
Mobile Device Fingerprinting Considered Harmful for
Risk-based Authentication

Jan Spooren, Davy Preuveneers, Wouter Joosen
iMinds-DistriNet

Department of Computer Science, KU Leuven
Leuven, Belgium

{jan.spooren, davy.preuveneers, wouter.joosen}@cs.kuleuven.be

ABSTRACT
In this paper, we present a critical assessment of the use
of device fingerprinting for risk-based authentication in a
state-of-practice identity and access management system.
Risk-based authentication automatically elevates the level
of authentication whenever a particular risk threshold is ex-
ceeded. Contemporary identity and access management sys-
tems frequently leverage browser-based device fingerprints
to recognize trusted devices of a certain individual. We ana-
lyzed the variability and the predictability of mobile device
fingerprints. Our research shows that particularly for mo-
bile devices the fingerprints carry a lot of similarity, even
across models and brands, making them less reliable for risk
assessment and step-up authentication.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—
Authentication

General Terms
Security, Measurement, Experimentation

Keywords
Authentication, Device Fingerprinting, Risk, Fraud Detec-
tion

1. INTRODUCTION
In recent years, the Internet has seen a steady growth and

diversification in services offered, yet the predominant mode
of authentication is still username and password authentica-
tion. This mechanism is often perceived as annoying by the
user, because it tends to break the flow of the application
and requires the user to remember or store a multitude of
different strong passwords. Moreover, its strength is chal-
lenged by the advances made in brute-force and dictionary
attack tools [15], combined with password databases leaked
by hackers.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
2015 European Workshop on System Security (EuroSec 2015)
Copyright 2015 ACM 978-1-4503-3479-2 ...$15.00.
http://dx.doi.org/10.1145/2751323.2751329

To limit the burden of authentication, a number of influen-
tial web sites such as Facebook and LinkedIn have therefore
adopted an approach of using long-lived sessions, based on
session cookies. Typically, these sessions can last for weeks
and can be active concurrently (when a user is logged on
using different machines – such as when using a desktop
computer as well as a smart phone to access a web site).
However, the gained usability of these long-lived sessions is
offset to an increased risk of session hijacking [19], which
requires additional mitigation to address this risk. For ex-
ample, in the case of Facebook, users will typically be re-
quired to re-authenticate or identify friends in photos when
the session is resumed from an unusual location.

Following this trend, there has been a recent interest in the
Identity and Access Management (IAM) industry in using
risk-based and context-based authentication [6] mechanisms
for strengthening the level of trust in user sessions, thus en-
hancing usability by requiring fewer re-authentications. The
concept is to use extra, ‘contextual’ information about the
session, the user and his device to strengthen the level of au-
thentication. The latter is typically utilizing browser finger-
printing (which is commonly perceived as a privacy threat
[17]) for the ‘benign’ purpose of authentication. Browser
fingerprinting has proven to be quite impressive in uniquely
identifying a user [18, 8]: one could (and some actors do)
believe that this technique can be seamlessly applied in the
mobile ecosystem of smartphones and tablets.

In this paper, we present a critical assessment of the prac-
tice of using device fingerprinting for risk-based authentica-
tion purposes and formulate following conclusions:

1. We show that – contrary to web browsers on desktop
and laptop computers – the fingerprints taken from
mobile devices are far from unique.

2. We argue that the use of device fingerprint information
does not constitute a suitable authentication mecha-
nism, even if the fingerprints were unique.

In section 2, we review related work and the current state
of practice in risk-based context-based authentication. We
formulate our research hypothesis about the weakness of mo-
bile device fingerprints in section 3, and discuss our approach
on how we tested the hypothesis in a field study with partic-
ipants fingerprinting their mobile devices. In section 4, we
evaluate the results on the predictability of browser-based
fingerprints and the study’s validity threats; in section 5,
we discuss mitigation techniques to strengthen risk-based
authentication. Finally, in section 6 we present our con-
clusions on the practice of using device fingerprinting and
propose directions for further research.

