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ARTICLE INFO ABSTRACT

Nowadays, there is a growing need for flying drones with diverse capabilities for both civilian and military
applications. There is also a significant interest in the development of novel drones which can autonomously fly
in different environments and locations and can perform various missions. In the past decade, the broad
spectrum of applications of these drones has received most attention which led to the invention of various types
of drones with different sizes and weights. In this review paper, we identify a novel classification of flying drones
that ranges from unmanned air vehicles to smart dusts at both ends of this spectrum, with their new defined
applications. Design and fabrication challenges of micro drones, existing methods for increasing their
endurance, and various navigation and control approaches are discussed in details. Limitations of the existing
drones, proposed solutions for the next generation of drones, and recommendations are also presented and
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discussed.

1. Introduction

Drones are flying robots which include unmanned air vehicles
(UAVs) that fly thousands of kilometers and small drones that fly in
confined spaces [1,2]. Aerial vehicles that do not carry a human
operator, fly remotely or autonomously, and carry lethal or nonlethal
payloads are considered as drones [3]. A ballistic or semi-ballistic
vehicle, cruise missiles, artillery projectiles, torpedoes, mines, and
satellites cannot be considered as drones [4]. Advances in fabrication,
navigation, remote control capabilities, and power storage systems
have made possible the development of a wide range of drones which
can be utilized in various situations where the presence of humans is
difficult, impossible, or dangerous [5,6]. Flying robots for military
surveillance, planetary exploration, and search-and-rescue have re-
ceived most attention in the past few years [7]. Depending on the flight
missions of the drones, the size and type of installed equipment are
different [6]. Considerable advantages of the drones have led to a
myriad of studies to focus on the optimization and enhancement of the
performances of these drones. According to the mentioned character-
istics, drones benefit from the potential to carry out a variety of
operations including reconnaissance, patrolling, protection, transpor-
tation of loads, and aerology [8—12].

Drones often vary widely in their configurations depending on the
platform and mission. There are different classifications for the drones
based on different parameters. Watts et al. [13] described a variety of
platforms. They identified advantages of each as relevant to the
demands of users in the scientific research sector. They classified the
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drones’ platforms for civil scientific and military uses based upon
characteristics, such as size, flight endurance, and capabilities. In their
drones’ classifications, they classified them as MAVs (Micro or
Miniature Air Vehicles), NAVs (Nano Air Vehicles), VTOL (Vertical
Take-Off & Landing), LASE (Low Altitude, Short-Endurance), LASE
Close, LALE (Low Altitude, Long Endurance), MALE (Medium
Altitude, Long Endurance), and HALE (High Altitude, Long
Endurance). In an overview of military drones used by the UK armed
forces, Brooke-Holland [14] classified drones into three classes. Class I
is subdivided into four categories (a, b, ¢, and d). The categorization
process is initially based on the minimum take-off weight combined
with how the drones are intended to be used and where they are
expected to be operated. This classification is shown in Table 1.

Arjomandi et al. [15] classified drones on the basis of weight, range
and endurance, wing loading, maximum altitude, and engine type.
They classified drones as super-heavy with weights more than 2000 kg,
heavy with weights between 200 kg and 2000 kg, medium with weights
between 50 kg and 200 kg, light/mini with weights between 5 kg and
50 kg, and finally micro drones with weights less than 5 kg [15]. This
classification which is defined based on drones’ weight is shown in
Table 2.

Gupta et al. [3] classified drones as HALE, MALE, TUAV (medium
range or tactical UAV), MUAV or Mini UAV, MAV, and NAV.
Cavoukian [16] categorized drones as three main types, namely, micro
and mini UAVs, tactical UAVs, and strategic UAVs. He divided the
tactical UAVs into six subcategories: close range, short range, medium
range, long range, endurance, and medium altitude long endurance
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Table 1
The proposed drones’ categorization by Brooke-Holland based on their weight [14].

Class Type Weight range
Class I(a) Nano drones W=200g
Class I(b) Micro drones 200 g <W=<2kg
Class I(c) Mini drones 2kg<W=<20kg
Class I(d) Small drones 20 kg < W<150 kg
Class II Tactical drones 150 kg < W<600 kg
Class IIT MALE/HALE/Strike drones W > 600 kg

Table 2

The proposed drones’ categorization by Arjomandi et al. based on their weight [15].

Designation Weight range
Super heavy W > 2000 kg
Heavy 200 kg < W=2000 kg
Medium 50 kg < W=<200 kg
Light 5kg <W<50kg
Micro Ws5kg

Table 3

The proposed drones’ categorization by Weibel and Hansman based on their weight [17].

Designation Weight range

Micro W<2lbs

Mini 2 IbssW<30 lbs
Tactical 30 Ibs<W<1000 lbs
Medium and high altitude 1000 IbssW=<30,000 lbs
Heavy W > 30,000 lbs

(MALE) UAVs [16]. Weibel and Hansman [17] classified drones as
micro, mini, tactical, medium and high altitude, and heavy types. In
Table 3, the proposed classification is indicated.

Australian Civil Aviation Safety Authority (CASA) [18] categorized
drones into three classes, namely, micro UAVs with weights less than
0.1 kg, small UAVs with weights between 0.1 kg and 150 kg, and large
UAVs with weights more than 150 kg for fixed wing models and more
than 100 kg for rotorcrafts [18]. United Kingdom - Civil Aviation
Authority (CAA) [19,20] classified drones into three types consisting of
small unmanned aircraft (weight<20kg), light UAV (20 kg<
weight<150 kg), and UAV (weight > 150 kg). Zakora and Molodchik
[21] classified drones based on their weight and range as follows: micro
and mini UAV close range, lightweight UAVs small range, lightweight
UAVs medium range, average UAVs, medium heavy drones, heavy
medium range UAVs, heavy drone large endurance, and unmanned
combat aircraft. They also categorized drones based on their missions,
namely, (1) attack UAV multiple applications, (2) attack UAV expend-
able, (3) strategic UAV, (4) tactical UAV, and (5) miniature UAV [22].
In Table 4, the presented drones’ classification by Zakora and
Molodchik is shown.

Nowadays different types of drones evolved from the advancement

Table 4
The proposed drones’ categorization by Zakora and Molodchik based on their weight and
flight range [21].

Designation Weight range Flight range

Micro and mini UAVs close range Ws5kg 25 km<R<40 km
Lightweight UAVs small range 5kg <W=<50kg 10 km<R<70 km
Lightweight UAVs medium range 50kg <W=<100 kg 70 km<R<250 km
Average UAVs 100 kg <W=<300 kg 150 km<R<1000 km
Medium heavy UAVs 300 kg <W=<500 kg 70 km<R<300 km
Heavy medium range UAVs 500 kg<W 70 km<R<300 km
Heavy UAVs large endurance 1500 kg<=W R<1500 km
Unmanned combat aircraft 500 kg <W R<1500 km
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Fig. 1. Spectrum of drones from UAV to SD.

in miniaturization of electronic components, such as sensors, micro-
processors, batteries, and navigation systems [23]. A wide variety of
drones were used for military and civilian purposes. Drones range in
size from vast fixed-wing unmanned air vehicle (UAV) to smart dust
(SD) which consists of many tiny micro-electro-mechanical systems
including sensors or robots. In Fig. 1, the spectrum of different types of
drones is presented.

As shown in Fig. 1, there is a spread spectrum of drones from UAV
class with maximum wing span of 61 m and weight of 15,000 kg [24] to
smart dust (SD) with minimum size of 1 mm and weight of 0.005 g
[25]. Between UAV and SD at both ends of the defined spectrum, there
are various types of drones, which are called micro drones, such as
micro unmanned air vehicle (WUAV), micro air vehicle (MAV), nano air
vehicle (NAV), and pico air vehicle (PAV) [7]. In this study, we offer a
new classification for drones which covers other types of classifications
with better and more comprehensive categorization. The rest of this
study is organized as follows: the unconventional classification of
drones is presented in Section 2. In Section 3, the various applications
of these drones are investigated and discussed. Design and manufac-
turing methods and their challenges are, respectively, studied in
Sections 4 and 5. Different propulsion systems and actuators for
drones, and their power supply and endurance are shown in Sections
6 and 7, respectively. Control and navigation, and swarm flight of
drones and conclusions are, respectively, presented in Sections 8—10.

2. Classification of drones

In the recent decades, due to the development of a smaller air drone
called micro air vehicle, the demands for intelligence missions have
been increased [26]. Therefore, nowadays, there is a serious effort to
design and fabricate air drones that are very small for special missions.
These efforts have resulted in the development of different types of
small drones with various shapes and flight modes. In Fig. 2, a
comprehensive classification of all of the existing drones is shown,
where HTOL is the abbreviation of Horizontal Take-Off and Landing.

Generally, drones can be categorized by their performance char-
acteristics. Features including weight, wing span, wing loading, range,
maximum altitude, speed, endurance, and production costs, are
important design parameters that distinguish different types of drones
and provide beneficial classification systems. Furthermore, drones can
be classified based on their engine types [15]. For example, UAVs often
apply fuel engines and MAVs use electrical motors. The types of
propulsion systems which are used in drones are different based on
their models. The offered classification of drones in Fig. 2 shows
different models of drones as a function of their configuration. The
indicated flowchart in Fig. 2 also considers the bio models of micro and
nano air vehicles, which are defined as live controllable birds or insects
and flying taxidermy birds.

2.1. Classification of UAVs

The main aspects that distinguish UAVs from other types of small
drones (such as MAVs and NAVs) include the operational purpose of
the vehicle, the materials used in its fabrication, and the complexity
and cost of the control system [27]. UAVs vary widely in size and
configuration. For example, they may have a wing span as broad as a
Boeing 737 or smaller than a radio-controlled drone [2]. Different
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Fig. 2. Different types of air drones.

mission requirements created various types of UAVs. For this reason, it
is often useful to categorize UAVs in terms of their mission capabilities
[15]. As indicated in Fig. 2, UAVs can be considered as HTOL
(horizontal take off landing), VTOL (vertical take-off landing), hybrid
model (tilt-wing, tilt-rotor, tilt-body, and ducted fan), helicopter, heli-
wing, and unconventional types. In Fig. 3, different types of unmanned
air vehicles are presented. In Table 5, the characteristics of different
types of UAVs shown in Fig. 3 are provided.

2.1.1. HTOL and VTOL UAVs

After many years of development in HTOL drones, there are four
configurations for these UAVs, which are specified by lift/mass balance
and by stability and control. They are tailplane-aft, tailplane forward,
tail-aft on booms, and tailless or flying wing UAVs [37]. The mentioned
configurations may have the propulsion systems at the rear of the
fuselage (see Fig. 3(a)) or at the front side of the UAV. Fixed wing
VTOL UAVs, often use a vertical propulsion system at the front of their
fuselage, as shown in Fig. 3(b), and have cross wings. This type of
drones can take off and land vertically and do not need runway for
takeoff.

2.1.2. Tilt-rotor, tilt-wing, tilt-body, and ducted fan UAVs

For hovering flight mode, the VTOL drones are more efficient than
HTOL ones. They have limitations in cruise speed because of the
stalling of the retreating blades, but usually for longer range missions,
UAVs with higher cruise speed are required [38]. However, the ability
of vertical take-off and landing is valuable. Due to these limitations, the
idea to have a type of drone which combines the capability of both
VTOL and HTOL types was introduced [39]. Therefore, nowadays,
there are different types of hybrid drones including tilt-rotor, tilt-wing,
tilt-body, and ducted fan UAV, as shown in Fig. 3(c), (d), (e), and 3(f),
respectively [40]. In tilt-rotor UAVs, at first, rotors are vertical in
vertical flight, but for cruise flight they tilt forward through 90°. In tilt-
wing UAVs, the engines are usually fixed to wings, and tilt with wing. In
this type of drone, the angle of the whole wing is changed from zero to
90°in order to convert its flight modes from horizontal to vertical. Both
of these configurations flew successfully as drones, but the tilt-rotor

UAV was the most efficient in hover flight and the tilt-wing UAV was
the most efficient in cruise flight.

