中科幻彩动漫科技有限公司
原理动画、宣传视频
项目答辩动画与PPT、论文补充动画等
业务咨询:17801707918(微信同号)
让科研精彩纷呈 让科学触手可及
斯坦福大学崔屹教授最近又有一篇高质量锂电文章发表在了SCIENCE 子刊 SCIENCE ADVANCES 上(Sci. Adv. 2019; 5 : eaau5655.)锂电池因为高效的能量储存密度而被广泛应用。然而,锂枝晶不受控制的生长和电极体积变化会导致电池性能下降和安全隐患问题,这些问题限制了锂电池的应用。这篇文章提出了一种结合离子导电的介孔骨架的复合式金属锂电极能够降低金属锂表面的电流密度,进而能显著提高电化学性能。并且,由于在三维介孔骨架的侧面沉积了无定形的锂,电池的短路电压极大地减小了。另外,在三维骨架的支撑下,电极的体积改变非常小。所以这种骨架复合电极结构可以在低极化高电流(5 mA/cm^2)的情况下稳定的进行200次充放电循环。更吸引人注意的是这种介孔骨架复合电极,制备起来十分简单,只涉及到一些机械操作,非常适合大规模生产。这为高性能锂电池带来了一种新的解决方案。
介孔骨架的复合式金属锂电极的制备方法
在多孔聚乙烯(PE)薄膜上沉积一薄层金属锂,再将这个双层的复合结构绕成卷,然后再将卷切成薄片。用这个薄片作为电场的电极。这样得到的电极中就存在一层PE隔膜,PE隔膜是多孔的,能够传导锂离子。
对于这种骨架复合结构优化锂电池电极电化学性能的机理,文章作者通过COMSOL仿真模拟来解释。根据实验的结构,构建了一个二维的几何模型,有颜色的部分是电解质,颜色的深浅代表锂离子浓度的大小。白色的区域是金属锂,下部是被骨架结构分隔开的锂,上部是整体的一层锂。放电过程是下部锂溶剂,上部锂生长。通过COMSOL仿真可以得到这个过程中电解质中锂离子浓度的分布和金属锂形状的改变以及表面电流密度的大小,仿真结果与实验观察结果基本上吻合。另外,仿真结果也可以证明这种复合确实存在减小表面电流密度,提高充发电稳定性的效果。
介孔骨架复合的锂电极的电化学性能表征
更多高档次文章锂电池仿真模拟示例
COMSOL Multiphysics 电池模块功能详解
COMSOL Desktop® 图形用户界面 (GUI) 内,电池与燃料电池模块提供了大量专业的物理接口。一次电流分布物理场接口,含有一些适当的编辑区,用于定义电池或燃料电池中各个组件的材料属性,例如电极和电解质的电导率。此外,它可以方便地与电池与燃料电池模块、COMSOL Multiphysics 基本模块或其他专业模块结合,描述其他特征,例如焦耳热或热应力分析。
1.研究系统的电化学特性
提高研究的复杂程度:电化学反应的动力学特性高度依赖于电极的微观结构、电催化材料和电解质组成。极少有材料数据库会列出动力学参数,所以电化学家们必须通过实验来确定其设备的特定参数。但是,在诸如电池和燃料电池之类封闭系统内运行复杂的受控实验是很困难的,特别是这些系统具有大量可以影响电化学过程的不同物理参数。为了获得这些动力学参数的精确描述,通常需要将实验与同实验过程的模拟进行比较,然后寻求这些参数的实际值。电池与燃料电池模块提供了可模拟这些试验的物理场接口,例如循环伏安法和电化学阻抗谱(EIS 或 AC 阻抗),以及用于导入数据、绘制图形,乃至对其运行参数进行估计的工具(需要优化模块)。
建立电化学动力学理论之后,您可以通过二次电流分布模型将它们纳入您的电池和燃料电池研究。在这些模型中,电荷转移机制和活化过电势会直接影响电化学反应。此类模型可以更好地指示系统的工作电压和电流,可用于确定电极和电催化剂材料,同时使您能够在任何传热过程研究中考虑活化过电势损耗。