Authenticate

Username &
Password

Device
Fingerprint

Network

User
Behavior

Risk
Engine Success

FailureStep-up Authentication

SMS Email e-ID

Figure 1: Risk-based step-up authentication

2. RELATED WORK
Security risks with password-based logins have directed

efforts in academia and industry towards looking for both
stronger and more user-friendly authentication mechanisms.
Initial efforts to aim for zero-interaction authentication [4]
suggested the use of an authentication token to be worn by
the user. However, practical and technical challenges have
caused the idea to never really take off. It requires dedicated
hardware to be worn by the user, as well as hardware to
detect the presence of such an authentication token. More-
over, proximity-based authentication systems frequently suf-
fer from vulnerability to relay-attacks [13, 2, 11].

Research into fingerprinting as a means of authentication
was fueled by the Panopticlick [8] paper by the Electronic
Frontier Foundation. They demonstrated the uniqueness
of a browser among more than 4 million users who visited
the Panopticlick website. Browser fingerprinting techniques
are popular both with advertising and anti-fraud companies.
Indeed, the FPDetective [1] project showed that about 1.5%
of the top 10,000 websites is tracking individuals.

In the area of smartphones, various researchers explored
the use of embedded sensors to uniquely identify a mobile
device. In [5, 3], the authors investigated how the sensors on
a smartphone can be used to construct a reliable hardware
fingerprint of a phone. They analyzed whether the frequency
response of the speakerphone-microphone loopback and the
device-specific accelerometer calibration error have sufficient
entropy to uniquely identify a device. Similar device finger-
printing and entropy analysis work was carried out with the
digital camera [14, 12], the 802.11 wireless network [16] and
acoustic background audio [21].

DARPA’s Active Authentication program [10] explores
different ways for a continuous authentication solution to
make an informed decision on the identity of the user based
on traits that can be observed through how people inter-
act with the world (e.g. keystroke patterns, mouse and eye
movements, cognitive aspects).

Similarly, the Identity and Access Management industry
has been adopting context-based, risk-based authentication
practices: Products such as RSA SecureID [9], CA Risk Au-
thentication [7] and PortalGuard [20] have claimed support
for this for a number of years now, although it is not always
clear which properties are used to derive context from, nor
which algorithms are used to build a trust score in an au-
thenticated session. This makes evaluation of the strength
of such context- and risk-based authentication solutions dif-
ficult.

Figure 2: Collecting browser-based fingerprints on
mobile devices with mFinger

3. HYPOTHESIS AND METHODOLOGY
While device fingerprinting appears to work relatively well

for desktop machines and laptops, we suspected that it might
be considerably less effective for mobile phones: Due to the
App Isolation model used by most mobile phone and tablet
operating systems, installing new apps will, for example, not
change the font list available in the phone’s web browser.
For the same reason, mobile phone browsers usually do not
feature a browser ‘plug-in’ model. Consequently, also the
browser’s UserAgent string will be defined mainly by the
version of the browser.

In the remainder of this section, we will discuss our ap-
proach on how we investigated the hypothesis that browser-
based device fingerprints are hardly unique and therefore
a weak component for risk-based authentication in a more
homogeneous ecosystem of mobile devices.

3.1 Approach
To test this hypothesis, we created an experimental setup

using the DeviceIdMatch authentication module from Forge-
Rock’s OpenAM 12 identity and access management system.
This module is typically used used in an authentication chain
with a Risk Engine and a Step-up Authentication system, re-
quiring the user to authenticate with a stronger mechanism
when the trust in the current session is deemed too low.
This is illustrated in Figure 1.

To assess the adequacy of the fingerprint algorithm, we
configured our own fingerprinting server – called mFinger1

and shown in Figure 2 – with OpenAM’s fingerprinting code.
We invited a number of test users to visit the page using
mobile phones and tablets. The test subjects were requested
to enter their device brand and model and click a Register
button. To prevent duplicate entries, the web page set a
cookie so that multiple fingerprint submissions generated
from the same device and web browser could be recognized
as such.