The free wing tilt-body UAV, as shown in Fig. 3(e), is a new kind of
drones, distinct from fixed wings and rotary wings. It is neither fixed
wing nor rotary wing nor any combination of the two. In this type of
drones, the wing is completely free to rotate in pitch axis and the
fuselage is a lifting body. Both the left/right wing pair and the central
lifting body are free to rotate about the spanwise shaft, free with regard
to the relative wind, and free with regard to each other [41-46]. The
tilt-body is also an unconventional attachment of a boom type to a
fuselage such that it changes its incidence angle relatively to the
fuselage in response to external commands. The merits of this type
of drones are short take-off and landing (STOL), low speed loitering,
and reduced sensitivity to center of gravity (CG) variation [41].

The ducted fan UAVs, are drones where their ‘thrusters’ are
enclosed within a duct. The thruster of these drones is called ‘fan’.
This fan is composed of two contra-rotating elements for minimizing
the rotation of the body by a resultant torque. Ducted fan UAVs cannot
only take off and land vertically, but can also hover and be controlled by
two counter rotors and four control surfaces (vanes) [38,47]. Even
though the transition into, and back from cruise flight is easy, flow
separation from the duct is a concern [38].

2.1.3. Helicopter and heli-wing UAVs

Nowadays, researchers design and fabricate different types of
unmanned helicopters for vertical takeoff, landing, and hovering flight.
There are four types of helicopter UAVs, namely, single rotor, coaxial
rotor, tandem rotor, and quad-rotor [38,48]. Heli-wing UAVs are other
types of drones which use a rotating wing as their blade. They can fly as
a helicopter vertically and also fly as a fixed wing UAV, as shown in
Fig. 3(h) [49,50].

2.1.4. Unconventional UAVs

UAVs that cannot be placed in previous defined categories are
considered as unconventional UAVs. Bio-inspired flying robots are
usually placed in this group. For example, the FESTO AirJelly [51]
which was inspired from jellyfish, as shown in Fig. 3(i), is considered as
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Fig. 3. Different types of UAVs, (a) HTOL [28], (b) VTOL [29], (c) tilt-rotor UAV [30], (d) tilt-wing UAV [31], (e) tilt-body UAV [32], (f) ducted fan UAV [33], (g) helicopter [34], (h)

heli-wing [35], and (i) unconventional UAV [36].

Table 5
The characteristics of different types of UAVs [28-36].

Name Manufacturer ‘Weight Wing
span

[a] RQ-4 Global Northrop Grumman 14,628 kg 399m
Hawk

[b] SkyTote AeroVironment 110 kg 2.4m

[c] Bell Eagle Eye Bell Helicopter 1020 kg 7.37 m

[d] UAV Quad Tilt  cta GH Craft Ltd 23 kg 2m
Wing

[e] Specs (Model Freewing Tilt-Body 215 kg 4.9 m
100-60) technology (USA)

[f] V-bat MARTINUAV 31kg 2.74m

[g] MQ-8 Fire Northrop Grumman 225 kg to 8.4 m
Scout 1430 kg

[h] Boeing X-50 Boeing and DARPA 645 kg 2.71m
Dragonfly

[i] Air Jelly Festo - -

unconventional UAV. This drone glides in air thanks to its central
electric drive unit and an intelligent adaptive mechanism. This drone is
able to perform this task because it consists of a helium-filled ballonet.
AirJelly is the first drone with peristaltic drive. This new drive concept,
with propulsion based on the principle of recoil, moves the jellyfish
gently through the air [51,52]. There are other unconventional UAVs
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that fly differently than conventional UAVs including the FESTO flying
penguin [51].

2.2. Classification of uUAVs

A nUAV or small UAV (SUAV) is an unmanned aerial vehicle small
enough to be man-portable. It is usually launched by hand and does not
need a runway for take-off [53]. pUAVs are larger than micro air
vehicles (MAVs), but can be carried by a soldier, and smaller than
UAVs that cannot be carried and launched by hand. pnUAVs vary widely
in their configurations. As shown in Fig. 4, WUAVSs can be categorized as
HTOL, VTOL, hybrid model (tilt-wing, tilt-rotor, tilt-body, and ducted
fan), helicopter, ornithopter (flapping wing), ornicopter, cyclocopter,
and unconventional types.

HTOL, VTOL, tilt-rotor, tilt-wing, tilt-body, ducted fan, helicopter,
and unconventional pUAVs are similar to UAV models but often have
smaller size and weight compared to them, as shown in Fig. 4(a), (b),
(c), (d), (e), (D), (), and (k), respectively. In Table 6, the characteristics
of some pUAVs shown in Fig. 4 are provided.

2.2.1. Ornithopter pUAVs

An ornithopter, is derived from the Greek words of ornithos
meaning bird and pteron which means a wing, that is flying by opening
and closing its wings. The idea of inventing bird wings to fly refers back
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Fig. 4. Different types of pUAVs, (a) HTOL [54], (b) VTOL [55], (c) tilt-rotor [56], (d) tilt-wing [57], (e) tilt-body, (f) ducted fan pUAV [58], (g) helicopter [59], (h) ornithopter [60], (i)

ornicopter [61], (j) cyclocopter [62], and (k) unconventional pUAV [63].

Table 6
The characteristics of different types of pUAVs [54—60,62].

Name Manufacturer Weight Wing
span
[a] Q-11 Raven AeroVironment 1.91 kg 1.3 m
[b] HeliSpy II Micro Autonomous Systems 2kg -
LLC, USA
[c] ITU Tilt-Rotor Turkish UAV research - -
[d] QUX-02 Japan Aerospace Exploration 3.4 kg 1.38m
Agency
[f] T-Hawk DARPA - -
[g] Sniper 032 Alpha Unmanned Systems - 1.8m
[h] SmartBird FESTO 450 g 1.96 m
[3]1 Cyclocopter Korean Aerospace Research - -
ADEX Institute

to ancient Greek legends about Daedalus and Icarus. Roger Bacon, in
his writings in 1260 CE, was among the first to propose the idea of
advanced flying. Leonardo da Vinci, around the year 1490, began to
study the flight of birds. He concluded that humans are too heavy to fly
with wings attached to their arms. As a result, he thought about a
machine which allowed he pilot to move big wings by means of hand
axels, foot pedals, and a system of pulleys [64,65]. The first ornithopter
was built around 1870 in France by Gustav Trouvé who flew for about
70 m in an exhibition in France [64,66]. Recently, researchers designed
and fabricated some flapping wing drones. For example, FESTO
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designed a flapping wing, called Smart-Bird with a wing span equal
to 1.96 m can fly like a seabird [67].

2.2.2. Ornicopter nUAVs

An ornicopter is a helicopter without a tail rotor, but with wings
that flap like bird wings, as shown in Fig. 4(i). The name, ornicopter is a
contraction of the words ornithopter and helicopter. In other words,
ornicopter is a helicopter that flaps its wings like a bird to get into the
air [68]. Aeronautical engineers at Delft University of Technology
[68,69] thought that by flapping a helicopter's main rotor blades like
the wings of a bird, they can dispense with the tail rotor and avoid the
drawbacks of the NOTAR (NO TAil Rotor) system and increase the
freedom of movement by flapping like a bird [70].

2.2.3. Cyclocopter uUAVs

The cyclocopter or cyclogyro are pUAVs that use cycloidal rotors
which consist of airfoils rotating around a horizontal axis to generate
lift and thrust forces, as shown in Fig. 4(j). They can take off, land,
vertically, and hover like a helicopter. The cyclocopter wing resembles a
paddle wheel, with airfoils replacing the paddles [71]. Bin et al. [72]
from the National University of Singapore first built a cyclogyro ptUAV
that could hover and turn on the end of a tether [72].

2.3. Classification of MAVs

MAV airplanes are micro planes usually with a length smaller than
100 cm and a weight lower than 2 kg [73]. These drones are grouped
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Fig. 5. Different types of MAVs, (a) fixed wing [6], (b) flapping wing [83], (c) fixed/flapping-wing [84], (d) rotary wing [85], (¢) VTOL [86], (f) ducted fan [87], (g) tilt-rotor, (h)

helicopter [88], (i) unconventional, (j) ornicopter [89].

into nine categories: fixed wing, flapping wing, VTOL, rotary wing, tilt-
rotor, ducted fan, helicopter, ornicopter, and unconventional types.
These drones can carry visual, acoustic, chemical, and biological
sensors [74], as shown in Fig. 5. Different types of micro air vehicles
are attracting various disciplines including aerospace, mechanical,
electrical, and computer engineering [75]. The Defense Advanced
Research Projects Agency (DARPA) program limits these air drones
to a size less than 150 mm in length, width, or height and weighing
between 50 and 100 g [7,76], but after the advent of NAVs and PAVs,
the definition for MAV was changed. Therefore, in this review, the
dimensions of these drones are considered between 15 cm to 100 cm
and weight between 50 g to 2 kg. The smaller dimension of MAVs,
compared to UAVSs, provides them with the broader performance range
[6].

The first comprehensive research on MAV was performed in 1993
at RAND Institute [77,78]. In the past decade, due to the quick
advances in microtechnology, MAVs have drawn a great deal of
attention. As a result, in subsequent years, several research investiga-
tions were carried out on the micro planes [79,80]. In addition to their
small sizes, these types of planes are capable to fly at low speeds. MAVs
are mainly flying at low altitudes for various applications, such as
monitoring of dangerous locations, tracking of the specific targets, or
mapping. Flying of MAVs at low altitude places them within the
atmospheric boundary layer, a particularly turbulent regime which
makes them sensitive to these atmospheric disturbances [81].
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Therefore, design and fabrication of these air drones should be
accurately carried out. Conceptual design of micro air vehicles usually
differs from that of conventional UAVs design due to nontraditional
flight missions and decreased time required for design, production, and
evaluation of these drones [82].

As for VTOL, tilt-rotor, ducted fan, helicopter, ornicopter, and
unconventional MAVs, they are similar to pUAV models but have
smaller size and weight compared to them, as shown in Fig. 5(e), (f),
(g), (h), (i), and (j), respectively. The features of a few of the MAVs
shown in Fig. 5 are indicated in Table 7.

Table 7
The characteristics of different types of MAVs [6,83-86].

Name Manufacturer Weight Wing span

[a] Inverse Isfahan University of 430 g 43.2 cm
Zimmerman Technology

[b] Thunder I Isfahan University of 350g 70 cm

Technology

[c] NPS flapping-wing  Naval Postgraduate School l4g 23 cm

[d] Apollo IdeaFly 1200 g 35 cm

[e] VTOL UAS Cranfield Aerospace Solutions - -

[f] GFS 7 JL Naudin 526 g 60 cm
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2.3.1. Fixed wing MAVs

Fixed wing MAVs, as shown in Fig. 5(a), often consist of rigid wing,
fuselage, and tails which use a motor and propeller as their propulsion
system and can cover a wide range of possible operational environ-
ments including jungle, desert, urban, maritime, mountains, and arctic
environments [90,91]. Because of their small dimensions compared to
UAVs and low required power, fixed wing MAVs are quite covert, have
low radar cross-section, and are very difficult to detect [26,90].
Furthermore, advances in micro fabrication technology allow these
drones to be produced in large quantities and with low cost. Fixed wing
MAVs often apply a low-aspect ratio wing which is specified by a three
dimensional flow field [92]. Fixed wing MAVs which fly in environ-
ments, such as urban or forested areas, require short wings with low
aspect ratios since drones with longer wings are quite delicate and
likely to hit obstacles [93].

Because of the MAVs applications, such as data gathering or
patrolling, having high endurance and range is very important. It
should be mentioned that both of these features are proportional to lift
to drag ratio. Usually, fixed wing MAVs with more lift/drag values
perform better than those with lower values. Mueller's group [74,94]
demonstrated the importance of camber and wing shapes (planform)
by performing wind tunnel investigations. They indicated that cam-
bered plates provide better aerodynamic performance [95]. Fixed-wing
MAUVs have longer range and endurance and can fly at higher altitude
than flapping and rotary wing MAVs which usually perform indoor
missions with slower flight speed [96]. There are different types of
planforms which are: rectangular, tapered wings with swept leading
edges, Zimmerman, inverse Zimmerman, and elliptical [91,97].

