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Abstract—Indoor localization typically relies on measuring
a collection of RF signals, such as Received Signal Strength
(RSS) from WiFi, in conjunction with spatial maps of signal
fingerprints. A new technology for localization could arise with
the use of 4G LTE telephony small cells, with limited range but
with rich signal strength information, namely Reference Signal
Received Power (RSRP). In this paper, we propose to combine an
ensemble of available sources of RF signals to build multi-modal
signal maps that can be used for localization or for network
deployment optimization. We primarily rely on Simultaneous
Localization and Mapping (SLAM), which provides a solution to
the challenge of building a map of observations without knowing
the location of the observer. SLAM has recently been extended
to incorporate signal strength from WiFi in the so-called WiFi-
SLAM. In parallel to WiFi-SLAM, other localization algorithms
have been developed that exploit the inertial motion sensors and
a known map of either WiFi RSS or of magnetic field magnitude.
In our study, we use all the measurements that can be acquired by
an off-the-shelf smartphone and crowd-source the data collection
from several experimenters walking freely through a building,
collecting time-stamped WiFi and Bluetooth RSS, 4G LTE RSRP,
magnetic field magnitude, GPS reference points when outdoors,
Near-Field Communication (NFC) readings at specific landmarks
and pedestrian dead reckoning based on inertial data. We resolve
the location of all the users using a modified version of Graph-
SLAM optimization of the users poses with a collection of absolute
location and pairwise constraints that incorporates multi-modal
signal similarity. We demonstrate that we can recover the user
positions and thus simultaneously generate dense signal maps
for each WiFi access point and 4G LTE small cell, “from the
pocket”. Finally, we demonstrate the localization performance
using selected single modalities, such as only WiFi and the WiFi
signal maps that we generated.
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kernel methods

I. INTRODUCTION

Indoor localization and mapping is a key enabler for
pervasive computing. While location-based services, that can
for instance accurately localize a smart phone in an indoor
GPS-denied environment, are used on daily basis, another need
has arisen with the challenge of optimizing the deployment of
telecommunication networks. For instance, precise localization
is a recurring hurdle when deploying networks of 4G Long
Term Evolution (LTE) small cells. These small cells have

limited range (comparable to the typical WiFi access point
coverage) but can be installed at multiple locations throughout
office spaces, residential areas or public spaces. Cost and
quality of service are important considerations when planning
the placement of such small cells and thus generate the need
to build precise 4G LTE signal coverage maps.

Other than providing communication links with additional
bandwidth, another advantage of the 4G LTE small cells is
that they could be used, in combination with WiFi, as inputs
to a localization system.

Both location-based services and network deployment op-
timization typically rely on measuring a collection of radio-
frequency (RF) signals, characterized for instance by their Re-
ceived Signal Strength (RSS), for WiFi, or by their Reference
Signal Received Power (RSRP), for LTE, along with spatial
location. The time and effort to manually collect these signal
fingerprints can be prohibitive and has prompted research
either on automated methods using mobile robots [30], [34]
or on methods for reconstructing RF maps from (potentially
crowd-sourced) pedestrian trajectories. The latter fall into the
general category of Simultaneous Localization and Mapping
(SLAM) and unsupervised mapping for RF signals and are
reviewed in section I-B.

While using autonomous WiFi mapping robots may prove
impractical in some buildings as it involves a deployment
cost [30], it is worth noting that the pedestrian position could
be recovered thanks to a wearable system consisting of a color
and depth (RGBD) camera and a computer running real-time
vision-based odometry [44] or even a full SLAM algorithm
using the RGBD camera combined with a laser range [11].
In our research, we have decided not to rely on any vision
systems and to run a cruder version of SLAM from the user’s
pocket, using only the sensors available on a smartphone.

A. Objective: Crowd-sourced RF Mapping from the Pocket

In our study, we propose to build multi-modal RF signal
maps, that can include WiFi, 4G LTE or Bluetooth, without any
additional effort from the experimenter, simply by exploiting
all of the sensor signals recorded on one or multiple off-the-
shelf smartphones. Our goal is to enable “crowd-sourced RF
mapping from the pocket”. In a preferred scenario the user(s)



would simply collect RF signals while walking freely through a
building, taking care of their daily activities. In the meanwhile,
they would be collecting time-stamped WiFi and Bluetooth
RSS, 4G LTE RSRP, magnetic field magnitude, GPS reference
points when outdoors, Near-Field Communication (NFC) tag
or QR code readings at specific landmarks and Pedestrian Dead
Reckoning (PDR) based on inertial data.

Our system relies on a state-space model, where the trajec-
tory of the user is unknown and depends both on the dynamics
coming from a pedestrian motion model and on multi-sensor
observations, including WiFi or LTE signal. Unlike existing
sensor fusion algorithms for tracking a user indoors using a
motion model and WiFi [5], [15], [24], we do not know the
RF signal map in advance: our objective is to reconstruct it
from the data acquired by a freely moving pedestrian wearing
a commercial grade smartphone in her pocket, with limited or
no human intervention.