3.2 Fingerprint collection
OpenAM’s device fingerprinting technique is similar to

the techniques used by advertisement brokers to track users
across different web sites [18], where it is quite successful,
in that such a browser fingerprint is unique enough to dis-
tinguish individual users with a high probability. Looking

1https://pang.cs.kuleuven.be/mfinger/

Fingerprint # Distinct Max. Identical
Component Values Values

screen dim. + color depth 27 17
timezone 2 58

installedPlugins 4 50
vendor 4 40

installedFonts 7 37
browserLanguage 3 53
appMinorVersion 2 53
systemLanguage 3 53

cpuClass 2 53
userLanguage 3 53

userAgent 47 5
appName 1 59

appCodeName 1 59
appVersion 47 5

buildID 3 56
platform 7 42

oscpu 2 56
product 1 59

productSub 3 50
language 10 13

Table 1: Number of distinct values found per finger-
printing component, out of 59 records

closer at OpenAM’s implementation reveals that it harvests
a number of attributes from the browser to create a device
fingerprint, ranging from the screen’s resolution, the user
agent of the browser, the language, the timezone, up to lists
of installed plugins and supported fonts. The collected com-
ponents are shown in the left column of Table 1.

3.3 Fingerprint matching
OpenAM’s fingerprint matching algorithm is score and

threshold-based. If a particular attribute in the fingerprint
does not match, a configurable number of penalty points is
added to a global score and if a certain threshold is passed,
the matching fails. We noticed that some attributes are
ignored in the matching algorithm. The algorithm only
uses the following attributes, with in between brackets the
penalty points in case of a mismatch:

• Screen dimensions and color depth (penalty points 50)

• Installed plugins (penalty points 100)

• Supported fonts (penalty points 100)

• Timezone (penalty points 100)

• User agent (penalty points 100)

• Geolocation (penalty points 100)

For a valid fingerprint only two attributes (the screen details
and user agent) are mandatory, the other ones are optional.
However, if a previously stored fingerprint contains a partic-
ular optional attribute, then follow-up submissions should
include the attribute as well. Otherwise the comparison
fails. Certain attributes, such as the timezone and screen
details, require an exact match, whereas the user agent is
first stripped from all version numbers before it is compared.
The geolocation, if available, has an allowed matching range
of 100 miles. For the plugin and font lists, up to 5 and
maximum 10% of the entries can differ before the matching
fails.

4. EVALUATION
In this section, we present a critical assessment of using

device fingerprinting for risk-based authentication.

Brand Occurrences Models
Samsung 14 12

Apple 9 7
LG 7 2

Nokia 5 5
HTC 5 2

Motorola 5 1
Google 4 3

Sony 4 2
Other 6 5

Table 2: Mobile device brands and models

Model Screen resolution
iPhone 4 480×320×32
iPhone 4s 480×320×32
iPhone 5 568×320×32
iPhone 5s 568×320×32
iPhone 6 667×375×32

Table 3: iPhone screen dimensions

4.1 Statistical breakdown of fingerprints
Out of the 69 respondents whose device fingerprints we

collected during a period of one week, 1 duplicate fingerprint
was removed, which had an identical cookie and was there-
fore a resubmitted fingerprint. Additionally, 9 records were
removed, which appeared to be desktop or laptop comput-
ers, on which our study did not focus – leaving 59 records.

The brands of mobile devices detected and the different
models encountered per brand are listed in Table 2. Table 1
lists the individual fingerprint components collected, as well
as the number of unique values that were encountered (out
of 59 fingerprinted devices) and the maximum number of
identical values observed per component. We can see that,
for example, for screen dimension and color depth, 27 dif-
ferent values were observed and the most popular value was
shared by 17 different devices.

Looking at these findings, a number of components, such
as appName, appCodeName and product appear not very
useful: they returned the same value for all of our finger-
printed devices. The most useful fingerprinting components
appear to be the userAgent and appVersion. However, the
appVersion component is consistently identical to the user-
Agent, stripped of the Mozilla/ head. Therefore, it does
not introduce any additional entropy. In section 4.2, we
take a closer look at the userAgent and Screen dimensions
components.

4.2 Similarity of fingerprints
While a device fingerprinting technique is meant to uniquely

identify a particular device, in the 59 collected fingerprints
we found identical fingerprints for an iPhone 4 and iPhone
4s (except for the language component of the browser’s nav-
igator object – which is collected, but ignored by OpenAM’s
fingerprint matching) as well as for an iPhone 5 and 5s. The
userAgent component of this duplicate fingerprint is shown
here:

Mozilla/5.0 (iPhone; CPU iPhone OS 8 1 2 like Mac OS X) AppleWebKit/600.1.4

(KHTML, like Gecko) Version/8.0 Mobile/12B440 Safari/600.1.4

We also observed that the recorded iPhone 5, 5s and 6
products featured identical fingerprints (including the user-
Agent pictured above), except for the screen dimensions and
the version numbers in the userAgent and appVersion fields.
Both the screen dimensions (see Table 3) and version num-