2.3.2. Flapping wing MAVs

Flapping wings are usually designed in three classes, namely, MAV,
NAV, and PAV. The design of flapping wing MAVs (FWMAVs) are
inspired from birds, PAV flapping wings are inspired from insects, and
NAV flapping wings are inspired from organisms between very small
birds and huge insects, such as hummingbirds and dragonflies [98,99].
Flapping wing MAVs consist of the flexible and flapper wings which use
an actuation mechanism for their flapping motion. Most of the flapping
wings have flexible and light wings as observed in birds and insects
which indicate that the flexibility and weight of wings are important for
their aerodynamic proficiency and flight stability [100-102]. The
research on natural and manmade flapping wings showed that these
types of air vehicles have more complexities compared to fixed and
rotary wings mainly due to their complex aerodynamics [103].
Therefore, birds, bats, and insects have been investigated by biologists
and drone researchers for years, and active study in the aerospace
engineering community, motivated by interest in flapping wings, has
been rapidly increasing [104].

Biologic inspiration indicates that flying with flapping wings pre-
sents unique maneuverability advantages. There are fundamental
challenges for fixed and rotary wings to fly reliably when their sizes
are reduced. When the wing area is reduced, a flow transition to low
Reynolds number occurs which reduces the aerodynamic wing effi-
ciency [7]. In Table 8, the range of Reynolds number for different
classes of micro drones and the proposed wing configurations, such as
fixed wing, flapping wing, and rotary wing for each range are shown
[105].

Reynolds number is one of the main parameters that determines
the lift and drag of the air vehicles. For very small drones, it will most

Table 8
The range of Reynolds number for different types of micro drones [105].
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likely involve a laminar flow but for larger drones that have higher
Reynolds numbers, mixed laminar and turbulent flows occur with
possible transition. Furthermore, it can be seen that for Reynolds
numbers in the range between 10* and 10°, the drones exhibit a flow
phenomenon which is called laminar separation bubble (LSB) [105].
These LSBs usually create additional drag as they displace the outer
inviscid flow. Drones which are operated at low Reynolds number,
employ different ways to generate aerodynamic forces. For example,
fixed wing drones with low aspect ratio exhibit three dimensional flows
and laminar turbulent transition. Flapping wings generate unsteady
flows which determine the lift and drag. Fixed and rotary wing drones
that operate at low Reynolds number, are prone to flow separation
resulting in a drag increase and loss of efficiency. Even without flow
separation in these types of drones, the low Reynolds number results in
lower lift-to-drag ratios from O(100) to O(1) [105,106].

A flapping wing has the potential to benefit from the advantages of
other micro drone types [107]. The hovering ability of insects, coupled
with the ability for a quick transition to forward flight, provides an ideal
drone for search and rescue and other applications [108,109]. Flapping
wing MAVs can be designed and fabricated in three configurations,
namely, monoplane, biplane, and tandem [110]. The monoplane
flapping wings apply a single pair of wings to generate lift same as
birds, as shown in Fig. 6(b). The tandem ones have two sets of wings,
with one wing behind the other, flapping independently same as
dragonflies as presented in Fig. 6(b). The biplane configuration, shown
in Fig. 6(c), has two superimposed pairs of wings, with one wing set
over the other, and does not exist in nature [110-112]. In Table 9,
manufacturer, weight, and wing span of shown flapping wing drones in
Fig. 6 are provided.

2.3.3. Fixed/flapping-wing MAVs

Research in low Reynolds number unsteady aerodynamics and
flapping-wing propulsion has developed an unconventional flapping-
wing propelled micro air vehicle. Fixed/flapping-wing MAVs are hybrid
designs which use fixed wings for lift and flapping wings for propulsion,
as shown in Fig. 5(c). In this type of micro air vehicles, the drone
usually consists of a low aspect ratio fixed-wing with a trailing pair of
higher aspect ratio flapping wings which flap in counterphase [84]. The
flapping-wing part increases efficiency, provides a mechanically and
aerodynamically balanced platform, and quenches stall over the fixed
wing by entraining flow [84]. This type of drone also can be seen in
dragonfly with tandem wings, where they apply two pairs of wings to
increase the lift and thrust forces.

2.3.4. Rotary wing MAVs

One of the important merits of MAVs when compared to other
drones, such as UAVs, is their small dimensions, which allow them to
fly in confined spaces [113]. This is particularly true for rotary wing
MAVs that can hover and have a high maneuverability [114]. As shown
in Fig. 5(d), having rotary blades or propeller-based systems they are
called rotary wing drones. Unlike the fixed wing models, these drones
can fly in every direction, horizontally, vertically, and also can hover in
a fixed position [38]. These characteristics make them the perfect
drones for surveying hard-to-reach areas, such as pipelines, bridges, etc
[115,116]. Rotary wing drones, similar to helicopters generate lift from
the constant rotation of the rotor blades [38]. In this type of MAVs,
several blades may be used. Thus, nowadays, researchers designed and
fabricated different types of drones ranging from one to twelve motors.

Type PAV NAV MAV nUAV UAV
Reynolds number 10%-10* 10*-5x10* 5x10%-2x10° 2x10°-5x10° 5x105-2x10°
Configuration Flapping Fixed, rotary, flapping Fixed, rotary, flapping Fixed Fixed
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Fig. 6. Different configurations of FWMAVs, (a) monoplane, (b) tandem, and (c) biplane [112].

Table 9
The characteristics of flapping-wing drones with different configurations [110-112].

Name Manufacturer Weight Wingspan
[a] Slow Hawk 2 Kinkade R/C 397g 106.7 cm
[b] BionicOpter FESTO 175¢g 63 cm

[c] Butterflys spy drone  Israel Aircraft Industries (IAI) 12g 20 cm

Those consisting of one motor and blade are known as mono-copters
which were inspired from whirling seeds that fall from some trees
[117,118], as shown in Fig. 7(a). Rotary wing MAVs with two, three,
four, five, six, eight, ten, or twelve motors are called twin-copters, tri-
copters, quad-rotors or quad-copters, penta-copters, hexa-copters,
octo-copters, deca-copters, and dodeca-copters [119,120]. Among the
rotary wing MAVs, the quad-copters and hexa-copters are the best
known drones [27]. Different types of rotary wings are presented in
Fig. 7. In Table 10, the characteristics of some rotary wings presented
in Fig. 7 are given.

Table 10
The characteristics of rotary wing drones with different configurations
[121,122,124,125,127].

Name Manufacturer Weight Wingspan

[a] Monocopter Massachusetts Institute of
Technology (MIT)

Trek Aerospace Inc - -
Aeryon Labs of Waterloo, 1700 g 80 cm

Ontario, Canada

1755¢ 40.64 cm

[b] OVIWUN
[d] Aeryon Scout

[f] ZALA 421-21 ZALA AERO - -
[h] Distributed Flight  Raffaello D'Andrea - -
Array

2.4. Classification of NAVs

In addition to the micro air vehicles, DARPA started another
program on nano air vehicles (NAVs) [129,130] defined as extremely
small and lightweight drones with a maximum wing span length of

Fig. 7. Different types of rotary wing MAVs, (a) mono-copter [121], (b) twin-copter [122], (c¢) tri-copter [123], (d) quad-copter [124], (e) penta-copter, (f) hexa-copter [125], (g) octo-

copter [126], (h)deca-copter [127], (i) dodeca-copter [128].
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Fig. 8. Different types of NAVs, (a) fixed wing [133], (b) flapping wing [134], (c) helicopter [135], (d) monocopter [136], (e) quadrotor [137], (f) hexacopter [138], and (g and h)

unconventional [139,140].

Table 11
The characteristics of different types of NAVs [133-139].

Name Manufacturer Weight Wing span

[a] Black Widow AeroVironment 56.5g 15.2 cm

[b] Nano Hummingbird AeroVironment 19¢g 16 cm

[c] Black Hornet Nano Prox Dynamics 16g 10 cm

[d] Robotic samaras University of Maryland - 7.5 cm
monocopter

[e] CrazyFlie Nano Bitcraze 19g 9 cm
Quadcopter

[f] Mini X6 Micro Hexa- HobbyKing 52¢g 13 cm
copter

[g] Entomopter Georgia Tech Research 50g 15 cm

Institute

15 cm [129] and a weight less than 50 g [131]. These types of drones
have a range less than 1 km and a maximum flight altitude around
100 m [130,132]. There are different configurations for NAVs, such as
fixed wings, rotary wings, and flapping wings which are depicted in
Fig. 8. The features of a few of the NAVs shown in Fig. 8 are indicated
in Table 11.

2.5. Classification of PAVs

In the past few years, researchers tried to design and fabricate
drones in insects’ sizes [141—-144]. To this end, a new class of drones
was defined which is recognized as pico air vehicles (PAVs) [142].
Because of their small sizes and low weights, there are just a few types
of PAVs. Quadrotors and flapping wings are the designs used in the
PAV class. Between the mentioned types, recently, flapping wing PAVs
received more attention than rotary wings (quadrotor) because flap-
ping insects showed amazing flight performances, such as hovering,
abrupt acceleration, and rapid turning [141]. Many researchers worked
on microrobotic drones. Shimoyama et al. [143] were the pioneers who
worked on microrobotic flight. They proposed a conceptual design for a
microrobot with an external skeleton and elastic joints like in insects.
While different approaches were pursued by various groups to design
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flying microrobots, Dickinson et al. [144] tried to build an insect size
drone with a wing span of about 25 mm and weighing about 100 mg. In
order to investigate the butterfly flight, Tanaka et al. [141] developed a
tiny and light butterfly type flapping wing whose weight, wing span,
and frequency were equal to 0.4g, 140 mm, and 10 Hz, respectively.
Wood et al. [142] started the “RoboBee” project to design and
manufacture flapping wing PAVs. Different types of pico air vehicles
are depicted in Fig. 9. In Table 12, the characteristics of the two
fabricated pico air vehicles in Fig. 9 are shown.

2.6. Smart dust

Nowadays, the combination of nanotechnology, wireless sensor
networks, and micro-electro-mechanical systems (MEMS) has an
important role in a wide variety of applications, such as climate
control, building safety, and environmental monitoring [150]. One of
the interesting examples of a sensor network technology is the ‘smart
dust’ project which consists of hundreds to thousands of tiny micro-
electro-mechanical systems that can be used for light, temperature,
vibration, magnetism, or chemicals detection [151]. These robots are
usually distributed over some areas to perform their defined tasks. For
example, smart dust nodes can be moved by winds or can even remain
suspended in air for monitoring of weather conditions, air quality, and
many other phenomena [152].

The concepts for smart dust emerged from a workshop at RAND in
1992 and a series of DARPA studies in 1990 [153,154] and then later
expanded by Warneke et al. in 2001 [151]. Pister and his coauthors
[151,155] tried to design a wireless communication system for sending
and receiving data from smart dust systems. Smart dust usually
consists of many dust motes and each mote contains one or more
sensors, a power supply, analog circuitry, bi-directional communica-
tion, and a programmable microprocessor [156]. Depending on the
power source, which can be based on solar cells or thin film batteries,
the size of the dust motes can vary from 1 mm to 3 mm [155]. These
dust motes can be applied for both commercial and military applica-
tions. As for military applications, dust motes usually contain acoustic,
vibration, and magnetic field sensors which can be delivered to the



M. Hassanalian, A. Abdelkefi

Progress in Aerospace Sciences 91 (2017) 99-131

Fig. 9. Different types of PAVs, (a, b, ¢, and d) flapping wing [145-148], and (e) quadrotor [149].

Table 12
The characteristics of different types of PAVs [148,149].

Name Manufacturer Weight ‘Wing span
[d] RoboBees Harvard University 0.5g 3 cm
[e] Mesicopter Stanford University 1.5g 1.5 cm

target area by unmanned air vehicles (UAVs) or micro air vehicles
(MAVs). Recently, there is an effort to incorporate chemical and
biological sensors to dust motes [155]. In Fig. 10, schematic views of
smart dust are shown.