The two building blocks of our system are the pedestrian
dead reckoning with position fixes (see the next section for the
limitation of PDR on smartphones) and the SLAM algorithm
adapted for RF signal data. SLAM provides a solution to the
challenge of building a map of observations without knowing
the location of the (moving) observer.

The two innovations in our research are the use of pose-
invariant PDR that lets the user place the phone in any
pocket of a trouser, and our modified version of SLAM, called
SignalSLAM, which optimizes the users’ poses thanks to a
collection of absolute location and pairwise constraints that
incorporate multi-modal signal similarity, including the WiFi
RSS, Bluetooth RSS, LTE RSRP or even the magnitude of the
magnetic field.

1) Pedestrian Dead Reckoning and its Limitations: Pedes-
trian Dead Reckoning (PDR) [22] has been presented as a
possible solution for localization in GPS-deprived areas [27].
It requires an Inertial Measurement Unit (IMU) constituted
of at least a 3-axis accelerometer and 3-axis compass. In its
simplest form, PDR consists in a step counter that detects the
peaks in the vertical component of acceleration (i.e., every
time that the foot hits the floor) and reads the heading of the
smartphone from the compass.

A recent survey of the numerous PDR methods [19] investi-
gated so far listed a large collection of equipment, such as foot-
mounted Inertial Measurement Units (IMU) or smartphones,
of techniques for step detection, heading estimation or inertial
navigation as well as for their integration into hybrid systems
with absolute position fixes in order to correct the dead
reckoning output. It highlighted the need for using position
fixes to cope with long-term drift, or to use additional sources
of information such as RF signal strength measures and a
known map of RF signal fingerprints.

Among the recently-published hybrid localization tech-
niques using PDR on smartphones, we notice that they typ-
ically require the user to hand-held the smartphone during the
walk [15], [17], [25]. For better accuracy in the estimation of
the step length or even the heading direction, it is preferable
to use foot-mounted sensors [37], [38].

B. Review of Collaborative RF Localization and Mapping

1) Unsupervised and Semi-Supervised Mapping: [45] in-
troduced 2D map building without localization and without
a motion model, using only visibility, bearing or distance to
2D landmarks and manifold learning (dimensionality reduction
through Multi-Dimensional Scaling) over vectors of observa-
tions. This technique was extended in [8] to vectors of WiFi
RSSI observations, assuming an RF propagation model with
RSSI monotonously decreasing with distance from the access
point. The manifold learning method for building RF maps was
further refined in [35] into an iterative, incremental, scheme
where RF localization alternates with manifold learning.

2) RF Simultaneous Localization and Mapping: Simulta-
neous Localization and Mapping (SLAM) [10] is the stan-
dard mathematical framework for iteratively optimizing 1) the
trajectory (sequence of poses) or dynamics of a user (robot)
based on the predictions of her motion model as well as on
the observations such as laser range, visibility or position of
landmarks and 2) the position of the landmarks and the map
itself. SLAM has first been adapted to WiFi signals as the
WiFiSLAM algorithm [12], where the state space model is
modeled by a Gaussian Process Latent Variable Model. The
main weakness of this algorithm is the cubic dependence on
the number of time steps.

Probabilistic Graphical Models, where the optimization of
state-space models is done using particle filters [9], can be
used to implement WiFi SLAM models, following [6], [41].
In these cases, each particle carries not only the position and
orientation of the user, but also a map of the WiFi access
points. An extension of particle filter models to include other
multi-modal RF signals would be non-trivial, though, due to
the need to specify conditional dependencies across multiple
types of variables.

Our approach to RF SLAM is based on the extension
to WiFi [20] of the GraphSLAM algorithm [16]. The latter
is typically used in robotics to do bundle adjustment (i.e.
loop closure) on a graph of robot poses and is explained in
section II-C. One of the contributions of [20] was to bring
the computational complexity from cubic to quadratic in the
length of the optimized sequence. The main difference between
our algorithm and the one by Huang et al. [20] is that their
model assumes that two nearby positions of the user, xa and
yb, should be subject to similar signal strength observations Sa
and Sb according to a Gaussian process. In our approach, we
take the reverse approach, claiming that it is the similarity, in
signal space, that conditions the proximity in physical space.
As detailed in section II-D, we can pre-compute the kernel
similarity between the RF signal at each time interval during
the trajectory and we can easily combine multiple sources of
RF signal by multiplying multiple kernel matrices.

3) RF SLAM with Building Blueprints: An alternative solu-
tion to the SLAM problem relies on existing maps [21], [25],
building blueprints (which can be obtained from evacuation
plans [36]) or even assumptions about the architecture of
the indoor space [37]. Here, a state-space model such as a
particle filter [9], extended Kalman filter or even dynamic
programming can be used to track the hidden trajectory of the
user in a semantic (e.g., traversability) 2D map of obstacles.
We wanted however to achieve maximal flexibility and not



Fig. 1. Orientation and yaw angle of the smartphone with arbitrary pose.
Image credit: Android API (see http://developer.android.com)

to have to rely on blueprint constraints. In our solution, we
are able to merely use a geo-referenced satellite image of the
building that can easily be obtained on a map search engine.

