

Seminar, NTNU, Trondheim, 3.1.2001

Methods for solving large-scale scheduling and combinatorial optimization problems

Iiro Harjunkoski

(in collaboration with Ignacio E. Grossmann)

Department of Chemical Engineering Carnegie Mellon University Pittsburgh, PA 15213

http://egon.cheme.cmu.edu/

Recent Work

- Vipul Jain and Ignacio E. Grossmann (2000). Algorithms for Hybrid ILP/CP Models for a Class of Optimization Problems. *Presented at INFORMS, Paper SD32.1, Salt Lake City, UT.*
- Iiro Harjunkoski, Vipul Jain and Ignacio E. Grossmann (2000). Hybrid Mixed-Integer/Constraint Logic Programming Strategies for Solving Scheduling and Combinatorial Optimization Problems. *Computers and Chemical Engineering*, 24, 337-343.
- Iiro Harjunkoski and Ignacio E. Grossmann (2000). A Decomposition Strategy for Optimizing Large-Scale Scheduling Problems in the Steel Making Industry. *Presented at AIChE Annual Meeting 2000, Los Angeles, CA.*

Outline

- Classification of scheduling problems
- Hybrid methods for handling the combinatorial complexity
- Another combinatorial problem
- Decomposition method for a large-scale problem
- Conclusions

How to solve?

"A mathematician (thoughtful) might decide to ask a different question: Can I find an algorithm that is guaranteed to find a solution "close to optimal" in polynomial time in all cases?"

"An engineer would start looking for a heuristic algorithm that produces practically usable solutions."

--Wolsey, Integer Programming (Wiley-Interscience, 1998)

- Extensive literature both in mathematical and engineering journals
- Large amount of heuristic strategies

Outline

- Classification of scheduling problems
- Hybrid methods for handling the combinatorial complexity
- Another combinatorial problem
- Decomposition method for a large-scale problem
- Conclusions

100-

Methods presented to overcome combinatorial complexity for large discrete optimization problems. Basic idea: combine mixed integer programming (MIP) and constraint programming (CP) and exploit complementary strengths. Illustration: parallel scheduling and trim-loss problems

■ CLP: finds a feasible solution fast ⇒ more efficient for feasibility check through constraint propagation

Requirements

- Objective function separable: only a subset of the coefficients non-zero
- Clearly defined relation between MILP and CLP models
- MILP relaxation needs to be efficient
- CLP part well-constrained
- Efficient cuts for eliminating more than a single solution

Scheduling - Results

CPU-s from Jain and Grossmann (2000)

	2 machines 3 jobs		3 machines 7 jobs		3 machines 12 jobs		5 machines 15 jobs		5 machines 20 jobs	
Problem	Set 1	Set 2	Set 1	Set 2	Set 1	Set 2	Set 1	Set 2	Set 1	Set 2
MILP	0.04	0.04	0.31	0.27	926.3	199.9	1784.7	73.3	18142.7	102672.3
CLP	0	0.02	0.04	0.14	3.84	0.38	553.5	9.28	68853.5	2673.9
Hybrid	0.02	0.01	0.52	0.02	4.18	0.02	2.25	0.04	14.13	0.41

In the following rerun, release dates, due dates and durations have arbitrary rational numbers (Harjunkoski et al., 2000)

	2M, 3J		3M, 7J		3M, 12J		5M, 15J		5M, 20J	
Problem	Set 1	Set 2	Set 1	Set 2	Set 1	Set 2	Set 1	Set 2	Set 1	Set 2
Hybrid	0.00	0.01	0.51	0.02	5.36	0.03	0.64	0.92	36.63	4.79

Outline

- Classification of scheduling problems
- Hybrid methods for handling the combinatorial complexity
- Another combinatorial problem
- Decomposition method for a large-scale problem
- Conclusions

Trim-Loss Problem (Harjunkoski et al., 1998)

Bilinearity: two-level problem

- 1) MILP: solve relaxed problem for the number of patterns needed
- 2) CLP: solve the exact pattern outlook fixed objective

Other approaches

- MILP approaches suffer from combinatorial explosion
- Only special class of problems suitable for CP/MILP integration
- Manual planning methods slow and inflexible
- Pure heuristics fast but solution quality may be bad
- Clear potential benefits in using/integrating mathematical programming into solution of large number of industrial problems
- Example: A decomposition strategy for steel industry

Outline

- Classification of scheduling problems
- Hybrid methods for handling the combinatorial complexity
- Another combinatorial problem
- Decomposition method for a large-scale problem
- Conclusions

Decomposition Method

Scheduling of a steel plant is among the most difficult industrial problems. Complexities arise from:

- Temperature requirements
- Chemistry constraints
- Material properties
- Equipment availability

Most strategies include heuristics or expert systems. Simulations are often used to verify decisions. Relatively few mathematical programming approaches.

Grades

The products of the steel making process are defined by their grades

- product quality description (chemical and physical)
- each grade has a given recipe that specifies temperature and chemistry at each stage
- grades are subdivided into subgrades
- subgrades have minor differences to actual grade (e.g. lower carbon content)
- Example: grade 301 can have a low-carbon subgrade 301L

Assumptions

- Grades and at their subgrades can be casted in the same sequence (in specific order)
- For simplicity, we assume here that grades are subdivided into subgrades a,b,c
- Besides their grades, orders (heats) are characterized by slab width and thickness
- Only one order can be assigned to one equipment at a time
- Most chemistry rules embedded in parameters i.e. not explicitly considered in the model

144

Problem Statement

- Given the grade constraints, production equipment and a number of customer orders (heats), find the schedule that minimizes the makespan following the recipe for each product grade.
- Producing a valid schedule for 10 heats is hard with MILP because of the problem size and complexity.

470 0-1 vars, 83 cont. vars., 1187 constr., > 10000 CPU-s

• Need to schedule one week production (80-90 heats).

Disaggregation

First step: group the heats into sequences and define the correct casting order

- This step is done separately for each grade
- For sub-grades, the casting order is $a \rightarrow b \rightarrow c$
- Grades presorted by width

10.0

- Casting order: decreasing width
- Upper limit for width change between heats
- Number of heats/group restricted
- Minimize number of sequences (setup time)

Allocation and sequencing constraints

Improvement

Aggregation: no individual machines. To fill the time gaps and remove empty capacity between jobs, an LP problem is formulated

- Fixed assignments and sequences (no binary variables)
- Machine and capacity constraints
- Possible maintenance and service
- Exact evaluation of makespan

Further improvement possible by making EAF into a variable

Improvement (LP)

By solving the LP-model, a tighter schedule can be obtained. Problem model combines earlier steps with fixed discrete decisions.

Summary	
 Steps of decomposition strategy Disaggregation done by multiple MILP-problems Sub-problems solved by 	Group the products into blocks of 1- <i>n</i> heats (x MILP)
 multiple MILP-problems Aggregation done by single MILP Due to interpret with LD 	Solve a scheduling problem to find the best block order (1 MILP)
Result improvement with LP	Solve the whole problem with fixed preference (1 LP)

Results

In the following, results from example problems are presented. The problems are weekly schedules. The problems were solved using GAMS/XPRESS-MP.

Problem	Grades/Subgr.	Heats/Seq.	CPU-mins*	Makespan
1	9/20	82/25	74	5d+14:14
2	10/17	80/20	334	5d+07:45
3	10/18	86/24	172	5d+21:02
4	9/17	84/21	173	5d+15:58
5	9/16	83/19	169	5d+12:53

MILP: Problem 1, single machine = $6724 \ 0-1 \ vars.$

*) PIII, 667MHz, Linux RedHat-6.2