Operating System Font list
Android cursive; monospace; serif; sans-serif; fantasy; Arial; Courier; Courier New; Georgia; Tahoma; Times; Times

New Roman; Verdana;

iOS cursive; monospace; serif; sans-serif; fantasy; Arial; Arial Rounded MT Bold; Courier; Courier New; Georgia;
Papyrus; Times; Times New Roman; Trebuchet MS; Verdana;

Windows Phone cursive; monospace; serif; sans-serif; fantasy; Arial; Comic Sans MS; Courier New; Georgia; Lucida Console;
Tahoma; Times New Roman; Trebuchet MS; Verdana;

Table 4: Reported fonts per operating systems

bers are quite predictable and well-known.
We also recorded 5 Motorola Moto G devices: two of these

devices featured a fully identical fingerprint. Another pair of
devices was identical except for the (easily guessable and by
OpenAM ignored) navigator.language string. Again, the dif-
ference between the userAgent and appVersion components
in these two pairs was only in the version numbers. The
two different userAgent components are shown here (differ-
ent parts indicated by boxes):

Mozilla/5.0 (Linux; Android 4.4.4; XT1032 Build/KXB21.14-L1. 40) Ap-

pleWebKit/537.36 (KHTML, like Gecko) Chrome/40.0.2214.89 Mobile Sa-
fari/537.36

Mozilla/5.0 (Linux; Android 4.4.4; XT1039 Build/KXB21.14-L1. 56) Ap-

pleWebKit/537.36 (KHTML, like Gecko) Chrome/40.0.2214.89 Mobile Sa-

fari/537.36

Furthermore, 3 out of 4 HTC One S devices featured similar
fingerprints: two devices fully identical, one device differing
only in the language string, and 4 out of 5 LG Nexus 5 de-
vices featured similar fingerprints: two were fully identical
and two other differed only in the navigator object’s lan-
guage string. The userAgent and appVersion components
were fully identical for these 4 devices.

Although the data collected was very limited, our hypoth-
esis seems to be confirmed: For certain brands and models
of mobile devices, the device fingerprint has so little entropy
that the added value for its use in risk assessment is ques-
tionable.

4.3 Predictability of fingerprints
The above observations beg the question how much infor-

mation is needed to actually fully reconstruct the complete
fingerprint of a mobile device. Assuming that a user’s de-
vice brand and model is known to an attacker; what is the
probability of guessing the device’s fingerprint? Looking at
the individual components:

Screen dimensions and color depth: These attributes
are fixed for mobile devices and can be looked up online in
the hardware specifications. They are therefore fully pre-
dictable (100%)

Installed plugins: with the exception of 4 out of 41 An-
droid devices and 6 out of 9 iOS devices that reported a
Flash and/or Quicktime plugin, all of the other devices re-
ported no plugins. The data from our limited study indicates
a predictability of 88%.

Timezone and Geolocation: The timezone of a user is
determined by her country of residence and therefore fully
predictable (100%). Similarly, the geolocation would easily
be guessed or obtained in a targeted attack.

For the Installed Fonts, we found a strong correlation
with the browser/operating system. After clustering the
supported fonts reported per operating system, we find that:

• Android: 93% of Android devices (or ≈ 69% of all mo-
bile devices fingerprinted) used an identical set of 13
fonts

• iOS: All iOS devices fingerprinted (≈ 15% of all mobile
devices fingerprinted) used an identical set of 15 fonts

• Windows Phone: All Windows Phone devices (≈ 12%
of total devices) used an identical set of 14 fonts

See Table 4 for more details. As a result, if one knows the
OS, one can predict the font list exactly in about 91% of the
cases. Knowing the brand and model of a mobile device,
typically implies knowledge of the operating system2.

The set of browserLanguage, systemLanguage and
userLanguage is only used on Windows Phone devices and
are to a high degree interdependent. The language com-
ponent is used by all devices, but is highly predictable in
a targeted attack. The vendor, appMinorVersion, cpu-
Class, platform and productSub components are fully
determined by the device brand and model and are fully
predictable. However, none of these components are actu-
ally used by the OpenAM fingerprint matching algorithm.