In the rest of this paper, section II introduces our modifi-
cation to the GraphSLAM algorithm that optimizes the users
poses with a collection of absolute location and pairwise
constraints that incorporates multi-modal signal similarity.
Section III explains our data acquisition app running on
commercial Android OS smartphones placed in the user’s
pocket. In the Results section IV, we demonstrate that we can
recover the user positions and thus simultaneously generate
dense signal maps for the WiFi access points and for 4G LTE
cells, and we illustrate the localization performance using WiFi
fingerprints generated while walking.

II. METHODS

A. Pedestrian Dead Reckoning with Position Fixes

We give here a simple overview of a motion model
provided by our pedestrian dead reckoning (PDR) system that
is invariant to the phone pose. The specific implementation
of the phone orientation estimation, step counting and step
heading estimation are detailed in sections III-A1, III-A2 and
III-A3, respectively.

First, the 3D orientation angle of the phone is estimated at
every time point, including the yaw of the phone, noted θt (see
Figure 1). We call yaw the angle between the longitude axis
and the projection of the X axis of the phone coordinate system
onto the ground plane. This convention means that when the
user is looking at the phone screen with her arm extended
towards the North, the yaw will be 0deg, and if extended
towards the East, the yaw will be -90deg.

We then assume that the walking motion is always forwards
and that the phone is immobile in the user’s pocket. The angle
between the yaw axis and the front direction of the walk is
noted βt. For simplicity and despite potential shifts in the
trouser’s pocket, we fix βt to a constant value β within the
time interval between two position fixes.

The last angle that we need to consider is the offset ξ be-
tween the arbitrary map coordinate system and the coordinate
system defined by the longitude (towards East) and latitude
(towards North) axes. We decided to ignore the curvature of the
Earth at the scale of a building (at most a few hundred meters)
and to consider the (longitude, latitude) coordinate system as
orthogonal within that radius, enabling affine transforms.

By noting dt the length of the stride (corresponding to two
steps), x1,t the X coordinate of the user, x2,t the Y coordinate
of the user and φt the increment in the yaw after one stride,

the motion model becomes:

x1,t+1 = x1,t + dt cos(θt + ξ + βt) (1)
x2,t+1 = x2,t + dt sin(θt + ξ + βt) (2)
θt+1 = θt + φt (3)

As explained in section III-A2, the stride dt is not calcu-
lated at every step but assumed to remain constant between
two landmarks.

During the walking trajectory, the PDR can be frequently
reset thanks to a collection of landmarks that either encode
their own position (e.g., GPS readings, Near Field Commu-
nication (NFC) tags or QR codes) or whose position can be
known in advance, such as Bluetooth dongles. The position
(x1,t, x2,t) is simply assigned the k-th landmark’s coordinates
(y1,k, y2,k).

B. Least Squares Calibration of PDR Trajectories

Because of long-term shifts of the phone within the user’s
pocket or changes of the user stride and because our experi-
mental data protocol involves taking the phone in and out of
the pocket to read the position landmarks (see sections III-B
and IV-A), the values of βt and dt are re-calibrated in each
segment of time I = [ti, tb] between two landmarks I and J, of
respective coordinates ya = (y1,i, y2,i) and yb = (y1,j , y2,j).

The calibration consists in minimizing the Least Square
Error ||x̂j − yj ||2, where x̂j = (x̂1,j , x̂2,j) is the PDR
trajectory re-estimated by starting from x̂i = (x1,i, x2,i) and
iterating the PDR motion model (1), (2) and (3), using stride
length d̂ and offset angle β̂:

(d, β) = arg min
(d̂,β̂)
||x̂j − yj ||2 (4)

Because of the small range of admissible values for the
stride (typically between 1m and 2m) and because of the
magnitude of the errors introduced by our simplistic motion
model, the values of d and β in Eq. (4) are found by grid search
with small step increments (e.g., 0.1m and 5deg, respectively).

C. GraphSLAM

The GraphSLAM algorithm is explained in details in [16],
[33], with pseudo-code for the 2D version available in [16],
therefore we focus here only on its main ideas.

GraphSLAM considers the trajectory of a mobile as a
sequence of poses x = {xt}; in the 2D case, each pose
xt = (x1,t, x2,t, x3,t) is a 2D position (x1,t, x2,t) and an ori-
entation angle x3,t. The sequence of poses can be represented
by a chain graph, where each pose is associated to a vertex and
each motion edge corresponds to a known motion increment (in
the case of pedestrian dead reckoning, each edge is a step with
stride dt and yaw θt). In the case of PDR, the sequence {xt}
is produced by iterating the equations of the motion model (1),
(2) and (3).