2.7. Bio-drones

Because of the importance of reconnaissance and patrolling in civil
and military applications, applying new instruments for these tasks has
received much attention. Sometimes, huge and enormous drones, such
as Global Hawk are designed and developed to perform these missions.
As mentioned before, however, micro drones with smaller dimensions
and weights could attract the attention of military and civil centers.
There are different techniques for the design and fabrication of small
drones. One of these techniques is the inspiration from birds and
insects. There are other techniques which propose the use of live or
dead birds and insects for reconnaissance and patrolling or other
missions instead of design and fabrication of artificial drones
[163,164]. Therefore, some live insects or birds that can be controlled
by using some electrical chips on them can be utilized. Next, the
different types of bio-drones will be discussed. In this review, the bio-
drones are divided into two categories, namely, taxidermy and live
drones.

2.7.1. Taxidermy bio-drones

One of the innovative ideas that was presented in the recent years is
using the dead bodies of animals or birds as flying platforms for drones.
In other words, the taxidermy bodies of animals and birds were applied
as structural part of drones and are combined with other parts, such as
electrical batteries and sensors. Jansen [165] was the pioneer of using
taxidermy bodies of animals as flying platforms. He applied the dead
bodies of different animals including cat, rat, ostrich, etc, in order to
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fabricate quad-copters (Orvillecopter and OstrichCopter), tricopter
(Ratcopter), etc. Even though the dead bodies of cats and rats are
not relevant examples of flight efficient structures, applying the same
concept for the taxidermied birds can be considered as new platforms
for flapping wings. Scientists at Duke University with cooperation of
engineering students and a taxidermist applied a taxidermied dead bird
animated by off-the-shelf robotics to study the behavior of the swamp
sparrow species. They programmed simple Picaxe computer chips and
built a tiny linear motor to fit inside the cavity of the bird named
Robosparrow [166]. Even though this taxidermy bird was used for
biology studies, it gives researchers new ideas to use taxidermy birds as
drones. Different types of taxidermy bio-drones are presented in
Fig. 11.

2.7.2. Live bio-drones

Development of low power radio systems and miniaturization of
digital circuits coupled with neurophysiology studies and dynamics of
birds and insect flight can provide the capability to control the birds’
and insects’ flights. According to advances in microfabrication technol-
ogy and considerable progress in understanding of insect flight,
researchers started to build insect size robots. However, because of
the limitations in current technology and knowledge of insect flight,
fabrication of tiny flyers which can fly well in real environments is a
difficult task. Nowadays, the smallest micro drone is the microrobotic-
fly which was built at Harvard Microrobotics Laboratory with 60 mg
total weight [167]. Even though these tiny drones are rapidly evolving,
they are currently struggling with difficulties in replicating the mechan-
ical efficiencies and power densities of existing power sources.

Recently, some researchers [168] have attempted to solve the
mentioned problems by merging synthetic control and communication
systems into living insects with the aim to control free flight. Also,
scientists from the Robot Engineering Technology Research Center at
Shandong University of Science and Technology in China could attach
an electronic chip to the brain of a pigeon which allowed them to
remotely control the pigeon movements. They used hair-thin electrodes
which were implanted in the brain of the pigeon in locations respon-
sible for movement [ 164]. Furthermore, the birds can be equipped with
some sensors, such as GPS, modems, and camera and released in the
target area to carry out the mission without having control on their
motions. Different types of live bio-drones are presented in Fig. 12.
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Fig. 10. (a) Structure of smart dust motes [157], (b, ¢, d, and e) smart dust motes [158—161], and (f and g) smart dust application [162].

2.8. Hybrid drones quadcopter was created by a company named ‘B’ that in response to the

flip of a switch, can transform the drone from a dirt-barreling tank into
Nowadays, some efforts are made to design and fabricate drones a sky-flying quadcopter (Fig. 13(a)) [173,174]. DALER robot is a drone

with different abilities that can be applied in various environments. that flies and walks [175] which consists of a flying wing with adaptive
Different drones were invented having the ability to walk and move on morphology that enables the robot to perform both the long distance
the ground and water or swim and dive under water. A hybrid tank- flight and walks in target environments for local explorations. This

Fig. 11. Taxidermy bio-drones (a) Orvillecopter, (b) Ratcopter, (c) OstrichCopter, and (d) Robosparrow [165,166].
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Fig. 13. Air-ground hybrid drones: (a) tank quadcopter [174], (b) DALER robot [175], and (¢) MALV [5].

drone was inspired from the vampire bat Desmodusrotundus which
can perform aerial and terrestrial locomotion with limited trade-offs
(Fig. 13(b)) [175,176]. Furthermore, the micro air-land vehicle
(MALV) which was designed by Bachmann et al. [5] is another drone
which can fly and walk over rough terrain using passively compliant
wheel-leg running gear(Fig. 13(c)). Parrot Hydrofoil is a drone that is
considered as a remarkable hybrid robot in both air and water
(Fig. 14(a)) [177,178].

Researchers from Rutgers University developed a flying and diving
drone to aid search-and-rescue operations, defuse underwater mine
threats, and monitor oil spills, (Fig. 14(b)) [179]. In addition, there is
another type of hybrid drone named HexH20, which has the capability
to fly and dive underwater (Fig. 14(c)) [180]. Researchers from the
Aerial Robotics Laboratory of Imperial College London designed a
multimodal flapping wing MAV which was inspired from an amphi-
bious bird that can fly, dive into the water, and retake flight. This
Aquatic Micro Air Vehicle (AquaMAV) is supposed to monitor the
water quality, and do search and rescue operations and underwater
explorations (Fig. 14(d)) [181]. In Figs. 13 and 14, the air-ground and
air-water hybrid drones are presented. In Table 13, characteristics of
different types of hybrid drones shown in Figs. 13 and 14 are provided.
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3. Applications of drones

The applications of drones cover a wide range of civil and military
applications. Drones can perform both outdoor and indoor missions in
very challenging environments [182]. Drones can be equipped with
various sensors and cameras for doing intelligence, surveillance, and
reconnaissance missions. The applications of drones can be categorized
in different ways. It can be based on the type of missions (military/
civil), type of the flight zones (outdoor/indoor), and type of the
environments (underwater/on the water/ground/air/space). In
Fig. 15, a flowchart of different types of drones’ applications is shown
[183,184].

As shown in Fig. 15, drones have a variety of applications in our
daily life. Drones can have more than two-hundred applications in
future according to their types [183,184]. For example, these drones
can be used for search and rescue missions, environmental protection,
mailing and delivery, performing missions in oceans or other planets,
and other miscellaneous applications [185]. These drones can provide
a rapid overview around the target area without any danger. Drones
equipped with infrared cameras can give images even in the darkness
[186]. For instance, because of their reduced dimensions, micro drones
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Fig. 14. Air-water hybrid drones: (a) Parrot Hydrofoil [178], (b) Rutgers University drone [179], (¢) HexH20 [180], and (d) AquaMAV [181].

Table 13

The characteristics of different types of hybrid drones [5,174,175,178-181].

Name Manufacturer weight Wing span
[13-a] B-Unstoppable ~ Bgobeyond 84¢g 23.5 cm
[13-b] DALER Laboratory of Intelligent 393g 72 cm
Systems (EPFL) and (NCCR)
[13-¢c] MALV Supported by U.S. Department 118 g 30.5 cm
of Defense
[14-a] Parrot Parrot 247 g 34 cm
Hydrofoil
[14-b] Rutgers Supported by the Office of 2000 g 90 cm
University drone Naval Research
[14-c] HexH20 QUADH20 4700 g 74 cm

Type of application

can be used for reconnaissance inside buildings. As reported in
[130,187], small drones are currently the only way to “look” inside
buildings in the battlefield. They can carry specific sensors to locate
biological, nuclear, chemical, or other threats [188]. Next, some of the
civil applications of the drones are discussed.

3.1. Search and rescue missions

One of the important applications of drones is using them in search
and rescue missions [189]. In search and rescue operations, every
second is vital. In order to function as efficiently as possible, it is
important to be able to obtain a rapid overview of the situation. While
manned airplanes and helicopters need time to be ready for doing the
mission, drones can be put into action immediately without any loss of
time [190]. Because of the important role of drones in search and
rescue missions, they attracted the attention of many researchers. To
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Fig. 17. Application of drones’ in environmental protection.

this end, several drones were designed and fabricated for performing
this type of missions [191-194]. In Fig. 16, different concepts of search
and rescue drones are depicted.

3.2. Environmental protection

Although drones are considered as a vital part of military missions,
they are also being increasingly used for performing environmental
actions, such as managing national parks and agricultural lands,
tracking wildlife in different areas, observing the effects of climate
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change, and monitoring the biodiversity of different ecosystems from
rainforests to the oceans [195]. These drones can be used for recogni-
tion and investigation of natural disasters including forest fires,
avalanches on mountains, etc [196,197]. In Fig. 17, some types of
drones which are used for environmental protection are shown.

3.3. Mailing and delivery

Recently, drone delivery service became an interesting topic for
different companies around the world. For example, Amazon and
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Fig. 18. Application of drones’ in mailing and delivery [198-200].

Google in the U.S [198,199], DHL post service in Germany [200], and
many other companies are using drones to deliver packages to
customers. For delivery, the designed drones land and take off
vertically and have the customer address to carry the cargos. In
Fig. 18, some delivery drones are presented.

3.4. Space drones

One of the environments in which drones can be used, is space and
the exploration of other planets, such as Mars. In planetary explora-
tions, because of the advantages of drones compared to other robots,
there is a tendency to design and fabricate some drones that can fly and
perform missions in space environments. For example, NASA is
building drones to explore other planets [201,202]. Different types of
drones were designed and fabricated in order to carry-out space

missions and planetary explorations [201-204]. In Fig. 19, some
examples of space drones are shown. It should be noted that design
and fabrication of space drones should be done based on that
environment. For example, because of the amount of gravity on
Mars, the weights of drones differ from their weights on Earth.
Indeed, the weights reduce by 61.5% [205].

3.5. Marine drones

As shown in Fig. 14, drones can be applied in the marine
environments to study marine organisms, identify the location of oil
spills, and for other military or civil applications [206—-208]. Because of
the lack of a runway in marine vehicles, such as submarine and boats,
most of the drones are launched vertically in these environments.
Launching drones from underwater was introduced at first by U.S

Fig. 19. Application of drones’ in space [201-204].
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Fig. 20. Drones’ in marine environments, (a) TacMAV [209], (b) Scan Eagle [210,211], (¢) Volans [212,213], and (d) Cormorant [214,215].

Table 14
The characteristics of marine drones [209-215].

Name Manufacturer Weight ‘Wingspan
[a] TacMAV Applied Research Associates Inc. 363 g 53 cm

[b] Scan Eagle Boeing 27 kg 3.7m

[c] Volans GABLER - -

[d] Cormorant Lockheed Martin - 13m

researchers in 2005 [209]. Nowadays, there are different types of
drones including Scan Eagle [210,211], Volans [212,213], Cormorant
[214,215], etc, which are launched from submarines. The successful
launch of these drones from submarines offered a pathway to perform
critical intelligence, surveillance, and reconnaissance missions. In
Fig. 20, different types of launched drones from underwater and
submarines are shown. The features of marine drones shown in
Fig. 20 are indicated in Table 14.

3.6. Drones’ miscellaneous applications

Despite of the conventional applications of drones, they can be used
in some non-ordinary missions. As an example, Tokyo's Metropolitan
Police Department unveiled its new anti-drones which are used to take
down naughty or offensive drones from the sky. In this type of
application, if a suspicious drone is detected, at first the operator is
warned. In case the operator is not found or the flight continues despite
the warning, an interceptor drone is scrambled to catch the suspicious
drone, as shown in Fig. 21(a) [216]. Moreover, drones can be used as a
runway for another drone (Fig. 21(b)) [217], can be applied to guide
(or scare) birds away from airport runways (Fig. 21(c)) [218], can be
used to clean windows, gutters, and solar panels (Fig. 21(d, e, and f))
[219], and for other applications, such as hobbies, as shown in
Fig. 21(g and h) [220].