The userAgent attribute is more complicated in the sense
that its format is structured, but the device manufacturers
or software providers can choose which content and fields
they add. The structure in EBNF syntax is as follows:

user-agent = server-val *(" " server-val)
server-val = product / comment
product = token ["/" product-version]
product-version = token
comment = "(" ctext ")"
ctext = <any TEXT excluding "(" and ")">

Many mobile device brands include the device identifier as
part of the user agent string. See the XT1032 Build/KXB21.14-
L1.40 example used before, which can be traced back to a
Motorola Moto G device. We collected about 6000 anony-
mous user agent strings for mobile devices from different
log files. Several of these strings are identical except for
some version numbers (OS or browser version, build number,
etc.). We then used this list to check whether we could pre-
dict the userAgent attribute provided by the participant’s
mobile devices. Taking into consideration that OpenAM
ignores version numbers by default during the fingerprint
matching phase, the results are as follows:

• ≈ 41% of the user agents could be predicted when
excluding version numbers

• An additional 24% could be predicted if the used browser
is known up-front (some devices have multiple browsers)

• The remaining 35% of mispredictions were mostly due
to unknown (rare or brand new) devices, or a different
language combination (e.g. nl-be rather than en-us)

2We are assuming that the use of mobile OS replacements,
such as CyanogenMod and Firefox OS is negligible.

In our assessment we did not take into consideration the pop-
ularity of mobile devices. We expect a higher prediction rate
would be possible as the devices used by our participants is
somewhat unbalanced (i.e. more uncommon devices such as
smartwatches and Maemo/MeeGo mobile phone variants).
Furthermore, the dataset we used to predict contained 6000
user agents of mobile devices (i.e. smartphones and tablets
as classified with UADetector3). At http://fingerbank.org
a more extensive dataset with devices and user agents is
available, but it contains atypical user agent entries (such as
strings starting with Windows Phone Search). These would
need to be filtered before the dataset is used for prediction.

4.4 Validity threats
In this section, we briefly judge the quality of the empirical

study and consider threats to the validity of the results in
the previous section.

• Conclusion validity : In our field study, we only col-
lected 59 mobile device fingerprints. Although this set
contained many of the most common and popular de-
vices, a larger sample set would have given us statisti-
cally more significant results.

• Internal validity : The fingerprinting and matching al-
gorithms were based on a limited set of browser at-
tributes. Some of these had a high predictability due
to the localized target audience that participated in
our study (e.g. the timezone attribute).

• External validity : We must be careful with generaliz-
ing our results and claiming the validity in other sit-
uations, as we chose a particular fingerprinting algo-
rithm as provided by a contemporary identity and ac-
cess management system, i.e. ForgeRock’s most recent
OpenAM 12 platform. Other fingerprint algorithms
leverage more advanced components, such as HTML5
canvas fingerprints. A fairly extensive overview of fin-
gerprints is available online at http://BrowserSpy.dk.

Even with the above reflections, there are a few other con-
cerns to be taken into consideration why device fingerprints
are not the holy grail for risk-based authentication. These
are discussed in the next section.

5. DISCUSSION
In this section, we will provide some more general critical

reflections about the use of browser-based fingerprints for
risk-based authentication.

5.1 Attack model and threat analysis
Clearly, for mobile devices, device fingerprinting does not

provide enough entropy to uniquely identify the device. How-
ever, the practice of using device fingerprints as an authen-
tication mechanism is even more fundamentally flawed: it
is built from information which can easily be obtained and
then reproduced. It suffices for an adversary to lure a user
into visiting a web page controlled by the adversary to obtain
the browser’s fingerprint. After this, impersonating a user
by simulating the user’s browser becomes trivial. The au-
thentication mechanism is therefore reduced to the secrecy
of the fingerprinting algorithm and of the individual com-
ponents of the fingerprint, both of which can be obtained

3http://uadetector.sourceforge.net

from a regular authenticated session with the web site un-
der attack. It is therefore our opinion that using device con-
text is not a good authenticator. At best, it can be used for
‘negative authentication’, i.e., for determining that a session
might be compromised.