Whenever the mobile “comes back”, at time tj , near a
location previously traversed at time ti, and if it is capable
of recognizing that similarity, then a new loop closure edge
is added to the graph, linking xj to xi. In our work, such



constraint edges can be added for instance if at time tj , the
mobile is next to the same landmark as at time ti (e.g., touching
the same Bluetooth or NFC tag or seeing the same QR code):
the constraint edge has a displacement assumed to be equal to
0 and an unknown change of orientation. If there is a gap in
the PDR trajectory (or if one switches to a different mobile),
a constraint edge can be inserted between the disjoint ends.

One can also define global landmarks, such as position
fixes given by GPS or readings from an NFC tag or QR
code with a known landmark position (y1,t, y2,t). In that
latter case, a global vertex can be added, for instance at
the origin of the coordinate system, and the displacement
in the constraint landmark edge is equal to the landmark’s
coordinates (y1,t, y2,t).

GraphSLAM is initialized using positions and orientations
derived from pedestrian dead reckoning. This means that the
motion edge constraints are, initially, all satisfied. However, the
constraints in the loop closure and landmark edges are initially
violated, because of the cumulated drift due to noisy PDR. The
algorithm then iteratively optimizes the poses {xt} in the graph
by aiming at minimizing the errors at all edges, including the
violations of the loop closure and landmark constraints.

Formally, we note, for any two vertices i and j in the pose
graph that have an edge linking them:

• zij as the vector of constraints: it is the observed
relative displacement (2D translation and change of
orientation angle) between pose i and pose j, ex-
pressed from the viewpoint of pose i,

• ẑij(xi,xj) as the calculated displacement given the
current values of poses xi and xj , calculated from the
viewpoint of pose i,

• eij = zij − ẑij(xi,xj) as the error between the
current configuration of poses i and j and the observed
constraint,

• Ωij as the 3×3 information matrix (inverse covariance
matrix) of the constraint between pose i and j.

This information matrix expresses the noise in the obser-
vation of the (PDR, loop closure, landmark) constraint but
in practice is generally kept diagonal. The term ω3,3 at row,
column (3, 3) in the matrix expresses the inverse covariance of
the orientation angle constraint. In the experiments reported in
this paper, we set Ω to be equal to the identity matrix with the
exception of the term ω3,3 which was equal to 4 (motion edges
and loop-closure edges) or to 0 when the angle constraint was
unknown (landmark edges).

GraphSLAM aims at minimizing the negative log likeli-
hood F of all the observations over the set C of edges:

F(x) =
∑

(i,j)∈C

eTijΩijeij (5)

x∗ = arg min
x

F(x) (6)

The solution to (Eq. 6) is obtained by iterative local
linearization [16], [33]. At each step, a new, optimal sequence
of poses x′ is recomputed given the current edge constraints

and the constraints on all edges are then re-evaluated given
the new poses. The new sequence of poses after each step’s
update is decomposed as x′ = x + ∆x.

The error e′ij after the update is linearized as a sum of the
current error eij and a term linear in the pose update ∆xij .
As detailed in [16], the minimization of (Eq. 6) in terms of x′

can be expressed as a minimization of a quadratic function
in terms of Deltax and therefore the global sequence of
pose update ∆x becomes the solution of a linear system. The
locally optimal solution to the sequence of poses is reached
by iteratively recalculating the error functions eij at each edge
and solving for the pose update ∆x, until convergence.

As expressed above, the GraphSLAM optimization can be
directly applied to “close the gaps and the loops” in the PDR
trajectory; in other words, it can ensure that the trajectory
of the phone (which may be made discontinuous because of
the repeated position resets, explained in section II-A, at the
landmarks encountered on the trajectory) becomes a smooth
curve that goes through all the landmarks while obeying the
noisy pedestrian dead reckoning. In practice, and as shown
in the Results section, this optimization is redundant with the
simpler PDR recalibration explained in section II-B.

In the following sections II-D and II-E, we introduce our
contribution to GraphSLAM.

D. Signal Similarity using Kernels

As the user walks around the building, a large collection
of RF signals from many access points is collected. Under the
assumption that the RF signal does not change significantly
over a short distance of a few meters, which corresponds, at
a walking speed, to about 5s to 10s, we can use a measure
of signal similarity. We propose to rely on kernel functions to
compute the similarity, in signal space, between two segments
of a trajectory.

For WiFi or Bluetooth data, where there can be hundreds
of different access points (AP) scattered around the building,
we decide to use the Kullback-Leibler [23] divergence between
multinomials of AP visibility, as suggested in [28]. For the LTE
RSRP or the magnitude of the magnetic field (as measured
by the magnetometer of the smartphone), we can simply use
the Euclidean distance. The KL divergence or the Euclidean
distance can be input into a kernel function k(Sti , Stj ), where
Sti is the multivariate signal recorded around time point ti (for
a specific phone). The kernel function is either the Gaussian or
the KL-divergence kernel [28] and takes the following form:
e−αD where D is either the squared Euclidean distance or the
symmetrized KL divergence KL(Sti ||Stj ) +KL(Sti ||Stj ).