4. Design methods and challenges

The design of drones regardless of their flight class, type, size, and
defined mission involves three steps, namely, conceptual design,
preliminary design, and detailed design [224-227]. Each step requires
increasingly sophisticated sizing, aerodynamic, aeroelastic, structural,
propulsion, stability, control, electronic, and fabrication analysis
[6,7,91]. It should be noted that, despite the progress in drone
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technology, there are some gaps in their design.

One of the important tasks in the design process of all types of
drones is sizing which results in the optimum values of their dimen-
sions and weights [6,91]. The sizing process of drones is usually
composed of five steps: (1) defining the mission, (2) setting the flight
mode based on the type, (3) determining the wing shape (planform)
and aspect ratio, (4) constraint analysis, and (5) weight estimation
[6,7,91]. In the definition of the mission, the analysis of the route is
conducted resulting in the determination of the flight time, cruise
speed, and turning speed. After that, the determination of the flight
modes, shape of the wing and its aspect ratio are determined based on
the type of mission. Then, to determine the appropriate wing loading
and thrust loading of drone, a constraint analysis is carried out in
which the kinematic and dynamic equations of the flight are simulated.
Along with the afore mentioned steps, different methods for weight
estimation can be employed. The result of this process is the determi-
nation of the geometry and dimensions of the drones and also the
calculation of some aerodynamic parameters for each type [91].

The sizing process should be performed as accurately as possible
[228]. In Fig. 22, a schematic view of the costs for the design and
fabrication of different types of drones is shown [229,230].

The trend shown in Fig. 22 is caused by the practical and
experimental issues that arise when scaling a drone, such as increased
or reduced power density of propulsion systems, electronic boards,
fabrication methods, etc. Small drones (WUAV, MAV, NAV, and PAV),
are not merely scaled down versions of larger airplanes [38]. Since all
the characteristics of larger airplanes have to be retained in a small
volume, the challenges and complexity in their design and fabrication
increase significantly. In recent years, although scientists tried to
design insect size drones, the miniaturization progress of these drones
has slowed down due to the physical and technological challenges
posed by the decreased size [130,231]. The important problem in these
types of drones is related to the low Reynolds number which results
from their low speed and small sizes [90,232]. Generally, flight in this
regime of flow is more difficult. Because of this, researchers started to
study the flight of insects [233-235]. Next, some challenges for
designing some types of micro drones are discussed.

4.1. Challenges in fixed wing micro drone design

Among the different types of micro drones, fixed wings are the most
developed and the easiest ones to design and fabricate. This is due to
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Fig. 21. Drones’ miscellaneous applications, (a) anti-drones [216], (b) runway drone [217], (¢) drones which scare birds away from airport runways [218], (d) windows cleaning drones
[219], (e) gutters cleaning drones [221], (f) solar panels cleaning drones [222], and (g and h) hobby drones [220,223].
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Fig. 22. A schematic view of the costs for design and fabrication of different types of
drones.

the fact that there are different methods for larger fixed wing airplanes
which can be applied with some modifications in aerodynamic and
geometric characteristics [236]. A wide variety of fixed wing drones was
developed by various organizations and researchers across the world
[7,91,237,238]. These drones have different flight speed, altitude, and
endurance depending on their defined mission [91]. These kinds of
drones in comparison with other types, such as rotary wings or flapping
wings require relatively higher speeds for flight. For example, the cruise
speed of fixed wing MAVs typically ranges from 6 to 20 m/s [7,130]. It
should be mentioned that this type of drones cannot hover or fly slowly
and flying in indoor spaces is very challenging for them. These drones
can be used in various types of missions where the high speed is
required, such as flying over water and forests.

Fixed wing drones usually require a thrust loading less than one
and less power to fly than a helicopter with the same weight in hovering
mode [239,240]. In larger drones, the lift over drag ratio is more than
30 [239]. This value is rapidly decreased for smaller drones and
consequently Reynolds number decreases [241]. Due to the decrease
in the velocity, and dimensions, the operating Reynolds number is
reduced and consequently the efficiency of the drone is also decreased
[99]. Therefore, the advantage of large fixed wing drones becomes less
pronounced when the lift over drag ratio is reduced to less than 10
[130]. Several fixed wing drones were designed and fabricated, but
none of them are in the PAV or NAV classes with dimensions less than
10 cm. Generally, to design fixed wing drones, researchers used trial
and error methods which increase the cost and time of the design

process [242-244]. Because of using trial and error methods in
designing fixed wing drones, their design cannot be considered
optimized due to uncertainties in weight estimation, sizing, selection
of the best wing shape and aspect ratio for maximum endurance.

4.2. Challenges in flapping wing design

To design bio-inspired flapping wing drones, some methods are
based on empirical formulae [245-256]. These formulae were estab-
lished based on allometrical data extracted from biological avian flight
[7]. The pioneers of these researches include Pennycuick [246,247],
Rayner [248,249], Tucker [250,251], Lighthill [252,253], and
Spedding [254]. Their empirical formulae related the design para-
meters of flapping wings, such as wing area, weight, and wing loading
to the flapping frequency, flight speed, and required power for flight. In
addition to that, these formulae related the geometry of the wing
including the area and wing span to the weight of the FWMAYV. These
empirical formulae were used for sizing of FWMAVs by some research-
ers, such as Beng [255] and Beasley [256]. In his design, Beasley [256]
utilized the biological mimicry for sizing the flapping wing. Indeed, by
using the geometric scaling factors for Passeriformes [257], the fixed
span, weight, flapping frequency, wing area, and aspect ratio of the
MAYV were determined from the logarithmic relationships [256]. Other
methods based on statistical and experimental sizing and testing were
applied. As an example, Gerard and Ward [110] designed their flapping
wing MAV based on existing FWMAVSs, such as Luna and DelFly.

There are other methods which were utilized for sizing of NAV and
PAV flapping wings. For instance, Whitney and Wood [103] proposed a
conceptual design process for insect-sized flapping wings with a
primary focus on hovering flight. Many assumptions were considered
in their method including linear and lumped representations to model
the dynamics of the vehicle and the blade-element method to model the
aerodynamic forces. In their method, after developing a dynamic model
for the flapping wings, they used energy methods to determine the
fractions of the actuation mechanism and mass of the battery.
Combining this sizing methodology with derived limits on wing
structural-inertial efficiency, the range of feasible designs and the
limits of performance of the flapping wing PAVs were specified.

Most of the mentioned sizing methods were based on allometric
formulae extracted from natural birds and insects which were applied
directly for sizing of artificial flapping wings without taking into
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account the impacts of other parameters including the used materials
for the wing membranes. Using the empirical formulae of natural birds
and insects, non-optimized micro drones are designed. Therefore, these
empirical formulae should be revisited and probably some correction
factors are needed [7].

After sizing and during design process of flapping-wing drones,
different aerodynamic and structural analyses can be performed on
them [258]. Usually, in natural and manmade flapping wings, their
aerodynamic, structural and flight dynamics intersect with some of the
richest problems, such as unsteady three dimensional separation,
transition in boundary layers and shear layers, unsteady flight envir-
onment, aeroelasticity and anisotropic wing structure, and nonlinear
and adaptive control [259]. There are different theories which are used
to model the aerodynamic forces of the natural and manmade flapping
wings, such as quasi-steady, strip theory, unsteady, and Navier—Stokes
methods. It should be mentioned that the type of analysis is dependent
on the type of flapping wing, its configuration, and flight modes. For
instance, the complexity of aerodynamic analysis is increasing for
flapping wings in tandem wing configurations. This wing configuration
has been used by nature's flyers, such as dragonflies. Studying the
unsteady flow interactions between two wings is more complex than
the case of a single wing; however, two pairs of wings can provide
increased lift and thrust and gust resistance [260].

Many researchers, such as Azuma [261], Lighthill [262],
Maxworthy [263], Norberg [257], Pennycuick [264], Spedding [265],
and Weis-Fogh [266] opted to use a quasi-steady aerodynamic model
[99]. This model is centered on a slow wingtip speed relative to the
overall velocity of the body [267]. This theory is constructed based on
the instantaneous velocity, wing geometry, and angle of attack when
the steady-state aerodynamic model is used. Using a quasi-steady
model greatly simplifies the aerodynamic model because it allows
neglecting the wing motion and flow history, or in other words, the
wake effects caused by unsteady motion [99]. Although this approach
can greatly reduce the complexity of the modeling, it falls short in
accounting for the unsteady effects seen in flapping motion [267].
Many animals and systems exhibit flight that can be accurately
modeled by the quasi-steady approximation but others, like many
insects, have very high flapping frequencies that generate unsteady
contributions to the aerodynamics of the flight [268]. Based on the
theoretical analyses of Ellington [269] and the experimental measure-
ments of some tethered insects [270,271], it has been indicated that the
quasi-steady model is insufficient to predict the required lift to support
insect body weight [99].

Another common theory was used to model the flapping motion of
natural and manmade flapping wings, is strip theory [107,272]. This
theory is based on dividing the wing into multiple sections and creating
an integral function to account for the effects of each strip into an
accurate aerodynamic model. This strip theory can be used to
determine the average lift and thrust through the cycle of the flapping
motion of the system [273]. Strip theory was utilized by many
researchers in order to study the performance of flapping wings
[107,255,268,273—-275]. Benedict et al. [275] wrote a code in C++
for the strip theory. He considered the same assumptions which were
implemented by DeLaurier [107]. His code was written to calculate the
aerodynamic parameters using the unsteady strip model. Zakaria et al.
[273] applied the strip theory to computationally study the unsteady
aerodynamics of the commercial flapping wing (SlowHawk 2). Beng
[255] wrote a Matlab code for the strip theory and applied it for
Pterosaur replica to evaluate his code with the obtained result by
DeLaurier [107] and Kamakoti et al. [274]. Hassanalian et al. [272]
developed the strip theory in Scilab to study the wing shape and
dynamic twist design of bio-inspired nano air vehicles for forward
flight. In this study, the wing shapes of seven insects were chosen to be
analyzed for their aerodynamic performance and ability to perform
forward flight missions [272].

Aerodynamics of birds and insects during the flapping flight can be

116

Progress in Aerospace Sciences 91 (2017) 99-131

also modeled within the framework of unsteady Navier—Stokes equa-
tions [99]. In this method, nonlinear physics with multiple variables,
such as velocity and pressure, and time-varying geometries are among
the aspects of interest [99]. This theory is applied and developed by
many researchers. Liu and Kawachi [276] and Liu et al. [277]
conducted unsteady Navier—Stokes simulations of the flow around a
wing of a hawkmoth, to study the unsteady aerodynamics during the
hovering flight. They modeled a realistic geometric wing and flapping
kinematics of the considered insect and observed the features of the
Leading Edge Vortex (LEV) and the spiral axial flow during transla-
tional motions [99]. Their results are consistent with those observed by
Ellington et al. [278]. Also, using 3D Navier—Stokes computations,
Viieru et al. [279] and Shyy and Liu [280] investigated the Reynolds
number effect on the LEV for hovering flight.

Beside the discussed methods, different experimental approaches
can be carried-out to study the aerodynamic of flapping wings. As an
example, for flow field investigations, particle image velocimetry (PIV)
is usually applied by researchers [259]. The combination of different
aerodynamic theories and applying the experimental study in parallel
can be proposed as the best way to have more realistic results.

4.3. Challenges in rotary wing design

Rotary wing drones are designed based on the number and
positions of their motors. These drones can fly with high speeds and
perform the vertical take-off, landing, and hovering flight [38,281].
Micro rotary wing drones can fly in indoor spaces and are perfect for
patrolling [282,283]. Generally, the endurance of these types of drones
is restricted due to the required higher power for the hovering flight
mode [130]. There are many challenges in designing these drones when
their size and weight are decreased. For instance, when they have low
thrust loading and the efficiency of rotors is low [284]. Despite these
disadvantages, rotary wing drones can fly with high and low speeds and
also can perform hovering flight based on the defined mission [285].

Based on the number and position of the motors, there are different
configurations for rotary wing drones [38,286]. Each one of these
configurations is suitable for specific types of missions. To this end, the
selection of each configuration depends upon the mission require-
ments. For example, if the drone is supposed to perform a maneuver-
able mission, the quadrotor or hexacopter drones should be consid-
ered. Generally, for rotary wing drones, weight is an important
criterion. Nowadays, there exist several prototypes of these types of
drones in different dimensions. Although the rotary wings have simple
control systems and they are very maneuverable, their main disadvan-
tage is the power consumption [287,288].