As mentioned, many of the fingerprints observed for mo-
bile phones were identical. Where deviations within a partic-
ular mobile phone make or model were observed, the differ-
ence was typically in the version numbers stored in collected
fingerprint components. Since, for example, the userAgent
string is by default sent to all web servers, it suffices to have
a typical web server log file to obtain all commonly used
version numbers for a particular make and model of phone.

In practice, context-based authentication systems need
some flexibility in the evaluation of version numbers, since
devices get updated as part of their normal life cycle. In
fact, the OpenAM script which compares fingerprints fea-
tures a configuration setting config.ignoreVersion which
causes the version numbers in the userAgent string to be
ignored. This makes the situation even worse.

Since the Panopticlick initiative [8] by EFF, users have be-
come more aware of web tracking and how it affects their pri-
vacy. Consequently, there is some pressure on web browser
developers to make tracking users more difficult, such as by
removing unnecessary sources of entropy in the browser or
by deliberately introducing randomness in properties typi-
cally used for fingerprinting [17]. However, any initiative to
make user tracking less effective will inevitably also make
device fingerprinting less effective. An ‘arms race’ on fin-
gerprinting techniques between developers of browsers or
privacy-plugins and ad-broker companies would make this
kind of authentication even more cumbersome, since the al-
gorithms used would need to be updated constantly.

Even more troublesome is the use case of users who install
plug-ins to deliberately confuse tracking strategies. These
plug-ins would trigger web applications using ‘context-based
authentication’ to always boost-up their required authen-
tication mechanism (e.g., to text message based one-time
passwords). For these users, ‘context-based authentication’
would imply a much less fluent authentication, entirely con-
trary to the goals and promises of context-based authenti-
cation.

5.2 Recommendations and road ahead
As mentioned in section 1, the concept of contextual au-

thentication techniques is to use the extra ‘contextual’ in-
formation about the session, the user or the user’s device
for authentication purposes. In this paper we have been
focusing on the device contextual information.

Using session context information, such as the used IP-
address could marginally improve the confidence in the ses-
sion, however user behavior fingerprints could be more use-
ful: Contrary to device fingerprints, user behavior (i.e., the
way the user operates the web site) is not as easily obtain-
able to adversaries as a device fingerprint. This would re-
quire behavioral fingerprinting, typically using unsupervised
machine learning techniques, such as outlier detection.

Since different user behavior is not as apparent and as
clearly detectable as a changed device, this type of finger-
printing would most likely require a Confidence function
C(s,t), modeling the level of confidence in the current user
session s at time t. It seems natural to give this confidence
function an exponential decay with a confidence half-life λ,

as long as non-typical behavior is recorded. A threshold
confidence level would then be defined below which extra
authentication would be required. Such a threshold level
could be depending on the type of actions performed, re-
quiring a higher level of confidence for actions that involve a
higher cost or higher risk level. Investigating the feasibility
of this technique is subject for future research.

6. CONCLUSION
In this work, we evaluated the device fingerprinting ap-

proach used by OpenAM version 12, focusing specifically on
mobile devices. We found that the entropy of typical mobile
device fingerprints is too small to be used for authentica-
tion purposes. The device fingerprints are quite predictable
knowing the user’s mobile device make and model. In fact,
even with the limited number of devices investigated, sev-
eral duplicate fingerprints were found. More problematic
even is the fact that these fingerprinting components can be
obtained easily by adversaries, making device fingerprinting
unsuitable for authentication purposes.

Possibly, user behavior fingerprinting has more potential,
since it is not as easily available to adversaries as are device
fingerprints. In future work, we will further explore the ap-
plicability of behavior fingerprinting for context-based, risk-
based authentication purposes.

Acknowledgment
This research is partially funded by the Research Fund KU
Leuven.

7. REFERENCES
[1] G. Acar, M. Juarez, N. Nikiforakis, C. Diaz,

S. Gürses, F. Piessens, and B. Preneel. FPDetective:
dusting the web for fingerprinters. In Proceedings of
the 2013 ACM SIGSAC conference on Computer and
communications security, CCS ’13, pages 1129–1140,
New York, NY, USA, 2013. ACM.

[2] Albert Levi, et al. Relay attacks on bluetooth
authentication and solutions. Lecture Notes in
Computer Science, 3280:278–288, 2004.

[3] H. Bojinov, Y. Michalevsky, G. Nakibly, and
D. Boneh. Mobile device identification via sensor
fingerprinting. CoRR, abs/1408.1416, 2014.

