
Methods for solving large-scale 
scheduling and combinatorial 

optimization problems

Iiro Harjunkoski

(in collaboration with Ignacio E. Grossmann)

Department of Chemical Engineering
Carnegie Mellon University

Pittsburgh, PA 15213

http://egon.cheme.cmu.edu/

Seminar, NTNU, Trondheim, 3.1.2001 Recent Work

Vipul Jain and Ignacio E. Grossmann (2000). Algorithms 
for Hybrid ILP/CP Models for a Class of Optimization 
Problems. Presented at INFORMS, Paper SD32.1, Salt Lake 
City, UT.

Iiro Harjunkoski, Vipul Jain and Ignacio E. Grossmann 
(2000). Hybrid Mixed-Integer/Constraint Logic 
Programming Strategies for Solving Scheduling and 
Combinatorial Optimization Problems. Computers and 
Chemical Engineering, 24, 337-343.

Iiro Harjunkoski and Ignacio E. Grossmann (2000). A 
Decomposition Strategy for Optimizing Large-Scale
Scheduling Problems in the Steel Making Industry. 
Presented at AIChE Annual Meeting 2000, Los Angeles, CA.

Outline

Classification of scheduling problems

Hybrid methods for handling the 
combinatorial complexity

Another combinatorial problem

Decomposition method for a large-scale 
problem

Conclusions

Outline

Classification of scheduling problems

Hybrid methods for handling the 
combinatorial complexity

Another combinatorial problem

Decomposition method for a large-scale 
problem

Conclusions



Scheduling

Allocation of jobs into restricted resources or 
equipment

Often critical release and duedates

Both assignment and sequencing decisions are 
discrete: large number of binary variables

Often non-convexities or poor relaxations

Heuristics, AI-methods widely used for real problems

Mathematical programming can bring significant 
improvements into decision making!

Discrete time representation

Events can take place only at certain times

Uniform time discretization

Non-uniform time discretization

y
jmt
∈ 0,1 = 1 if job j starts at equipment m at time t

Flexible, easy to maintain linearity, sequencing done 
through constraints

M1

M2

M1

M2

time t

time t

Continuous time representation

Events can take place at any time
M1

M2

time t

yjm∈ 0,1 = 1 if job j is processed on equipment m

y
jj’
∈ 0,1 = 1 if job j precedes job j'

y
jj’m

∈ 0,1 = 1 if job j precedes job j' on equipment m

One set of variables for assignment & sequencing

Separate variables for assignment & sequencing

Complete time domain considered, no problems in 
finding optimal time grid

How to solve?

" A mathematician (thoughtful) might decide to ask a different 
question: Can I find an algorithm that is guaranteed to find a 
solution "close to optimal" in polynomial time in all cases?"

"An engineer would start looking for a heuristic algorithm that 
produces practically usable solutions."

--Wolsey, Integer Programming (Wiley-Interscience, 1998)

Extensive literature both in mathematical and 
engineering journals

Large amount of heuristic strategies
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Overview

Methods presented to overcome combinatorial 
complexity for large discrete optimization problems. 

Basic idea: combine mixed integer programming 
(MIP) and constraint programming (CP) and exploit 
complementary strengths. 

Illustration: parallel scheduling and trim-loss problems

Motivation

Scheduling problems are often huge and solution is 
required quickly

Jobshop: 10 prod., 1 mach. ⇒ 100 binary variables

Heuristic methods: solutions may be far from 
optimal

Branch-and-bound is not the only rigorous approach 
for handling integer variables

Logic based  Methods

Alternative logic based methods are:

Generalized disjunctive programming (GDP)      
(Raman and Grossmann, 1994)

Constraint logic programming (CLP)           
(Hentenryck, 1989)

CLP MILP&



Properties

MILP

Search is based on 
variables (B&B)

Relaxation important

All constraints evaluated 
simultaneously in a tree 
search

Software: OSL, CPLEX, 
XPRESS-MP

CLP

Focus on constraints

Requires well constrained 
problems

Constraint propagation at 
each node, domain 
reduction through implicit 
enumeration