4.4. Challenges in tilt-wing and tilt-rotor design

Since the beginning of the 21st century, many researchers and
companies tried to invent effective flying drones with improved
performance and capabilities [289]. In the past few years, tilt-rotor
and tilt-wing drones were developed because of their excellent perfor-
mance [290]. These drones have the capabilities to carry out the
vertical flight capabilities of rotary-wings with the high speed long
duration flight of fixed wing drones [291]. In other words, the tilt-rotor
and tilt-wing drones’ configurations have the potential to alter the air
transportation by providing a combination of vertical take-off and
landing capabilities with efficient high-speed cruise flight [292,293].
These types of drones have a bright future in military and civilian
applications [294]. Although, fixed wing drones suffer from the
requirement of runways or additional launch and recovery systems
for take-off and landing, tilt-rotor and tilt-wing drones could solve
these issues [295]. These drones can perform a vertical take-off and
landing (VTOL), hovering, and high cruising speed flight by changing
the angle of the rotor or wing by a tilt actuation mechanism [296].
Among different types of these drones, tilt-rotors have attracted many



M. Hassanalian, A. Abdelkefi

designers because of their energy efficiency, stability, and controll-
ability in various missions [297,298].

The design procedure of tilt-rotor drones is a combination of fixed
and rotary wing drones which has their same challenges [38]. One of
the challenging issues in tilt-rotor drone design is their transition
mode. This is due to the fact that the conversion of flight modes
between vertical and horizontal configurations necessitates a different
control strategy [299]. However, because of the complexity in transi-
tion mode, further studies of these drones are needed [293,300]. In
these drones, degradation of stability is usually found at high-speed in
forward flight mode and the involved equations of motion are highly
coupled and nonlinear [292]. Researchers made several studies on the
dynamic and control models of these types of drones [301-304].
However, most of them applied linearization techniques which make
their results inaccurate due to the neglect of the present nonlinearities
[290]. Most of the researches on tilt-rotor and tilt-wing drones have
been done on dual tilt-wings, such as HARVee [305] and dual tilt-
rotors including Bell Eagle Eye, BIROTAN and Smart UAV of KARI
[292]. A cyclicrotor control is required in dual tilt-rotor drones which
increases the mechanical complexity [291].

Different control methods were offered to perform autonomous
transition maneuvers for tilt- and wing-rotor drones [287-290].
Cetinsoy et al. [291] invented a new drone called SUAVI which can
perform vertical take-off and landing like a helicopter and also is
capable to fly like an airplane. In their work, their analysis was missing
the transition maneuver which is the most interesting phenomenon in
this kind of drones [306]. Naldi and Marconi [307] offered an optimal
transition maneuver for the tail-sitter V/STOL. Some numerical
trajectories at simulations levels which show the transition maneuver
were applied. In most of the tilt-rotor drones, as performed in several
studies [291,308-310], the control problem of the transition maneuver
was analytically considered and the hovering and cruise flights were
investigated separately. Therefore, for the hovering and cruise flight
modes, the controllers are extracted individually, using a switching
condition but without developing any analysis between the mentioned
flying modes.

4.5. Proposed solutions for design challenges

To overcome the mentioned challenges for different types of micro
drones, developers and designers of drones should consider various
parameters in the design process which can result in developing
optimized drones. As discussed in the previous sections, each type of
drones and their design methods have advantages and disadvantages.
Therefore, by using theoretical, statistical, revised allometrical, and
bio-inspiration methods, a comprehensive methodology can be pro-
posed which finds solutions for the drawbacks of previous methods.
Various types of drones can be introduced by taking inspiration from
nature [311]. In current design theories of drones, the ability to
transform and change the configuration can be considered as a new
field of research. Even though some methodologies are currently in
development that can allow for designing of transformers drones, they
should be more considered for the design of lightweight, quickly
deployable, easily operable, and low storage volume wings for un-
manned and micro aerial vehicles [312]. It should be noted that
inspiration from nature can introduce some new models to design.
For example, inspiration from nature including armadillo, wheel
spider, locust, ladybird or even Venus fly trap can give researchers an
idea to design and fabricate some drones with cumulative wings, as
shown in Fig. 23.

In summary, in the design process of drones, two parts should be
considered, the first one is drones’ configuration and the second one is
their design methodology. Recently, there are some efforts to design
drones with unconventional configurations which almost are inspired
from nature, such as birds, insects, marine organisms, etc [51]. In Fig. 24,
some drones which have the capability to fold their wings are shown.
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5. Manufacturing methods for micro drones and challenges

According to the type and class of the drones, there are different
methods and materials which are used to manufacture them. Generally,
the fabrication process is one of the important steps in the creation of
drones. In fact, every step in the manufacturing process affects the final
performance of the drone. Thus, in the manufacturing stage of drones,
it is important to determine the manufacturing method and the used
material to fabricate them. Usually, according to the type and class of
the drones, each part of them can be fabricated with different methods
and materials, and then they can be assembled [6,7]. It should be
mentioned that the selection of the fabrication method is related to the
used materials and the selection of the materials is dependent on the
type of structural parts of the drones and the required criteria for their
weight, strength, stiffness, etc. Next, different methods and materials
which are applied in manufacturing of drones are reviewed.

5.1. Manufacturing of fixed wing drones

Fixed wing UAV, nUAV, and MAV drones, usually consist of wing,
fuselage, booms, vertical and horizontal tails. Each part of the drone is
fabricated with different materials and methods. The applied materials
in fixed wing drones can be metallic materials, such as aluminum which
are used in huge UAVs, composite materials including kevlar, fiber-
glass, fiber carbon and other materials including wood, Styrofoam, and
plastics (PVC) which are applied in the fabrication of fixed wing MAVs
and pUAVs [317]. Nowadays, composite materials are considered as
popular materials in the manufacturing process of drones. Unlike
metallic materials, the actual material properties of composites are
generally not available because their properties are dependent on the
manufacturing process [318]. The current materials technology enables
the access to different types of composite materials.

Recently, with the advances in the composite manufacturing
technology, very complex shaped parts can be easily built. Thus, most
of the UAVs are built from composite materials. Moreover, the
maintenance and repair processes of UAVs can be performed quickly
and easily [318]. Also, composite materials are the most popular
technology employed in pUAVs and MAVs structures. Indeed, this
type of material provides high accuracy and good quality of surface in
these types of drones. Generally, the important advantage of composite
material is the possibility of manufacturing airframes with very
complicated shapes. The disadvantage of this material is the high cost
of the mould preparation [319].

The composite material manufacturing process consists of different
steps, such as 3D CAD shape design, CNC mould milling, wet lay-up,
prepreg laminating, high temperature curing, and off mould fettling/
dressing [319]. There are various fabrication methods for preparing a
composite material from continuous fiber and non-metallic matrix
material. Some of them are matched die molding, vacuum bagging,
filament winding, and resin transfer molding. One of the main features
of the vacuum bagging method compared to curing in autoclave is that
it is less expensive to set up [318]. In Table 15, a comparison between
some conventional used materials in fixed wing drones including
aluminum sheet, wood, Styrofoam, plastics (PVC), and carbon fiber is
presented.

As shown in Table 15, different factors are listed to compare
between the different used materials including stress factors, manu-
facturability, and cost [321]. It should be noted that each of the
mentioned materials are used for a specific part of the drone. For
example, balsa wood is usually used to fabricate the fuselage of micro
drones with low weight. As presented in Table 15, the only drawback of
balsa wood is that its strength is low compared to metal materials, such
as aluminum or steel. However, in terms of manufacturability, balsa
wood is one of the best materials for micro drones among others. Balsa
wood has light weight compared to aluminum, carbon rod, stainless
steel, and iron. The cost for manufacturing of balsa is low as it is soft
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Fig. 23. Views of (a) armadillo, (b) wheel spider, (c) locust, (d) ladybird, and (e) Venus fly trap.

and can be crafted manually without any machine [321,322]. Usually,
balsa wood is selected to fabricate the fuselage and tails of drones in
WUAV and MAV classes with low weight [6,7].

The wings of fixed wing micro drones are usually fabricated from
foam or composite materials. Recently, there are different types of
foam that have the lowest density in comparison with other materials
[317]. Because of the lowest strength of foam; it is usually used in the
fabrication of pUAVs and MAVs. Hotwire cut is the best and easiest
way for manufacturing the wings [6,91,323]. Other materials which can
be used in drones’ structures fabrication are composite materials, such
as carbon fiber, fiber glass, etc. Carbon fiber reinforced polymer has
higher strength than fiber glass and they are cheaper than spectra fiber.
However, carbon fiber can be reinforced by resin matrix under heated
condition to achieve their maximum hardness and strength. This
increases the complexity of the manufacturing method [321].
Therefore, carbon fiber reinforced polymer is not a suitable material

to fabricate the skin of yUAV and MAV classes. In comparison with
carbon fiber reinforced polymers, fiberglass is considered as a light-
weight, extremely strong, and robust material that can be utilized in
drones’ fabrication. Although the strength properties of fiberglass are
somewhat lower than carbon fiber and it is less stiff, their material is
typically less brittle, and its raw materials are much less expensive
[324].

5.2. Manufacturing of flapping wing drones

The manufacturing process of flapping wings and the applied
materials in their structures are different from other types. The
fabrication techniques are dependent on the class of the flapping
wings. For instance, the materials and methods which are used for
flapping wing PAVs are different from flapping wing MAVs [325].
Flapping wing drones usually consist of wing, fuselage, tails, and

Fig. 24. Views of different types of drones with folding wings [313-316].
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Table 15
Comparison between different types of materials [320].

Progress in Aerospace Sciences 91 (2017) 99-131

Material Density (g/cm?®) Tensile strength @73°F (psi) Stiffness Mpa Methods of manufacturing Price
Aluminum 2.7 30,000 70,000 Forging Expensive
Wood 0.8 550 10,000 Adhesive bonding Cheap
Styrofoam 0.18 100 5000 Hotwire cut by CNC Cheap

Plastics (PVC) 1.15 7000 3000 Vacuum forming Very cheap
Carbon fiber 1.78 10,0000 50,000 Epoxy resin Very expensive

actuation mechanism. The wing that constitutes the main part of
flapping wing drones consists of a structural part (spars and ribs) and a
membrane. The light-weight materials used in the building of the wing
and tails of the flapping wing MAVs are foam, wood, composite
materials, such as fiberglass and fiber carbon, and flexible membranes,
such as mylar or plastic tissues [256]. Composite materials and foam
are usually utilized for the fabrication of the fuselage. To have
symmetric wings, a well-controlled manufacturing method should be
applied for constructing and assembling the wings. In fabricating
flapping wing MAVs, usually a practical cut-and-glue method is
applied, which is considered as the simplest and cheapest way [111].
However, this method is not accurate because all steps are done by
hand and therefore there are many uncertainties. As an example, the
ribs, diagonal, and leading edge spars are often not glued symmetrically
on the wings [111]. For flapping wing MAVs, conventional manufac-
turing methods such as, 3D printing, subtractive machining, and
molding of applied materials are usually used for the fabrication of
the actuation mechanism [23].

There are other methods which are applied for the fabrication of the
wings of the flapping wing drones which are more accurate than the
hand-made ones. The latter method is usually used in the fabrication of
small flapping wings in the NAV and PAV classes. Because their
dimensions are reduced, in addition to actuation mechanism and
power system selection, there are also some challenges for the
manufacturing of the entire drone [23]. At small scales, such as small
bird-and insect-size drones, some of the mentioned techniques fail
because of the restricted resolution. Nowadays, other methods are
proposed and developed. For instance, to avoid the challenges that are
inherent in macro-scale nuts-and-bolts approaches, some methods
based on folding are being used to create insect-sized drones
[23,326]. Also, the fabrication of a wing for an insect-size drone is a
challenging task because of the needed flexibility distribution on the
wing [327].