此外,二次电流分布接口可以与化学物质传递接口完全耦合;化学物质传递接口描述物质在气孔中(例如,在气体扩散电极 GDE 中)的传递。在 GDE 的描述中,可以使用凝聚物模型或薄膜模型来描述溶解气体在孔隙电解质中的传递,以及它们到活化位点的传递。然后,还可以将孔隙中的气体传递耦合到气体通道中(例如燃料电池双极板)的传递和流动。
均相反应可以通过电池与燃料电池模块中质量传递接口的动力学表达式来描述,在其中可以定义任意的汇项与源项。或者,也可以在化学反应工程模块中的物理接口中定义它们,并将它们耦合到电池或燃料电池模型中。
2. 获得全部过程的完整脉络
但是,之前的模型假设整个电解质中的浓度是恒定的,电流传输仅通过离子迁移形成,这显然是不真实的。驱动电化学反应的重要因素之一就是反应位点附近的电解质组成。要真正地研究电池和燃料电池的电化学特性,可能需要三次电流分布接口。它会考虑到浓度变化,非常好的描述电解质中的质量平衡和质量传递。
此外,对于三次电流分布,电解质和孔隙电解质的组成可以与气相中的材料平衡,和多孔电极与 GDE 的气孔中的材料平衡完全耦合。这些还可以使用凝聚物和薄膜模型来描述,并包含通过孔隙电解质的物质传递。对于电池接口,还包含了特定的插层方程,用以描述电极颗粒中的传递现象。
分离板和电极中的材料可能也会在均相反应作用下发生反应,导致性能退化。您可以利用化学物质传递接口模拟这些材料的化学反应,用于估计电池材料的老化对电池和燃料电池性能可能产生的影响。
电极和集流体中的电流传导使用欧姆定律与电流守恒方程描述。它可以表示电子导体(例如集流体和馈流体、电极、多孔电极和 GDE)中的电阻损耗。集流体和馈流体还可以使用薄导电层(也称为壳)模拟,从而不必沿这些薄层的厚度方向进行网格剖分。利用专用的电极接口,通过电荷转移反应,电子导体中的电流平衡可以与电解质和孔隙电解质中的电流平衡耦合。
全三维固体氧化物燃料电池 (SOFC) 的电化学阻抗谱 (EIS) 研究
3.电池和燃料电池模型与其他物理场耦合
在电池与燃料电池模块中开发的模型还可以与 COMSOL 模块套件中任何其他物理接口耦合。通过耦合,您可以根据组件的性能和退化过程,获得多方面的关键信息:集流体与馈流体、冷却系统的设计和运行,电极、分离板和膜的优化以及热管理。
CFD 模块或传热模块的流体流动接口(支持湍流仿真),可以用于模拟锂离子电池或高温燃料电池(例如 MCFC 和 SOFC)的加热和冷却系统。它们可能还需要表面对表面辐射的模型,这可由传热模块支持。电化学阻抗谱(EIS 或 AC 阻抗谱)、伏安法和电流中断仿真和实验的参数估计可以通过与优化模块的组合来完成。模拟电极老化时的一个有趣耦合是考虑电极充放电过程中由于密度变化而产生的结构应力。这些应力可以用于估计电极颗粒的微破裂程度,而颗粒微破裂会导致电导率损失,使电极的性能退化。
4.仿真所有类型电化学过程的物理接口
电池与燃料电池模块是唯一可以自由地模拟所有类型燃料电池和电池的仿真软件,具有仿真所有类型电化学行为的强大功能。该模块内包含了多种物理接口,它们仿真电化学过程本身或相关影响过程。
化学物质传递
电池和燃料电池中可以存在反应物质,之后转换为各种不同的状态和相态。这包括以气体、液体、固体形式在浓溶液与稀溶液电解质、混合物和固态溶液中存在的物质。用于质量传递的电池与燃料电池模块接口可以模拟在一系列自由流道和多孔介质内的化学物质传递。这包括平面电极、多孔电极和 GDE 中的稀溶液或浓溶液和混合物等中的扩散、对流和电迁移现象。