Software: ILOG, ECLiPSe, 
CHIP

Comparison

Both MILP  and CLP: continuous and  integer 
variables

MILP: only linear constraints

CLP: linear and nonlinear constraints plus logic 
constructs e.g. implications

MILP: excludes large search areas ⇒ good for proving 
optimality and directing the search

CLP: finds a feasible solution fast ⇒ more efficient for 
feasibility check through constraint propagation

Integration

Optimize a relaxed MILP problem to its global 
optimal solution

Solve a feasibility problem with CLP to check the 
feasibility

Communication between steps important (cuts)  

Global optimum
relaxed MILP 

problem

Feasible solution
CLP problemCommunication

fixed variables, 
cuts

Requirements

Objective function separable: only a subset of the 
coefficients non-zero

Clearly defined relation between MILP and CLP 
models

MILP relaxation needs to be efficient

CLP part well-constrained 

Efficient cuts for eliminating more than a single 
solution



Scheduling Problem
(Jain and Grossmann, 2000)

Jain and Grossmann (2000): two subproblems

1) MILP: assignment problem, tight LP-relaxation, 
contains the objective function variables 

2) CLP: sequencing problem, no objective function 
variables, constraints with poor relaxations

These subproblems are joined by equivalence relations 

Job 1

Job i

Job n

Machine 1

Machine j

Machine m

MILP CLP

Scheduling MILP Formulation
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Hybrid Procedure

Analyze solution and
add cuts to the relaxed

MILP problem

Infeasible

Determine the 
equivalent variables 

(3) and solve the CLP 
problem (4) and (6) 

with a fixed objective

Feasible

Optimal 
solution

Feasible

No solution

Infeasible

Solve relaxed MILP 
problem

(1), (2), (5) + CUTS

Scheduling - Results

In the following rerun, release dates, due dates and durations have 
arbitrary rational numbers (Harjunkoski et al., 2000)

2 machines 3 machines 3 machines 5 machines 5 machines

3 jobs 7 jobs 12 jobs 15 jobs 20 jobs

Problem Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 Set 1 Set 2

MILP 0.04 0.04 0.31 0.27 926.3 199.9 1784.7 73.3 18142.7 102672.3

2M, 3J 3M, 7J 3M, 12J 5M, 15J 5M, 20J

Problem Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 Set 1 Set 2

Hybrid 0.00 0.01 0.51 0.02 5.36 0.03 0.64 0.92 36.63 4.79

CPU-s from Jain and Grossmann (2000)

CLP 0 0.02 0.04 0.14 3.84 0.38 553.5 9.28 68853.5 2673.9

Hybrid 0.02 0.01 0.52 0.02 4.18 0.02 2.25 0.04 14.13 0.41

Improvement

The solution times dropped dramatically, especially 
for the largest problems

The slowest hybrid example: 14.3 CPU-s

CLP and MILP: combinatorial explosion

Proposed strategy 1300 and 19000 times faster than 
the better one!!! 

5 machines

20 jobs

Problem Set 1 Set 2

MILP 18142.7 102672.3

CLP 68853.5 2673.9

Hybrid 14.13 0.41
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Hybrid methods for handling the 
combinatorial complexity

Another combinatorial problem

Decomposition method for a large-scale 
problem
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Trim-Loss Problem

Width (mm) Reels
330 12
360 6
370 15
415 6
435 9

Trim-Loss Problem

Width (mm) Reels
330 12
360 6
370 15
415 6
435 9

1800-2000 mm

Manual test 1:
330+360+370+415+435 = 1910 x 6
(330 - 6, 370 - 9, 435 - 3)

330+330+370+370+435 = 1835 x 3
(370 - 3 = 1110 mm < 1800 mm)

370+370+370+370+370 = 1850 x 1

Optimization:
330+330+360+415+435 = 1835 x 6
370+370+370+370+435 = 1915 x 4

Manual test 2:
330+360+370+370+415 = 1845 x 6
(330 - 6, 370 - 3, 435 - 9)

330+330+370+435+435 = 1900 x 3
(435 - 3 = 1305 mm < 1800 mm)