5.3. New materials and techniques in drones’ fabrication

Nowadays, researchers are trying to introduce new materials for the
fabrication of drones which have lighter weight and lower prices. For
example, a team of researchers from UC Irvine [328] developed the
world's lightest material which is about one hundred times lighter than
Styrofoam. This new material can be used in the fabrication of drones.
Kolodziejska et al. [329] proposed micro-sandwich structures with
areal densities from 0.04 g/cm? down to 0.005 g/cm? that could
potentially be used in the fabrication of wings or propellers of insect-
like robots or other micro drones. Self-destructing drones can be made
of fungus, bacteria, and wasp spit which are proposed to keep the
drones invisible when they are engaged in spying activities [330]. As
mentioned above, the manufacturing approaches of drones are differ-
ent according to the used materials. 3D-printing is one of the recent
methods which allows drones to be created quickly and cheaply
[331,332]. The fabrication of inflatable drones can be also considered
as a new manufacturing method which was proposed by Chinese
engineers [333]. These drones have lightweight design and high impact
resistance [333]. In Fig. 25, some new materials and manufacturing
methods are shown.
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One of the solutions is to use bird feathers and insect wings which
can be considered as the main material for the fabrication of the micro
and nano drones, especially for flapping wing drones. Using these
natural wings and structures can help the drones to fly efficiently.
Indeed, these types of materials can provide the drones the best
flexibility for their wings.

6. Propulsion systems and actuators of micro drones

All of the presented drone configurations need to generate motion.
Therefore, there are different ways to make a drone fly [130]. The
propulsion system of drones differs according to their shapes and flight
modes. For some types of the drones, such as fixed wing UAVs the
propulsion system is usually similar to that on conventional aircraft.
Thus, these drones do not need a unique propulsion system. Therefore,
such drones can avoid the time and expense of developing new systems
[334]. On the other hand, some types of drones require new propulsion
technology. Thus, they need new designs and concepts. In propulsion
systems, power and energy densities are two important factors. Power
density is a measure of the power converter and energy density is a
measure of the energy in the power source and the conversion
efficiency of the engine [334,335]. The propulsion system for a drone
is proportional to the weight, size, mission, endurance, etc. The
selected system must provide fuel economy (gas or battery), low
weight, small size, and high reliability. Generally, for all types of
drones, propulsion systems (engines, fuels, and actuators) typically
constitute 40-60% of their take-off weight [334]. It should be men-
tioned that the performance of the propulsion system has an enormous
effect on air vehicle performance [335].

For fixed, tilt, and rotary wing UAVs, there are different types of
propulsion systems which can be used including fuel engines (gas
engine, piston engine, jet engine, gas turbine engine, wankel engine,
injected engine, etc.) and electrical motors (brushed and brushless).
Between the fuel engines, the gas turbine engines are superior to other
alternative engines due to their higher power to weight ratio 3—6 times
more than piston engines) and reliability [38,334]. These gas turbine
engines can also operate for a long time compared to piston engines
[319,336]. However, because of the low cost and the lack of availability
of small high-performance gas turbine engines, the small piston
engines in current UAVs are more applicable. In other words, alter-
native propulsion systems may only be desirable when suitable gas
turbines are not available [334].

For pyUAVs and MAVs, there are four propulsion options, namely,
batteries, fuel cells, micro-diesels, and micro gas turbines [8,337]. The
last three types usually have the same fuel consumption per unit power,
but between them the micro gas turbine engines are smaller and lighter
[334]. The most common and easiest way to fly is to use electric motors
[130]. These types of motors are usually used because of their
reliability, high efficiencies, and controllability. Nowadays, there are
two types of electric motors which are used in drones, namely, brushed
and brushless. Since brushless motors are smaller and lighter than DC
brushed motors, they are considered more appropriate. In this type of
motor, there is no iron core and the magnet is placed inside the coil
[64]. In addition to the small size and low weight, another advantage of
brushless motors rather than brushed is the lack of iron losses that are
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Fig. 26. Views of (a) bird muscle and (b and c) insect muscle [350].

reflected in a higher efficiency. Furthermore, these electric motors are
the most suitable propulsion system for the rotary wing drones because
more than the half of the electric energy is used to generate lift [130].
In all of the propulsion systems which use a motor or engine, the
propeller is the integral part of them.

For flapping wing MAVs and NAVs, the motor is one of the most
important parts of a flapping wing which constitutes the flapping wing
propulsion system [338]. Flapping wings need a driver source with
high energy density and low vibration. Consequently, electric motors
are considered as an interface between the electrical and mechanical
parts where their inputs are voltage and current and their output is a
rotational motion with a specific angular velocity. One of the most
important advantages of these motors is the possibility to control their
speed in a wide range [64]. The main reasons for the selection of these
types of motors are their minimal vibration and noise and low fuel
consumption. On flapping-wing MAVs, electric motors are used.
Nowadays, out-runner brushless electric motors are one of the best
types among brushless electric motors [64,338]. It should be noted that
out-runner brushless motors have less speed constant k, (rpm/V)
compared to other types. Hence, they have lower speed and generate
more torque [255]. Generally, the main criteria in motor selection for
flapping wings are low weight and high torque. Unfortunately, these
two factors are interdependent because the heavy motors usually
provide more torque [255,339]. Unlike fixed wing MAVs, the flap-
ping-wing drones require more energy [255]. Modern motors rotate
very fast but only a small amount of torque is provided. Thus, a gearbox
should be used. The main criteria for gears are their low weight and
high performance [255,338].

For flapping-wing drones, in addition to the propulsion system, a
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flapping wing actuation mechanism is required which is dependent on
the type of flapping [325,330]. At NAV scale, the Aero Environment
company recently designed and fabricated a flapping wing NAV that
uses an actuation mechanism composed of rollers and strings, while
still using a geared down motor to provide power at the right frequency
[340-344]. As for flapping wing PAV, Wood et al. [345,346] developed
flapping wings to generate flapping motion by applying piezoelectric
actuators. Selecting the appropriate actuator is considered an impor-
tant part for designing effective flapping-wing drones. Different
actuators can be used to perform the mission including electric motors,
solenoids, Shape Memory Alloys (SMA) wires, and piezoelectric
elements, depending on the type of flapping-wing drones [98,347—
349].

For fixed and rotary wing drones, which use engines or motors, the
efficiency of the propulsion system is still low and it can be improved by
considering new developments in engine technology. For flapping-wing
drones, designing propulsion systems by imitating the muscles of birds
and insects has great future potential. In Fig. 26, schematic views of the
bird and insect muscles are depicted.

7. Power supply and endurance

Engine-powered drones are usually provided with various fossil fuel
sources, such as gasoline, methane, and hydrogen. In small drones, and
especially in MAVSs, the required power is provided by the battery. Over
90% of these drones utilize Li-PO batteries. For micro drones, lithium
batteries are the best choice of power due to their low weight [351].
Fossil fuels can produce more energy than batteries, but the available
internal combustion engines for use in these drones have extremely low
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Table 16
Comparison of different batteries with their specific energy, energy density, and specific
power [351].

Characteristic Ni-Cd Ni-Mh Li-Po Li-S
Specific Energy (Wh/kg) 40 80 180 350
Energy Density (Wh/1) 100 300 300 350
Specific Power (W/kg) 300 900 2800 600

efficiency [38], and the fuel usage may cause stability problems for
micro air vehicles. One of the problems that can face MAVs is that they
can fly no more than 30 min when using battery or fuel [351].
However, the micro fuel cell is under development and this technology
is yet to be used in micro drones [352]. Nowadays, the small Li-Po
batteries are the most widely used power sources. In Table 16, features
of four types of batteries are compared to each other which show that
lithium batteries are better choices [351,353].

The interest to use the micro drones for various missions is
increased. The main problem is their low endurance in comparison
with larger drones. Flight time depends on the power consumption.
Another issue is that the micro drones have limited storage capacity.
This has limited their flight endurance up to 30 min [351]. Drones’
drag reduction is one of the main factors for increasing the flight
endurance. In drones, different geometrical and physical parameters,
such as wing shape, wing span, airfoil, cruise speed, weather condi-
tions, etc, can be involved in the reduction of the drag and conse-
quently reduction in power consumption [351,353]. In addition to
considering the design parameters for enhancing the drones’ endur-
ance, solar panels and piezoelectric energy harvesters can be used as
renewable energy sources to enhance the flight endurance or to operate
extra sensors and cameras [351,354,355].

The first flight using solar cells was performed in 1974 by the
Sunrise airplane [356], followed in 1980 by the Gossamer penguins
[357]. Other examples of solar drones are Centurion [358], Pathfinder
[359], and Helios [360]. For the micro drones, one of the challenging
issues is their high power consumption and limited power capacity due
to their weight limitation. Generally, the flight endurance of these
micro drones rarely exceeds 20 or 30 min [351]. Nowadays, mounting
solar panels on drones is considered as a common method to increase
the flight endurance and usually, the battery is used as a backup when
the solar cells cannot produce enough power flying in or under clouds
or in the dark. In other words, a hybrid source which is a combination
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Table 17
The characteristics of solar drones [362-364].

Name Manufacturer Weight Wingspan
[a] VE-100 PAV Vaero Dynamics Inc. - -
[b] Solar-Storm ENAC 300¢g 50 cm
prototype
[c] Solarcopter Queen Mary, University of 367 g 121.2 cm
London
[d] Robo Raven III University of Maryland

of the solar cells and battery is usually used for powering drones
[351,361]. Solar cells which are thin, flexible, low weight, and efficient
are applied on the wings of different types of drones. Therefore, many
examples exist for solar drones, as shown in Fig. 27, and Table 17.

The solar cells must have low weight, must be flexible, and have a
high efficiency. Thin film solar cells (TFSC) can be used on the wing
surfaces of drones without greatly affecting the aerodynamic efficiency
[351]. Major limitations of the solar cells can be their high costs, low
efficiency, and their temperature sensitivity. Increased temperatures
reduce the power output of solar cells [366,367]. One of the parameters
that has a great impact on the maximum power output of solar cells is
the amount of solar radiation absorbed by the solar cell [368]. Series
and parallel connections of solar cells are used to achieve the required
voltage and current in order to improve their performance [369].

As discussed above, the solar systems cannot produce enough
power when drones fly in or under clouds or in the dark. Therefore,
the drones which use the solar power as their energy source cannot be
utilized at night. One solution for this problem is to use laser light from
a common power source, such as a portable generator or the electrical
grid. This laser beam is directed to a photovoltaic receiver which is
installed under the drone [130,370]. In this way, laser power beaming
technology can provide drones with unlimited flight endurance to
overcome the limitations of most drones [371]. One of the main
advantages of wireless power systems is that the energy source is on
the ground where power is easier and cheaper to generate [372]. Laser
systems do not need to turn off at night and can continuously charge
the battery [370]. Even though this system can solve the endurance
issues, it has some problems in range of flight. For instance, this system
cannot be applied for high altitude UAVs, but it can be a good choice
for rotary wing micro air vehicles which have flight range less than
5km. In Fig. 28, a schematic view of the laser power beaming
technology is shown.

Fig. 27. Views of (a) solar tilt-rotor [362], (b) Solar fixed wing MAV [353], (c) solar quadrotor [363], and (d and e) solar flapping wings [364,365].

121



M. Hassanalian, A. Abdelkefi

Laser receiver

Power controller

~ [=
0 Motor ==
Battery l

1500007
u@ (“solar” cell array)
Power (example)
Ll QUADRCOPTER A. Input 4000 W
8. DCto laser 3600
C. Beam power 2000
D. DCdelivered 1000
so0rt
Prime Power A Laser
(Generator or ~—~— POWer supply
AC line)

Laser cooling

Progress in Aerospace Sciences 91 (2017) 99-131

Tracking and
safety sensors

¢ ¥

¢
Beam

-

Laser " director

Fig. 28. Views of laser power for drones [370].

An additional method for increasing the endurance of the drones is
harvesting energy from flapping motion and morphing. Only one
research study was carried out in the past five years by Abdelkefi and
Ghommem [355]. They demonstrated that there is an optimum
electrical load resistance at which the harvested power can be
optimized. They also reported that using the piezoelectric energy
harvesting technology from morphing of wings can result in operating
many sensors and cameras from wasted mechanical energy [355]. This
energy harvesting technology can be improved by considering different
types of vibrations, wind, thermodynamic features of the atmosphere,
and motion of the drones.