在所有物理接口中,电迁移都是一个可选项,在三次电流分布接口中通过 Nernst-Planck 方程来表示。在用于模拟锂离子电池、铅酸电池和二元电解质电池的物理接口中,还可通过与电解质相关的特定方式描述材料传递过程。此外,还提供了一个特定的反应流接口,用于模拟与流动和化学反应直接耦合的化学物质传递过程。
电化学反应动力学
与 COMSOL 模型套件中的所有模块一样,您可以在物理接口的编辑区域内定义您需要的任何方程,并使它们依赖于模型系统内的任意变量。编辑电化学电荷传递反应式时,动力学表达式可以是以下变量的任意函数:化学物质浓度,温度,以及电极-电解质界面处的局部电极电位和电解质电位。
电池与燃料电池模块提供了一些可帮助定义电极动力学的预定义物理接口。其中包括电解分析接口,这些接口对于模拟诸如 AC 阻抗之类的问题特别有帮助。在二次和三次电流分布接口中,提供了参数编辑区域用于描述平衡电势、阳极与阴极电荷转移系数、交换电流密度、对称因子和化学计量系数等电极动力学参数。此外,Butler-Volmer 方程和 Tafel 表达式同样预定义在接口中。在三次电流分布接口中,电活性物质的局部浓度通过浓度变量包含在反应表达式中。多孔电极和 GDE 也在这些物理接口中得到处理,并可同时指定电极与电解质的有效电导率和各向异性。
电解质与电极中的电流平衡
电池和燃料电池的实际目的是将化学能转化为电能,反之亦然(对于电池)。转换中的损耗应尽可能地小,老化也应保持在最低限度。为了设计和优化,仿真模型通常必须考虑电解质、薄膜和多孔电极中的离子传递,以及电极中的电子传导,且都与电流守恒和电荷守恒相耦合。
一次和二次电流分布接口假定离子仅在电场作用下迁移,而忽略扩散现象,不过它们仍然可以考虑多孔电极中浓度过电势的近似解析表达式。二次电流密度接口还可以与气体扩散电极孔隙中的气相传递过程全耦合计算(使用 Maxwell-Stefan 方程)。这将考虑孔隙电解质中的溶质在气孔和活化位点之间的扩散(凝聚物模型或薄膜模型)。
三次电流分布接口考虑在全部三种传递过程作用下的离子传递过程:扩散、对流和电迁移( Nernst-Planck 方程)。因此,所有这些因素均包含在描述电流密度的公式中,虽然由于电中性通常会忽略对流作用。此机理也可耦合到电极-电解质界面上的电荷传递反应中,为您提供稳态、瞬态和频域(EIS)的电压分析结果。
电极和集流体中的电流传导过程使用欧姆定律与电流守恒方程描述,并考虑多孔电极和 GDE 中的导电过程。电池与燃料电池模块还包含了一个薄层(壳)接口,它无需进行网格剖分,并可简化薄集流体和馈流体中的电流传导的模拟方法。电池仿真中还可以考虑电子导电粒子、纤维或长丝等因素,以仿真电池中短路和热失控的影响。
电池接口
电池与燃料电池模块中包含了一些用于模拟锂离子电池的特定物理接口。这包括一些额外的项和公式,用于描述颗粒内部的扩散(插层)过程和固体-电解质界面 (SEI)。可以通过对电池正常运行时及不同工作条件下的 SEI 生长进行模拟来仿真老化过程。此外还提供了铅酸电池接口,额外考虑了由于电池充放电而引起的电极孔隙率变化,以及由此引起的电解质平均表观速度。利用特定物理接口模拟二元电解质电池,考虑了浓溶液电解质和电中性约束,以及多孔电极颗粒中的粒子插层过程。该物理接口可用于模拟镍金属氢化物和镍镉电池。