435+435+435+330+330 = 1965 x 1

Trim-Loss Problem: MINLP

Objective to minimize the 
waste / raw-paper usage

Spill has to be withing 
specified limits

Limited number of cuts 
per pattern

Bilinear demand constraint 
with integer variables: 
transformations needed

min∑
j∈J

c
j
⋅m

j
+C

j
⋅y

j

s.t.
B

max
B∆

max
≤∑

i∈I

b
i
⋅n

ij
≤B

max

∑
i∈I

n
ij
≤N

max

y
j
≤m

j
≤M

j
⋅y

j

∀ j∈ J
n

i,order
≤∑

j∈J

m
j
⋅n

ij
≤n

i,max

∀ i∈ I

m
j
,n

ij
,∈Z+ y

j
∈ 0,1

Trim-Loss Problem
(Harjunkoski et al., 1998)

Raw-paper

Bilinearity: two-level problem

1) MILP: solve relaxed problem for the number of 
patterns needed

2) CLP: solve the exact pattern outlook - fixed objective

Patterns j MILP

Products i CLP



...Trim-Loss Problem
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CLP

Equation (9) is replaced by bilinear (11) or linear (12) when 
solving the MILP resp. CLP problems 

min

s.t.

where

Hybrid Procedure

Solve relaxed MILP 
problem

(7), (9), (10), (12), (13) 

Optimal solution

Feasible

Solve the corresponding
CLP feasibility problem

with fixed objective value
(8), (9), (10), (11)

Feasible

Infeasible
No solution

Increase the
objective 
function
value

Infeasible

Example 1 2 3 4

MILP 2.91 15.46 10842.63 9884.15

CLP 265.31 7465.31 8508.77 >50000

Hybrid 0.09 0.64 65.45 52.34

Improvement

Even a loose integration fruitful

CLP could not solve problem 4

MILP around 10,000 CPU-s

Improvement factor: 130-190

Potential of further improvements by generating cuts 
for MILP relaxation

Example 3 4

MILP 10842.63 9884.15

CLP 8508.77 >50000

Hybrid 65.45 52.34

Trim-Loss examples

Width Order Max
330 12 14
360 6 7
370 15 17
415 6 7
435 9 10

Example 1

Width Order Max
280 14 16
325 26 30
360 25 29
395 27 31
405 35 39
455 30 34
515 32 37

Example 4

Width Order Max
290 15 18
315 28 32
350 21 24
455 30 34
615 24 27

Example 3

Width Order Max
330 8 10
360 16 18
380 12 14
430 7 9
490 14 16
530 16 18

Example 2

Width: 1800-2000

Width: 2100-2200

Width: 1900-2100

Width: 2000-2200



Other approaches

MILP approaches suffer from combinatorial 
explosion

Only special class of problems suitable for CP/MILP 
integration

Manual planning methods slow and inflexible

Pure heuristics fast but solution quality may be bad

Clear potential benefits in using/integrating 
mathematical programming into solution of large 
number of industrial problems

Example: A decomposition strategy for steel industry

Outline

Classification of scheduling problems

Hybrid methods for handling the 
combinatorial complexity

Another combinatorial problem

Decomposition method for a large-scale 
problem

Conclusions

Decomposition Method

Scheduling of a steel plant is among the most difficult 
industrial problems. Complexities arise from:

Temperature requirements

Chemistry constraints

Material properties

Equipment availability

Most strategies include heuristics or expert systems. 
Simulations are often used to verify decisions. Relatively 
few mathematical programming approaches. 

Steel Making Process

1 3 42

http://www.steel.org (American Iron and Steel Institute)

1) Hot iron and scrap mixed in EAF
2) Decarburization in AOD
3) Quality adjustments in LMF
4) Casting into steel slabs



Grades

The products of the steel making process are defined by 
their grades

product quality description (chemical and physical)

each grade has a given recipe that specifies 
temperature and chemistry at each stage

grades are subdivided into subgrades

subgrades have minor differences to actual grade (e.g. 
lower carbon content)

Example: grade 301 can have a low-carbon subgrade 
301L

Assumptions

Grades and at their subgrades can be casted in the 
same sequence (in specific order)

For simplicity, we assume here that grades are 
subdivided into subgrades a,b,c

Besides their grades, orders (heats) are characterized 
by slab width and thickness

Only one order can be assigned to one equipment at 
a time

Most chemistry rules embedded in parameters i.e. not 
explicitly considered in the model

Problem Statement

Given the grade constraints, production equipment 
and a number of customer orders (heats), find the 
schedule that minimizes the makespan following the 
recipe for each product grade.

