前沿君微信:tech9999 手机:18501361766
转自:新智元(AI_era)
来源:anandtech、cnet
【导读】台积电研发负责人Phillip Wong近日在硅谷举行的Hot Chips会议上表示,摩尔定律没死,依然有效且状况良好,并表示随着新技术的进步,到2050年晶体管做到0.1纳米,约等于氢原子的大小。
“毋庸置疑,摩尔定律依然有效且状况良好,它没有死掉,没有减速,也没有生病。”
台积电研发负责人Philip Wong(黄汉森)在Hot chips大会上表示,他展示了台积电对芯片技术的前瞻,称到2050年,晶体管将缩小到氢原子尺度,即0.1nm。
黄汉森去年8月开始担任台积电企业研究副总裁,在此之前他是斯坦福大学电机工程学系教授,擅长新形态的存储技术研究,在学术界拥有很高声望。
黄汉森在Hot Chips大会上演讲的题目是:“下一个半导体工艺节点会给我们带来什么?” ,他还详细介绍了其他芯片技术的发展,比如将内存放在处理器的正上方,他预计这将提高性能。摩尔定律预测,集成电路上可容纳的晶体管数量,约每隔 18 个月便会增加一倍,性能也将提升一倍(即更多的晶体管使其更快)。
不过,如何以最有经济效益的方法将数十亿个晶体管放在一颗芯片中,成为当前芯片制造遇到的最大挑战,所以近年来有不少人认为摩尔定律逼近了物理极限并开始放缓。
英特尔一直在努力研发先进制程,但从整个行业来看,单个晶体管的价格不再继续下降。这就限制了新的制造工艺只能用于高端、高成本的芯片。过去芯片行业的好日子已经一去不复返了,那时芯片的时钟速度提高,功耗却没有受到任何影响。
黄汉森预计,处理器将由不同芯片元件3D堆叠组成,而在当前这些元件通常是分开的。这将意味着芯片获得更小的尺寸和更高的性能。
不过,作为晶圆代工龙头的台积电却非常乐观。黄汉森表示,摩尔定律进展良好,并大胆地预测了到2050年的进展,尽管他没有提供任何详细的计划。Real World Technologies的分析师David Kanter则更为谨慎。由于台积电现在与英特尔已经是并列,而不是在英特尔之后,台积电不得不承担更多的领导责任,加大研发投入,因此听到该公司如此乐观并不令人意外。但谈到芯片的进步,黄汉森对一些实际问题避而不谈,比如缩小晶体管的速度放缓,以及制造最新一代产品的成本增加。
“我们期待看到更多不同方向的创新,这将为行业提供持续的利益。”黄汉森说:“这就是我们关心的。”
关于未来的技术路线,Philip Wong 认为像碳纳米管(1.2nm 尺度),2D层状材料等可以将晶体管变得更快,尺寸更小;同时,相变内存(PRAM),旋转力矩转移随机存取内存(STT-RAM)等会直接和处理器封装在一起,缩小体积,加快数据传递速度;此外还有 3D 堆叠封装技术。
“在这些系统中,多层逻辑和内存以细粒度的方式集成,连接性是关键,”黄汉森说。
分析师Nathan Brookwood表示,尽管黄汉森对碳纳米管等技术非常关注,但不认为台积电本身在现阶段会押注于任何特定的新技术。
不过,黄汉森强调,除了硬件,软件算法也需要迎头赶上。一旦实现了这一点,芯片的进步将提供更好的计算设备。这是至关重要的,黄汉森说:“社会对先进技术的需求是无止境的。”接下来,新智元带来黄汉森在Hot Chip 2019主旨演讲的完整PPT,附精编解读。
摩尔定律讲的是元件密度,这是高性能计算的主要驱动力。从对数图上看,摩尔定律不但没有死,而且活的很好,晶体管密度还在增加,而且在可预见的未来内还会继续增加,至于时钟速度和运行效率等人们同样关心的新属性,实际上超出了摩尔定律的范围。进入AI和5G时代,“内存墙”问题日益突出,海量数据的流动和转移的需求越来越高,内存访问决定了计算的能源效率。
深度神经网络需要大量的内存容量,而且内存紧缺的问题将来还会更加突出。芯片上需要更多数量的SRAM,但永远都不够,重要的是什么样的内存。
现有的系统中,大部分都是2D和2.5D,用的是TSV,我们需要再向前迈进一步,进入3D。而下一步就是Beyond 3D,它实现了逻辑和内存的多层整合,在纳米级尺度上实现了高密度的TSV工艺,即“N3XT级”系统。下一代内存需要具备高带宽、高容量,而且需要在片上。研究表明,具备上述条件的内存可以使系统级收益增加近2000倍,当然,以现有技术很难实现。在上层很难构建高性能晶体管,因为制造时需要1000度高温条件,内存层会融化。要想实现上面说的理想的系统,需要超薄的设备层和较低的制造温度。近年来,晶体管技术实现了不少进步,出现了2D层材料过度金属设计,1D碳纳米管设计等,这些材料非常轻薄,大大降低了晶体管的沟道宽度,但仍保持高迁移率水平。实现内存与逻辑平台在3D架构下的整合,让晶体管与制造技术的进步成为一个连续的统一体。而要实现这一目标,各自为战是不行的。这需要系统工程师和开发人员的密切合作,需要硬件设备制造技术和需求的更紧密的交流,需要学术界与产业界建立更加紧密的联系。