COMSOL Multiphysics 是一款非常灵活易用的有限元模拟软件,能够非常方便的模拟微流体领域的各种物理问题,本文就是一个极好的例子。另外Comsol Multiphysics 还能有效处理声、光、电、热、磁、力学等很多物理过程,以及他们之间的耦合现象,是一个极好的服务于科研的工具。
如今在高档次文章中结合COMSOL仿真模拟来解释科学问题,展示物理机制的方式已经变得越来越常见。特别是对于这种机理解释型文章,一些仿真模拟可以说是必不可少的。
COMSOL是一个多物理场仿真软件,功能全面,覆盖面广泛,软件用界面友好,如今已成为科研人员首选的模拟仿真软件。学会使用COMSOL也是一个非常有用的科研技能。
为了让更多科研人员能够迅速且科学地掌握这一前沿高效的数据分析软件,北京中科幻彩动漫科技有限公司举办主题为“科研模拟•学术仿真”的文章档次提升专题培训!!!
文末福利:免费领取有限元模拟教学视频
科研模拟·学术仿真专题培训会
2019年12月21-22日 广州·华南师范大学
2019年12月28-29日 北京·中科院过程所
2020年01月11-12日 上海·复旦大学
1
课程概要
提高文章中稿率、冲高影响因子的关键,在于数据的说服力是否足够强大。实验结果不理想,数据不够完美,论文内容缺乏支撑,这些问题有限元仿真模拟都可以轻松解决。帮助文章轻轻松松更上一区,让你的实验结果从此告别“差强人意”,高影响因子不是梦!
在当今的高档次科研论文中我们能够见到许多工作都使用到了仿真模拟来阐述科学问题。一直以来仿真模拟就是一项重要的科研技能,在许多物理和工程类学科(力学,光学,流体力学,电磁学,声学,化工)中发挥着不可替代的作用。许多科研工作的理论分析,结构设计和优化都依靠仿真模拟来完成。近年来随着交叉学科的发展,仿真模拟的需求也不限于上述的学科,在新兴的材料科学,能源科学,生命科学的研究工作中也越来越多的应用到仿真模拟这一工具。另一方面随着友好易用的商用仿真模拟软件COMSOL的出现,仿真模拟不再是一项需要深厚理论基础的高门槛技术。通过COMSOL软件的使用,越来越多的科研工作者可以利用仿真模拟帮助自己的研究工作。
本课程专门针对科研学术领域,为学员提供仿真模拟软件COMSOL Multiphysics 软件使用的全面详细讲解。课程从入门级内容开始,循序渐进地讲解数值仿真中的模型分析方法,以及建模操作流程(其中包括创建几何、网格剖分、设定物理场、求解及结果的后处理等),让学员全面掌握整个建模流程,并能够独立地使用 COMSOL 求解相关仿真问题。有无基础的学员均可参加培训,我们将根据学员的专业背景和软件基础量身定制课程内容。
2
课程内容
1.入门有限元仿真模拟
有限元方法的基本内涵,仿真模拟基本理论的讲解,以及该方法在科学研究中的广泛应用领域和重要意义,能够帮助科研人员解决的实际问题,不同仿真模拟软件(COMSOL ANSYS Abaqus)的特点和在科研上运用的优缺点比较;
COMSOL 软件介绍及基本操作演示和教学,包括软件界面学习、创建和导入几何模型、物理场设置、网格剖分与求解和结果后处理等。
2.有限元模拟的一般思路和通用方法
解线性和非线性有限元法的理论基础,了解COMSOL 多物理场仿真软件的基本知识,以典型的多物理场模拟为入门教学案例,帮助学员迅速入门并掌握有限元分析方法的基本思路,并能够灵活应用于自己的研究领域。
3.COMSOL软件的高级使用技巧