Figure 2 illustrates the kernel matrix for the WiFi AP
visibility, from WiFi data acquired by 3 different phones. The
data, along the rows and columns, are arranged by phone, then
by time. The presence of off-diagonal blocks shows that there
are cross-phone similarity in the signal space.

In the presence of multiple sources of RF data, such as
WiFi RSS, LTE RSRP, Bluetooth RSS or the magnitude of
the magnetic field, the kernel matrices K1, K2, etc... for
each signal modality can be multiplied, element by element,
provided that the rows and columns in each matrix correspond
to the same time intervals on the same phone.



Fig. 2. RF kernel computed using the measure of signal similarity between
any two points of the trajectory of any 3 phones. The kernel function is the
Kullback-Leibler divergence over histograms of WiFi access point visibility.

E. SignalSLAM

Once the kernel similarity, explained in the previous sec-
tion, is computed for all the time segments of the trajectory,
it can used in the following way in the original GraphSLAM.

First, let us restrict the set of poses to time points t ∈ T
that correspond to time windows when signal strength was col-
lected and between which signal similarity {k(St, St′)}∀t, t′ ∈
T was computed. In our experiments, we used windows of
duration 10s, overlapped every second.

At a given iteration of the GraphSLAM algorithm and for
the current configuration of poses x, one can use weighted
kernel regression to predict the expected pose xt based on
the poses of its immediate neighbors St′ in the signal space
(where t′ ∈ T and t 6= t′). Such neighbors in the signal space
are poses xt′ whose kernel function k(St, St′) evaluates the
highest. We note Nt the neighborhood, in signal space, of pose
xt at time t, and typically use n = 10 neighbors. The weighted
kernel regression predicts the following position for xt:

x̄t =

∑
t′∈N xt′k(St, St′)∑
t′∈N k(St, St′)

(7)

That prediction x̄t is then simply used as a temporary “ab-
solute” landmark for the GraphSLAM algorithm. This means
that at that iteration of GraphSLAM, an additional signal edge
is added from pose/vertex xt to a new pose/vertex x̄t. The
information matrix Ωt,t′ specific to signal edge constraints
is unit diagonal with the exception of the orientation term
ω3,3 = 0.

After each update of x, the signal similarity based predic-
tion of each pose xt needs to be re-evaluated by re-computing
(Eq. 7). However, the signal similarity kernel k(St, St′) does
not change, neither do the neighbors Nt of xt in signal space.
As a consequence, the overhead introduced by our algorithm
is negligible.

Because our simple modification to GraphSLAM enables to
handles any kind of similarity between any two poses at times
t and t′ that merely relies on sampling signals St and St′ ,
we called it SignalSLAM. Note that SignalSLAM can operate
on any kind of signal similarity that is stationary (i.e. time
independent), which includes for instance WiFi RSSI, LTE,
Bluetooth from fixed beacons or, under some circumstances,
magnetic field.

III. DATA ACQUISITION FROM THE POCKET

In this section, we explain the details of our system for
logging smartphone data that can be supplied to the Graph-
SLAM and SignalSLAM algorithms for recovering the RF
signal maps. We give an overview of the smartphone app in
section III-C and provide further details about the Pedestrian
Dead Reckoning (PDR), namely the phone orientation estima-
tion (section III-A1), the step counting (section III-A2) and
heading estimation (section III-A3) as well as the landmark
acquisition (section III-B).

A. Pedestrian Dead Reckoning from the Pocket

1) Orientation Estimation: We propose to use all the
inertial sensors available on modern smartphones, including
the 3-axis accelerometer, 3-axis gyroscope and 3-axis mag-
netometer that are integrated within the Inertial Measurement
Unit (IMU) chip, in order to track the phone’s 3D orientation
(yaw, pitch and roll angles) at high frequency. Orientation
estimation is done using the Madgwick filter [26], which
is a low-computational-complexity information filter relying
on the quaternion representation of angles and updated us-
ing gradient descent. A Java version of the code (available
at http://www.x-io.co.uk), implemented on a smart-
phone running the Android OS, can run in negligible time and
sample accelerometer and gyroscope measurements at 50Hz.

This orientation can be represented by a 4-by-4 rotation
matrix Rt or by the (yaw, pitch, roll) angles. This enables
us both to recover the vertical component of the acceleration
by rotating the raw accelerometer readings at in the phone
coordinate system to the accelerometer readings ht in the
so-called human or local ground coordinates defined by the
longitude, latitude and upright axes: [ht1]T = Rt[at1]T .