[4] M. D. Corner and B. D. Noble. Zero-interaction
authentication. MOBICOM’02 Proceedings of the 8th
annual international conference on Mobile computing
and networking, 2002.

[5] S. Dey, N. Roy, W. Xu, and S. Nelakuditi. Leveraging
imperfections of sensors for fingerprinting
smartphones. SIGMOBILE Mob. Comput. Commun.
Rev., 17(3):21–22, Nov. 2013.

[6] N. N. Diep, S. Lee, Y. Lee, and H. Lee. Contextual
risk-based access control. In S. Aissi and H. R.
Arabnia, editors, Proceedings of the 2007 International
Conference on Security & Management, SAM 2007,
Las Vegas, Nevada, USA, June 25-28, 2007, pages
406–412. CSREA Press, 2007.

[7] P. Dulany, H. Gong, and K. Shah. 3D-Secure
Authentication using Advanced Models. https://
communities.ca.com/docs/DOC-231151630, 2014.

[8] P. Eckersley. How unique is your web browser?
Technical report, EFF, 2009.

[9] EMC Corporation. RSA SecureID - Risk-Based
Authentication. Data Sheet H13823. http://www.emc
.com/collateral/data-sheet/h13823-ds-rsa-securid-risk-
based-authentication.pdf, 2014.

[10] R. P. Guidorizzi. Security: Active authentication. IT
Professional, 15(4):4–7, 2013.

[11] Z. Kfir and A. Wool. Picking virtual pockets using
relay attacks on contactless smartcard. SecureComm
2005, 2005.

[12] C.-T. Li. Source camera identification using enhanced
sensor pattern noise. Information Forensics and
Security, IEEE Transactions on, 5(2):280–287, 2010.

[13] Lishoy Francis, et al. Practical relay attack on
contactless transactions by using nfc mobile phones.
The 2012 Workshop on RFID and IoT Security
(RFIDsec 2012 Asia), 2012.

[14] J. Lukas, J. Fridrich, and M. Goljan. Digital camera
identification from sensor pattern noise. Information
Forensics and Security, IEEE Transactions on,
1(2):205–214, June 2006.

[15] A. Narayanan and V. Shmatikov. Fast dictionary
attacks on passwords using time-space tradeoff. In
Proceedings of the 12th ACM Conference on Computer
and Communications Security, CCS ’05, pages
364–372, New York, NY, USA, 2005. ACM.

[16] C. Neumann, O. Heen, and S. Onno. An empirical
study of passive 802.11 device fingerprinting. In
Distributed Computing Systems Workshops
(ICDCSW), 2012 32nd International Conference on,
pages 593–602, June 2012.

[17] N. Nikiforakis, W. Joosen, and B. Livshits.
PriVaricator: Deceiving Fingerprinters with Little
White Lies. In Proceedings of the 24th International
World Wide Web Conference (WWW), May 2015.

[18] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel,
F. Piessens, and G. Vigna. Cookieless monster:
Exploring the ecosystem of web-based device
fingerprinting. In Proceedings of the 2013 IEEE
Symposium on Security and Privacy, SP ’13, pages
541–555, Washington, DC, USA, 2013. IEEE
Computer Society.

[19] N. Nikiforakis, W. Meert, Y. Younan, M. Johns, and
W. Joosen. Sessionshield: Lightweight protection
against session hijacking. In Proceedings of the Third
International Conference on Engineering Secure
Software and Systems, ESSoS’11, pages 87–100,
Berlin, Heidelberg, 2011. Springer-Verlag.

[20] PortalGuard dba PistolStar, Inc. Contextual
Authentication: A Multi-factor Approach. Tech Brief
v.3.2-003. http://portalguard.com/pdfs/
PG CBA Tech Brief.pdf, 2012.

[21] Q. Quach, N. Nguyen, and T. Dinh. Secure
authentication for mobile devices based on acoustic
background fingerprint. In V. Huynh, T. Denoeux,
D. H. Tran, A. Le, and S. B. Pham, editors,
Knowledge and Systems Engineering - Proceedings of
the Fifth International Conference, KSE 2013, Volume
1, Hanoi, Vietnam, 17-19 October, 2013, volume 244
of Advances in Intelligent Systems and Computing,
pages 375–387. Springer, 2013.