Producing a valid schedule for 10 heats is hard with 
MILP because of the problem size and complexity.

470 0-1 vars, 83 cont. vars., 1187 constr., > 10000 CPU-s

Need to schedule one week production (80-90 heats).

Strategy

Orders

DISAGGREGATE (MILP)

SCHEDULE
SUBPROBLEMS

 (MILP)

Schedule

AGGREGATE (MILP)

Final Schedule
IMPROVE (LP)



Disaggregation

First step: group the heats into sequences and define the 
correct casting order

This step is done separately for each grade

For sub-grades, the casting order is a→b→c

Grades presorted by width

Casting order: decreasing width

Upper limit for width change between heats

Number of heats/group restricted

Minimize number of sequences (setup time)

Disaggregation

Grades are distinguished by color and sub-grades by 
pattern (a-solid, b-horizontal, c-vertical)

?

Disaggregation (MILP)
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Compatibility matrix: F
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heat í can be casted after i, 
else 0.

heat i
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il

sequence l

Scheduling of sub-problems

Second step: schedule each sequence, generated in the 
previous step, on equipment

Minimize makespan, in-process times and hold-time 
violations

Fixed casting order

Formulated as jobshop scheduling problem

EAF #2

Caster

EAF #1

AOD LMF



Scheduling of sub-problems

EAF#1

time

All machine & product constraints considered

Result: fully valid schedule for a small problem

Simplified mathematical model presented

Allocation and sequencing constraints

EAF#2

AOD

LMF

Caster

heats

Aggregation

Third step: decide the order of scheduled sequences

Results from step two ⇒ machine requirements

Consider due dates, mold thickness changes etc.

Special grade precedence constraints (e.g. wash 
grades)

Minimize makespan, tardiness, earliness

Formulate as flow-shop scheduling problem

Aggregation

time

Aggregation (MILP)
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Improvement

Aggregation: no individual machines. To fill the time 
gaps and remove empty capacity between jobs, an LP 
problem is formulated

Fixed assignments and sequences (no binary 
variables)

Machine and capacity constraints

Possible maintenance and service

Exact evaluation of makespan

Further improvement possible by making EAF into a 
variable

Improvement (LP)

time

time

∆t

By solving the LP-model, a tighter schedule can be 
obtained. Problem model combines earlier steps with 
fixed discrete decisions.

Summary

Steps of decomposition strategy

Disaggregation done by multiple 
MILP-problems

Sub-problems solved by 
multiple MILP-problems

Aggregation done by single 
MILP

Result improvement with LP

Group the products
into blocks of 1-n
heats (x MILP)

Solve the scheduling 
problem for each block 

separately (x MILP)

Solve a scheduling 
problem to find the best
block order (1 MILP)

Solve the whole
problem with fixed
preference (1 LP)

Results

In the following, results from example problems are 
presented. The problems are weekly schedules. The 
problems were solved using GAMS/XPRESS-MP.

MILP: Problem 1, single machine = 6724 0-1 vars.

*) PIII, 667MHz, Linux RedHat-6.2

Problem Grades/Subgr. Heats/Seq. CPU-mins* Makespan
1 9/20 82/25 74 5d+14:14
2 10/17 80/20 334 5d+07:45
3 10/18 86/24 172 5d+21:02
4 9/17 84/21 173 5d+15:58
5 9/16 83/19 169 5d+12:53
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Example

The result of Problem 1 is shown 
with a GANTT-chart of groups 
and the detailed schedule of one 
subgroup

GANTT−subgroup

EAF1

EAF2

AOD

LMF

CAST

Time [hs]

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

Conclusions

Future integration of CP/MILP methods (etc. ILOG)

Role of optimization more important

Only small part of problems identified yet

More demanding problems, challenge for modeling

Discrete optimization techniques needed for solving 
engineering problems: planning, design, synthesis

General methods needed for combinatorial search
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