2) Step Counting: The step detection and counting in our
system follows the “PDR from the Pocket” method explained
in [42]. Namely, the vertical component of acceleration is
extracted from the rotated acceleration vector ht in the hu-
man coordinate system. After median-filtering (step size 5,
corresponding to 0.1s at 50Hz), a sliding-window variance
is computed on a window of length 7 (0.14s at 50Hz). This
variance is then thresholded to find peaks. A stride detection
corresponds to two consecutive peaks of the variance of
acceleration, within a time window comprised between 0.5s
and 1.5s.

We decided not to estimate the stride length d using
acceleration data or user height [15], [17] and only assume it to
be a constant during a segment of the trajectory. As explained
in section II-B, the stride length can be re-calibrated for each
segment between any two consecutive landmark readings.

Note that foot-mounted IMUs [3], [38] with the Zero Ve-
locity Update Method typically achieve a far better pedestrian



dead reckoning accuracy, because of both better hardware and
reduced noise due, as the IMU is attached to the foot that
hits the ground as opposed to being stashed loose in a pocket,
but they lack the convenience of consumer-grade smartphones
casually worn in the pocket.

3) Step Heading Estimation: Most PDR systems on smart-
phones rely on the compass only for estimating the heading,
and the phone would typically need to be held vertically,
screen facing the user and pointing towards the direction of
the walk [15], [17], [25]. This conflicts with our target of PDR
from the pocket.

An alternative to heading estimation during walking mo-
tion, that is able to operate on a phone placed in a pocket
or on a clip belt, is to rely on the accelerometer data ht in
the human coordinate system, by extracting the direction of
the third principal component of the acceleration points [14],
[42]. Initial tests on several smartphones such as the Samsung
Nexus S however showed that the orientation estimation was
often erroneous. Moreover, this method only provides with the
direction modulo 180deg.

For these reasons, we ultimately decided to simply rely
on the yaw of the phone, computed in real time by the
Madgwick filter (see section III-A1). The yaw values are
median filtered over 5 time points and averaged within the
time interval corresponding to one stride. This filtered yaw
θt is then incremented by the “pocket” offset angle βt, as
illustrated on Fig. 1.

B. Low-cost Landmarks

The ultimate objective of our line of research is to enable
RF mapping entirely “from the pocket”. Because the PDR
needs periodic corrections (see section II-A) and because we
perform re-calibration of the stride length and pocket angle
offset (see section II-B), landmarks with known position are
however needed.

In the current version of our system, we use the following
absolute landmarks that bear latitude and longitude coordinates
and whose commonality is to be readable from a recent
model commercial smartphone running the Android OS. These
landmarks consist in:

• User-validated Global Positioning System (GPS) po-
sition fixes.

• Self-describing visual 2D bar codes (QR codes) which
are encoding their own position (similarly to [30],
[40]).

• Programmable, self-describing Near-Field Communi-
cation (NFC) tags with their position similarly en-
coded. Our novel idea of using NFC tags for localiza-
tion is based on similar research using RFID tags [1].

An example of the text string encoded in an NFC tag or
QR code landmark, that we can define, that bears the latitude,
longitude and altitude (z = 0) information along with a tag
ID, and that can be easily parsed by a program, is:

#6e1ebc 40.684492,-74.401406 z0

Inside the building, NFC tags or QR codes could be substituted
by short-range (e.g., 2m) Bluetooth beacons, thus alleviating
the need for taking the smartphone out of the pocket.

An alternative step towards our goal of “RF mapping from
the pocket” would be to exploit the organic activity landmarks
(i.e., stairs or elevators along with position matching on a map)
by activity classification based on accelerometer readings [13],
[17], [18].

Note that currently, our method handles the optimization on
a single floor, with constant altitude. In a multi floor building,
changes of floors can be detected either by a combination
of activity classification (stair and elevator detection) with
barometer readings, or by writing the floor or altitude in the
NFC tag or QR code landmarks.

C. Android App for Data Acquisition

In order to conduct the experiments using SignalSLAM
and detailed in the next section, we have implemented a data
acquisition and logging tool, running on the Android operating
system. It acquires the following timestamped sensor data:

• LTE 4G received signal strength (RSS), reference
signal received power (RSRP) and reference signal
received quality (RSRQ), from the LTE cell onto
which the phone is currently connected. The signal
is sampled every 1s to 3s, depending on the phone
model.

• WiFi received signal strength (RSS), in dBm, from
each WiFi access point, sampled every 1s to 3s,
depending on the phone model.

• Bluetooth signal strength (RSS), in dBm, from each
Bluetooth access point, sampled every 10s.

• GPS location fixes and their accuracy, sampled every
1s when satellite information is available.

• NFC tag readings from custom landmarks.

• QR code tag readings from custom landmarks.

• Accelerometer, gyroscope and magnetometer read-
ings, sampled at 50Hz (10Hz for the magnetometer).

• Orientation estimation using the Madgwick filter (yaw,
pitch and roll), implementing the algorithm in sec-
tion III-A1 and sampled at 50Hz.

• Pedestrian dead reckoning, implementing the algo-
rithm in sections III-A2 and III-A3, with on-demand
position resets in presence of landmarks (see sec-
tion III-B).