8. Guidance, navigation, and control of drones

Over the past 20 years, several research studies have focused on the
guidance, navigation, and control (GNC) for drones, resulting in
various techniques and methods. Some researchers have tried to review
different GNC systems and subsets [373], such as Ollero and Merino
[374] for flight controllers, Chao et al. [375] for autopilots, Goerzen
et al. [376] for path planning algorithms, and Valavanis [377] for
drones in general. Also, Kendoul [373] has recently performed a
comprehensive survey report and organized the large variety of GNC
methods. He has provided an overview of GNC systems to increase the
autonomous capabilities of drones. The approaches that have been
reported are organized into three main categories, namely, control,
navigation, and guidance. For each category, methods are grouped at
the highest level based on the autonomy level they provide, and then
according to the algorithmic approach used, which in most cases is
closely associated with the type of sensors used [373]. In Fig. 29, based
on Kendoul [373] study, different categories of GNC systems are
summarized.

Guidance, navigation, and control (GNC) of drones are traditionally
carried out through three methods, namely radio control, video base,
and autopilot [378]. One of the most common ways to control and
navigate drones is using a radio-control system. In this method, drones
are controlled by a radio-system that includes a transmitter along with
a receiver. In this navigation system, instructions are transmitted to the
drone's electrical components by sending electromagnetic waves [378].
Basically Remote Control (RC) equipment consists of a radio trans-
mitter which includes several radio channels. By using any of these
channels, the pilot transmits instructions to the drone [379]. In remote
control systems, the transmitter range is different and usually covers a
range of about five kilometers. A radio transmitter for drones must
have at least 4—-6 channels to control their different flight levels.
Additional channels can be used for camera controlling. In this system,
the receiver is usually used to transmit instructions to the servo motors
and speed controller [378].

For navigation systems by video-base, a camera is installed on the
drone which is used to take videos and photos when passing regions
and sending them to the ground station by video transmitter. Small
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size, low weight, and high visibility and clarity are considered as the
essential features of a video system [378]. In a video base system, the
images sent from the video-transmitter and the images received by the
antenna are displayed on a screen at the ground station. Antennas can
be evaluated by analysis of the output waves. In some cases, amplifiers
are used with the antenna which makes it much easier to receive
pictures [380]. Nowadays, ultrasonic sensors, color, thermal, or infra-
red cameras are used to take information about the surrounding
environment of the drones [380]. Small drones often use color cameras
which are more useful only in the daytime and cannot provide scale
information and depth for the captured environment. In a video base
navigation system, computer vision plays an important role in the
drone's automation. In these systems, computer vision techniques are
used to extract the required information. These captured images are
processed for navigation, stabilization, and further information collec-
tion [381]. Usually video transmitters can send signals over a certain
distance, but in many flights, signals cannot be captured for long
distances. The commercial types of transmitters work only within a
special radius. When drones are out of range, they show one dead zone
and oblige the drones to reduce the flight radius [378]. The best way for
guiding, navigating, and controlling the drone is the autopilot system.
An autopilot is a set of software and hardware which enables the drones
to perform their flight missions automatically. For example, by defining
flight plans, direction and speed can be specified in different parts of
the flight and the drone automatically obeys this flight plan and tries to
perform its mission with minimal errors [378].

Nowadays, several types of autopilots exist, such as Micropilot
[382], Piccolo [317], and Paparazzi [317]. Micropilot autopilots have
some unique capabilities, such as a weight of 28 g, dimensions of
4 cmx10 cm, and simultaneously control 24 servos, up to an altitude of
12 km, and a radius of 50 km. [382]. In an autopilot system, the flight
plan should be uploaded on the system board before flight and at any
moment the drone is in contact with the ground station and transmits
the data, such as altitude, velocity, etc. From the ground station,
different instructions can be sent through RF modem to the drone.
After sending instructions, the autopilot sends them to the servo and
the drone will perform the desired reaction [378].

In addition to these mentioned methods, researchers proposed new
approaches to navigate the drones which can be applied in future for
small drones. Bublitz [383] applied Google glass to control a quadrotor
drone using head movements. The Google glass can capture the head
nods, transform these nodes into flying instructions, and send them
over to the drones. Therefore, applying this system, the drone is
directly controlled by the commands sensed by the head mounted
system while the guidance and navigation tasks are solved by the
human pilot. This method can be appropriate for small drones with
limited flight ranges which can perform the hovering flight, such as
rotary wing MAVs.

Another approach was presented by researchers at the University of
Minnesota. They devised a way to use thoughts in order to control the
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Fig. 29. Classification of GNC systems developed for drones based on Kendoul [373].

Fig. 30. New methods for navigating the small drones (a) Google glass [385], (b) brain-computer interface (BCI) [386], and (c) smart phone [387].
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Fig. 31. Swarm flight of (a and b) fixed wing MAVs [399,400], (c) flapping wing PAVs [401], and (d) rotary wings MAVs [402].

Fig. 32. Some new concepts for separation and swarm flight of drones.

movement of a quadrotor. By using a brain-computer interface (BCI),
they made the quadrotor to turn, rise, dip, and even fly through a ring
[384]. The used noninvasive technique was electroencephalography
(EEG) which can record the electrical activity of the subject's brain
through a cap fitted with 64 electrodes [385]. BCI works because of the
geography of the area of the cerebrum that governs the movement
which is called motor cortex. When there is a movement or the thought
about a movement, neurons in the motor cortex produce small
amounts of electric current. Thinking about a different movement
activates a new set of neurons. In this method, brain signals are
recorded by the cap and sent to the quadrotor through WiFi [386]. This
method, similar to Google glass, has some limitations and can only be
used in small drones. To control and navigate the movement of small
drones, smart phones were also utilized [387]. In Fig. 30, different
types of these new methods are shown.

Even though these new methods can be applied to control the
UAVs, the key differentiating factor here is the quality of communica-
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tion expressed in terms of lag of the control loop, control bandwidth,
and communication loss. Generally, control of drones over short
distance results in a negligible lag and high bandwidth with minimal
losses, while control over thousands of miles results in severe lag in
control, low bandwidth, and significant losses. Therefore, UAVs cap-
able of long distance and endurance flight are typically equipped with
augmentation autopilots capable of stabilizing flight in case of loss of
the command and control link. Also, the control scheme is organized
differently for the same reason.

One of the main parts of the navigation methods of drones is the
positioning system. There are different methods for positioning the
drones, such as Global Positioning System (GPS) and Inertial
Navigation System (INS) [388]. In drones, to detect the position,
velocity and altitude, GPS is usually used. To provide the accurate
position of the drone, GPS should be in contact with at least 4 satellites
simultaneously [378]. The GPS signals are easily affected by external
noise or interference [38]. Thus, for drones which are only equipped
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with GPS, it was observed that some of the drones may lose their GPS
connection temporarily for a long time. In these situations, drones have
to be landed and their mission is aborted due to safety concerns.
Therefore, to avoid this problem, there is a need to design an
appropriate method which can estimate the location of the drones
when they temporarily lose their GPS connection [389]. The inertial
navigation system is the solution for these situations. The INS includes
gyroscopes and accelerometers which are used to calculate the position
and orientation of the drones. Nowadays, GPS is commonly combined
with the INS to avoid the errors in positioning [390,391]. These two
types of signals are combined together to produce accurate navigational
information. Kalman filter is considered as the common algorithm used
to fuse the measurements [392]. In other words, the extended Kalman
filter (EKF) is used to estimate the location of the drones that lose their
GPS connection temporarily [389].

A new method that can be proposed and considered for navigating
and directing the small drones is applying the telecommunication
network and internet for sending instructions to drones. The range
restriction of the previous methods can be solved by applying this
method. According to the increasing expansion of telecommunication
networks across the planet and the low altitude flight of the micro
drones, this system can be an appropriate method for directing drones,
such as MAVs. In addition to its low cost, this system can have a
considerable range in comparison with the other control methods.
Using drones equipped with this system can be useful for intelligence
activities [378].

9. Swarm flight of drones

Using one drone only for a specified mission can be risky because
the drone may encounter some technical or other problems, but various
missions can be performed with more efficiency by applying multiple
drones. Therefore, nowadays due to advances in communication,
intelligent software, and processing power, the swarm flight of drones
is considered as one of the important topics in drones’ studies. A swarm
flight of drones has an advantage, if one drone of the swarm is lost in
flight, the rest of the drones can carry out the mission. Also, in swarm
flight, a combination of various types of drones with different sizes and
configurations can make a formation flight.

Swarm intelligence is a novel field of bio-inspired artificial intelli-
gence based on the behavioral models of swarm flight of birds and
insects, such as ants, bees, wasps, termites, etc [393]. In nature, there
are different types of swarming organisms which are called by different
names. For example, a group of ants or bees are called a swarm, but a
group of birds are called a flock [394]. A swarm is defined as a
configuration of many individuals that have a common goal. Swarm
Intelligence is the complex collective, self-organized, coordinated,
flexible, and robust behavior of a group which follows a simple rule
[395]. Swarming studies of non-aerial vehicles, such as small robots,
have been conducted since 1970, but studies of swarming drones did
not begin until the early 1990s [188]. Swarm-based drone studies have
become very popular in the last few years.

It is the objective of several research groups from different
organizations to make drones fly as a group and act autonomously
without the interference of humans. Even though researchers from the
United States, Germany, Australia, Netherlands, and United Kingdom
are at the forefront of swarming research, other countries, such as
South Korea and China, also are doing swarming research studies
[188]. Reynolds [396] is considered as one of the pioneers of the
simulation of a swarm. Others researches on swarm include behavior-
rules which is very close to agent-based but often involves artificial-
intelligence techniques, graph theory, gradient-vector movement, and
mathematically-determined patterns [394]. Nowadays, there are many
efforts to develop the swarm-based technology. As an example, the
Naval Surface Warfare Center has offered a new approach for forma-
tion flight. In their design, they considered the new formation of the

Progress in Aerospace Sciences 91 (2017) 99-131

drones when a few of them malfunction or have other problems, such
as engine failure [397]. In this situation, the other drones become
aware of this problem and they find a new formation that allows the
rest of the drones to collect the data which the damaged drone was
supposed to collect [398]. Researchers from Ecole Polytechnique
Federale de Lausanne University [398] developed swarm software for
use in disaster situations. They applied micro drones weighing in at
420 g each with a wing span of 80 cm. They developed a software to
make the decision as to which flight path is better than another in
disaster situations. In Fig. 31, some types of swarm flight of different
types of drones are shown.

New designs can be offered for separation and swarm flight. For
example, a huge drone can be separated into many micro drones to
make a formation flight based on a defined mission. In other words,
drones will have the ability to carry and release micro drones that can
be designed to conduct swarm flights. These concepts are indicated, in
Fig. 32 [403].

It is predicted that the advent of advanced technologies, such as
highly capable microprocessors which use multipliers, dividers, high
speed compressors, and high precision AD/DA blocks [404-407],
radar-absorbing materials, increased data-link rates, high-bandwidth
communications, and new navigation systems integrated onto drones
will be an invaluable key to carry out very complicated missions [408].

10. Conclusions

Recent researches and studies in the field of flying drones including
fixed and flapping wing vehicles were consolidated and deeply dis-
cussed. A new classification of these drones was first proposed. This
classification includes various classes of drones, such as unmanned air
vehicles, micro air vehicles, nano air vehicles, pico air vehicles, and
smart dust. These flying drones can be used to carry out various civil
and military missions. These possible missions were reviewed includ-
ing search and rescue, environment protection, mailing and delivery,
space exploration. The used design methods and their challenges were
also consolidated for all types of drones. Possible solutions for the
design challenges were proposed and discussed. In addition to that, the
used manufacturing methods and challenges, propulsion systems and
actuators, power supply and endurance, control and navigation of
drones were reviewed with proposing new ideas to get rid of the
existing limitations. The importance of swarm flight and separation of
drones was also discussed.
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