一网打尽系列文章,请回复以下关键词查看:
|
---|
创新发展:习近平 | 创新中国 | 创新创业 | 科技体制改革 | 科技创新政策 | 协同创新 | 科研管理 | 成果转化 | 新科技革命 | 基础研究 | 产学研 | 供给侧 |
热点专题:军民融合 | 民参军 | 工业4.0 | 商业航天 | 智库 | 国家重点研发计划 | 基金 | 装备采办 | 博士 | 摩尔定律 | 诺贝尔奖 | 国家实验室 | 国防工业 | 十三五 | 创新教育 | 军工百强 | 试验鉴定 | 影响因子 | 双一流 | 净评估 | 大学排名
|
预见未来:预见2016 |预见2020 | 预见2025 | 预见2030 | 预见2035 | 预见2045 | 预见2050
|
前沿科技:颠覆性技术 | 生物 | 仿生 | 脑科学 | 精准医学 | 基因 | 基因编辑 | 虚拟现实 | 增强现实 | 纳米 | 人工智能 | 机器人 | 3D打印 | 4D打印 | 太赫兹 | 云计算 | 物联网 | 互联网+ | 大数据 | 石墨烯 | 能源 | 电池 | 量子 | 超材料 | 超级计算机 | 卫星 | 北斗 | 智能制造 | 不依赖GPS导航 | 通信 | 5G | MIT技术评论 | 航空发动机 | 可穿戴 | 氮化镓 | 隐身 | 半导体 | 脑机接口 | 传感器 |
先进武器:中国武器 | 无人机 | 轰炸机 | 预警机 | 运输机 | 直升机 | 战斗机 | 六代机 | 网络武器 | 激光武器 | 电磁炮 | 高超声速武器 | 反无人机 | 防空反导 | 潜航器 |
未来战争:未来战争 | 抵消战略 | 水下战 | 网络空间战 | 分布式杀伤 | 无人机蜂群 | 太空战 | 反卫星
|
领先国家:美国 | 俄罗斯 | 英国 | 德国 | 法国 | 日本 | 以色列 | 印度 |
前沿机构:战略能力办公室 | DARPA | 快响小组 | Gartner | 硅谷 | 谷歌 | 华为 | 阿里 | 俄先期研究基金会 | 军工百强 |
前沿人物:钱学森 | 马斯克 | 凯文凯利 | 任正非 | 马云 | 奥巴马 | 特朗普 |
专家专栏:黄志澄 | 许得君 | 施一公 | 王喜文 | 贺飞 | 李萍 | 刘锋 | 王煜全 | 易本胜 | 李德毅 | 游光荣 | 刘亚威 | 赵文银 | 廖孟豪 | 谭铁牛 | 于川信 | 邬贺铨 |
全文收录:2018文章全收录 | 2017文章全收录 | 2016文章全收录 | 2015文章全收录 | 2014文章全收录
|
其他主题系列陆续整理中,敬请期待……
|


扫一扫下载订阅号助手,用手机发文章 赞赏
长按二维码向我转账

受苹果公司新规定影响,微信 iOS 版的赞赏功能被关闭,可通过二维码转账支持公众号。
朋友会在“发现-看一看”看到你“在看”的内容