The data logging tool plots the current GPS and pedestrian
dead reckoning position overlaid on a geo-referenced map.
This map specifies the affine transform to go from the (lat,
long) coordinate system to a local map system, assuming
that area of interest has negligible curvature. Multiple maps
can be loaded, depending on the current (latitude, longitude)
coordinates

All the data logging functionalities rely on the standard
Android API. In order to make the app compatible with the
largest number of Android smartphones, we used the version



10 of the Android Software Development Toolkit, for Android
version 2.3.3 and above (released mid-2011).

As explained in the next Results section, we have run our
experiments on three different models of Android smartphones:
a Samsung Nexus S (without 4G LTE), a Samsung Galaxy
Note 2 (with a Verizon 4G LTE subscription) and a Samsung
Galaxy S4, reading a proprietary 4G LTE small cell.

IV. RESULTS

A. Experimental Protocol

In line with our goal of RF mapping from the pocket, the
experimental protocol essentially consisted in letting two ex-
perimenters repeatedly walk around, back and forth, a large of-
fice building covering an area of approximately 200m×160m,
carrying one or two smartphones in the trouser’s pocket that
were running the Android app detailed in section III-C. The
experiments were carried over the course of several weeks and
we report in this paper the results for two sets of data acqui-
sition: 1) data acquisition over 1 day, with one experimenter
carrying a Samsung Nexus S in one pocket and a Samsung
Galaxy S4 in another while a second experimenter carries a
Samsung Galaxy Note 2 and 2) the same experiment as in 1)
but repeated 4 days later.

In order to provide landmarks, we placed NFC tags at 12
strategic locations in the building, which correspond to one
of the following: entrances, staircases, elevators, the reception
desk with badge reader, the cafe counter and two meeting
rooms. We contend that such areas could be recognized us-
ing activity recognition based on inertial data, for example
using the systems implemented in [13], [17], [18], or simply
using GPS (for the entrances). These landmarks correspond to
organic landmarks.

The conditions for pedestrian dead reckoning in this build-
ing were challenging because of the metallic walls throughout
the building that created perturbations to the compass readings.

B. Crowd-sourced Multi-phone SignalSLAM

In a first step, we reconstructed the trajectories of all the
three phones independently. Figures 3, 4 and 5 show succes-
sive steps in the reconstruction, starting from raw PDR (in
blue), followed by calibrated PDR (in red) using the heuristic
described in section II-B, then the GraphSLAM optimization
with landmark and loop closure constraints (in green) and
finally SignalSLAM using a product of WiFi and Bluetooth
similarity kernels (in black).

The difference in accuracy of PDR between three succes-
sive models of the Samsung phones is striking and can be
explained by the increasing quality and precision of IMU chips
mounted on commercial smartphones. The low quality of the
IMU on the Nexus S and the magnetic perturbations seem to
pose a challenge for PDR. We then notice that PDR calibration
succeeds in closing the gaps in the trajectory (after each
position reset) while keeping the trajectory reasonably straight
along the corridors, notably for the Galaxy S4 (Figs. 5).
Because PDR calibration already closes those gaps and is con-
strained by landmarks, the pure GraphSLAM algorithm does
not substantially change the shape of the trajectory. Finally,
the largest improvement comes from running SignalSLAM. In
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Fig. 3. Reconstructed trajectories for the Samsung Nexus S, using several
iterations (raw pedestrian dead reckoning, re-calibrated PDR using landmarks,
landmark-based GraphSLAM and WiFi- and Bluetooth-based SignalSLAM).
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Fig. 4. Reconstructed trajectories for the Samsung Note 2, using the same
procedure as illustrated in Fig. 3.

particular on the Galaxy Note 2 and on the Galaxy S4 data, that
algorithm succeeds in closing the gap between two trajectories
along the same corridor.

In a second step, we run the joint optimization of the
trajectories of all the three phones. Although the three trajec-
tories are distinct, the SignalSLAM algorithm uses a WiFi and
Bluetooth similarity kernel (shown on Figure 2) that establishes
similarity, in RF signal space, between specific points of the
trajectory of two different phones, in the same way as it
establishes similarity for the same phone.

C. Step-by-step Comparison of Trajectories

A numerical evaluation of the reconstruction of the trajec-
tories can be provided as following. After running the three
optimizations for each of the phones independently, we extract
the time segment when the two experimenters carrying the
three phones were walking alongside. We then compute the
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Fig. 5. Reconstructed trajectories for the Samsung Galaxy S4, using the same
procedure as illustrated in Fig. 3.
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Fig. 6. Jointly reconstructed trajectories of three different phones (from
Figs. 3, 4 and 5). Joint SignalSLAM was run with a WiFi- and Bluetooth-
based kernel computed using measurements from all the phones at once.

distance, at each second within that selected time interval,
between the three trajectories (we use linear interpolation to
estimate the position between two strides). As Figure 7 shows,
the median step-by-step distance between three trajectories
remains under 5m (under 10m at 90% percentile). Figure 8
illustrates the step-by-step proximity of the trajectory of the
Galaxy Note 2 and of the Galaxy S4.

