn, caused additional paging in the free space allocation tree, which

31

was thrown out of cache due to cache pressure. The fix was for BTRFS to try
harder to discard from the VM pages that have become invalid. Figure 22
shows the resulting performance improvement. The number of reads is much
reduced, and they are concentrated in the checkpoint intervals. Throughput
is steady at about 125MB/sec, and the rate of file creation is 150,000 files
per second.

Figure 22: Performance in the kernel 3.4, with 4KB metadata pages.

Testing showed that using larger page sizes was beneficial on flash. Fig-
ure 23 shows the effects of using a 16KB metadata page size. The rate of
file creation is 170,000 files per second. Using a larger metadata page size is
also important for RAID5/6 integration, as it allows putting one page on a
single RAID stripe.

32

Figure 23: Performance in the kernel 3.4, with 16KB metadata pages.

On the same hardware, XFS performed 115,000 files/second, and Ext4
performed 110,000 files/second. We believe this makes the filesystems com-
parable.

33

7 Summary

BTRFS is a relatively young Linux filesystem, working its way towards
achieving default status on many Linux distributions. It is based on copy-
on-write, and supports efficient snapshots and strong data integrity.

As a general purpose filesystem, BTRFS has to work well on a wide
range of hardware, from enterprise servers to smartphones and embedded
systems. This is a challenging task, as the hardware is diverse in terms of
CPUs, disks, and memory.

This work describes the main algorithms and data layout of BTRFS. It
shows the manner in which copy-on-write b-trees, reference-counting, and
extents are used. It is the first to present a defragmentation algorithm for
COW based filesystems in the presence of snapshots.

8 Acknowledgments

We would like to thank Zheng Yan, for explaining the defragmentation al-
gorithm, and Valerie Aurora, for an illuminating LWN paper on BTRFS.

Thanks is also due to the many BTRFS developers who have been work-
ing hard since 2007 to bring this new filesystem to the point where it can
be used by Linux customers and users.

Finally, we would like to thank friends who reviewed the drafts, catching
errors, and significantly improving quality: Gary Valentin and W.W..

34

References

[1] BTRFS mailing list. http://www.mail-archive.com/-

linux-btrfs@vger.kernel.org/index.html.

[2] B. Callaghan, B. Pawlowski, and P. Staubach. NFS Version 3 Protocol
Specification. RFC 1813, IETF, June 1995.

[3] C. Mason. BTRFS. http://en.wikipedia.org/wiki/Btrfs.

[4] C. Mason. Seekwatcher, 2008.

[5] D. Chinner. XFS. http://en.wikipedia.org/wiki/XFS.

[6] D. Comer. Ubiquitous B-Tree. ACM Comput. Surv., 11(2):121–137,
1979.

[7] D. Hitz, J. Lau, and M. Malcolm. File System Design for an NFS File
Server Appliance. In USENIX, 1994.

[8] H. Reiser. ReiserFS. http://http://en.wikipedia.org/wiki/ReiserFS.

[9] I. Heizer, P. Leach, and D. Perry. Common Internet File System Pro-
tocol (CIFS/1.0). Draft draft-heizer-cifs-v1-spec-00.txt, IETF, 1996.

[10] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields.
Journal of the Society for Industrial and Applied Mathematics, 8:300–
304, 1960.

[11] J. Edwards, D. Ellard, C. Everhart, R. Fair, E. Hamilton, A. Kahn, A.
Kanevsky, J. Lentini, A. Prakash, K. Smith, and E. Zayas. Flexvol:
flexible, efficient file volume virtualization in wafl. In USENIX An-
nual Technical Conference, pages 129–142, Berkeley, CA, USA, 2008.
USENIX Association.

[12] O. Rodeh. B-trees, shadowing, and clones. Technical Report H-248,
IBM, November 2006.

[13] O. Rodeh. B-trees, shadowing, and range-operations. Technical Report
H-248, IBM, November 2006.

[14] O. Rodeh. B-trees, Shadowing, and Clones. ACM Transactions on
Storage, Feb 2008.

35

[15] O. Rodeh. Deferred Reference Counters for Copy-On-Write B-trees.
Technical Report rj10464, IBM, 2010.

[16] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M.
Eisler, and D. Noveck. NFS version 4 Protocol. RFC 3010, IETF,
December 2000.

[17] T. Tso. Fourth Extended Filesystem (EXT4).
http://en.wikipedia.org/wiki/Ext4.

[18] V. Henson, M. Ahrens, and J. Bonwick. Automatic Performance Tuning
in the Zettabyte File System. In File and Storage Technologies (FAST),
work in progress report, 2003.

36