D. Generation of Dense LTE and WiFi Signal Maps

Using directly the trajectories recovered in the previous two
sections, we can plot the map of LTE RSRP for two different
phones: the map of the Verizon 4G LTE RSRP at the level of
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Fig. 7. Step-by-step distances between the inferred trajectories of 3 different
smart phones (we used WiFi- and landmark-based Signal-SLAM and the
trajectories for each phone were inferred independently of the other phones).
Two phones (Samsung Galaxy S4 and Samsung Nexus S) were carried by
the same experimenter while the third phone, a Samsung Galaxy Note 2, was
carried by a second person walking alongside.
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Fig. 8. Side-by-side comparison of the inferred trajectories (see Fig. 7) of 2
different smart phones carried by 2 experimenters walking together (Samsung
Galaxy S4 and Samsung Galaxy Note 2).

the building, on Figure 9, and that of the small cell 4G LTE
on Figure 10.

E. WiFi Tracking Using Crowd-sourced RF Maps

Finally, we acquire a second set of WiFi data logs and
trajectories 4 days after the dataset illustrated in the previous
section to try WiFi-based geo-localization [2].

We use the WiFi data from day 1, along with the recon-
structed trajectories, to build a map of fingerprints. To build the
map, we simple use a 5m grid overlaid on the 3 trajectories,
and select, for each fingerprint cell, the time points in the
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Fig. 9. Reference Signal Received Power (RSRP) for the 4G LTE Verizon
network, as mapped on a Samsung Galaxy Note 2 phone using the inferred
trajectory from Fig. 4.
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Fig. 10. Reference Signal Received Power (RSRP) for a small cell LTE, as
mapped on a Samsung Galaxy S4 phone using the inferred trajectory from
Fig. 4.

trajectories of each phone that fall into that cell. We then
retrieve the WiFi readings at those time points. We either
estimate the empirical distribution of the RSSI, following [28]
(for the Nexus S phone which samples WiFi every 1s) or
simply estimate their mean value of the RSSI (for the two
other phones that collect data only every 3s).

For the WiFi tracking of the WiFi data from day 2,
assuming that the actual trajectory is the one that was inferred
using SignalSLAM, we consider a sliding window of 10s
to estimate the mean or the empirical distribution of WiFi
RSSI from all the access points. The tracking algorithm
is respectively Weighted Kernel Regression using Kullback-
Leibler Divergence kernels [28] for the Nexus S, or weighted
K-nearest neighbors [2] for the Galaxy Note 2 or the Galaxy
S4.

As Tables I and II prove, the geo-localization perfor-
mance is rather weak (between 11m and 16m median error)
when one compares the positions on the trajectory inferred
by SignalSLAM vs. the positions inferred using WiFi only
and a crowd-sourced fingerprint map. One however needs to

TABLE I. TRACKING RESULTS USING PHONE-SPECIFIC WIFI
FINGERPRINTS FROM INDEPENDENTLY-INFERRED TRAJECTORIES

Tracked phone Median accuracy Accuracy at 90%

Nexus S 11.1m 30.5m
Galaxy Note 2 13.3m 48.2m

Galaxy S4 13.9m 67.9m

TABLE II. TRACKING RESULTS USING WIFI FINGERPRINTS FROM 3
DIFFERENT PHONES WITH JOINTLY-INFERRED TRAJECTORIES

Tracked phone Median accuracy Accuracy at 90%

Nexus S 14.8m 31.3m
Galaxy Note 2 12.9m 40.1m

Galaxy S4 16.5m 53.8m

consider several challenges in this exercise. First, the ground
truth positions were actually never known in this experiment,
only the inferred ones. Second, the data were collected while
walking, without any special infrastructure, only the existing
WiFi access points whose positions were unknown. Finally, the
experimenters did not stop at any location but simply quickly
passed through the corridors.

In our future experiments, we will evaluate how increasing
the number of individuals and the variety of smartphones
involved in the crowd-sourcing of the RF map can bring the
localization error down.

V. CONCLUSION

We described a method for automatically generating and
updating an RF signal map in buildings while determining
the location of the measuring device, namely, a smart phone
loaded with sensors. The method uses an adaptation of the
GraphSLAM technique to synthesize the sensor measurements
that include those from inertial measurement units as well as
available RF signals, and thereby to infer the unknown smart
phone trajectory. The pedestrian dead reckoning estimates are
robust to phone pose. Thus the method avoids some common
restrictions such as requiring the users to hold the smart phone
in hand. We tested the method using several Android phones
of different models, and showed that the method can accom-
modate multiple users participating in the measurements. We
believe that crowd-sourcing with more users and over repeated
days, would enable to easily maintain a WiFi/LTE signal map
based geo-localization system.
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