结合大量科研实际案例进行实践操作过程的演示教学,包括几何建模注意事项,优化网格划分的方法与技巧,结果后处理与复杂图表的绘制方法,多物理场耦合的方法与技巧,通过函数、变量与自定义方程的使用模拟复杂的问题等,深入学习COMSOL软件的高级操作技巧,并结合学员科研背景进行案例演示,进一步挖掘实操中的常用技巧。
4.多物理场仿真建模的高效技术解决方案
结合实例学习多物理场仿真有限元法的数学理论基础,多物理场耦合的分析方法和注意事项,添加方程式及耦合分析;求解时域,频域和特征值问题;移动网格和自适应网格方法,查找,理解和排除建模中的错误,用户工作效率最大化的有效建模,仿真模拟在科研中的实战演练,结合学员背景与最新顶级期刊案例进行仿真模拟实战训练,进一步深入学习COMSOL软件的指导与建议,针对科研工作中的问题和老师当面交流,理清思路,解决模拟困难。
3
部分教学案例展示
几何建模注意事项
优化网格划分的方法与技巧
结果后处理与复杂图表绘制
多物理场耦合的方法与技巧
通过函数、变量与自定义方程
的使用模拟复杂问题
纳米摩擦发电机仿真模拟
微流体物质混合模拟
金属光栅衍射
4
课程试听
5
学员作品
6
模拟案例
更多案例:http://www.zhongkehuancai.com
讲师简介
Dr. Li / Dr. Wang
中科幻彩仿真模拟事业部技术总监
中国科学院博士
美国加州大学洛杉矶分校博士后
全国物理奥林匹克竞赛金牌
美国数学建模大赛一等奖(Final Winner)
以第一作者身份著述的多篇论文在众多顶级杂志发表:
《Nature Communications》
《Science Advances》
《Advanced Materials》
《JACS》
……
12年化学/材料/物理/工程/生物仿真模拟经验
300+通过模拟显著提升文章档次的案例
凡报名培训的学员将免费获赠COMSOL高级建模指导资料,科研常用有限元模拟案例模型文件及各学科领域计算公式资料文件,课后学员交流群持续讨论学习/专业讲师答疑指导
学员群课后交流 讲师随时解答
学员培训感受
7
课程特色
★特色一:COMSOL可以更好地服务于科研群体。我们课程将从科研实例出发,帮助学员掌握各种技巧和套路,轻松玩转有限元模拟软件。
★特色二:讲师总结八年有限元模拟经验,带领学员快速入门,学会如何从实际问题中提炼出物理模型,建立物理建模思维,掌握仿真模拟的一般方法和通用思路。
★特色三:将化学、物理、生物、材料等领域中典型模型作为实战案例,同时根据学员专业背景进行素材整理,量身定制课程内容,将学以致用发挥到极致。
★特色四:建立专属学员微信群,课前专业助教协助安装软件下载素材包,课后讲师长期群内随时答疑,不定期推送模拟技能提升小视频,帮助学员轻松应对仿真模拟中的常见难题。
★特色五:我们承诺:学员一次报名,终身免费复学。无需担忧学不会、学不精,只要你愿意学,幻彩保证奉陪到底。
8
往期现场
9
报名通道
时间地点:
2019年12月21-22日 广州·华南师范大学
2019年12月28-29日 北京·中科院过程所
2020年01月11-12日 上海·复旦大学
注册费用:
原价:2990元/人
团报价:2790元/人(3人及以上)
报名咨询:17611790910(毛老师)
备注:如有专场培训需求,可安排讲师赴贵单位开展专场培训,专场培训价格更优
提供正规发票(包括会议注册表、邀请函等报销材料)、费用包含两日午餐,住宿及其他费用自理
10
报名方式
扫描下方二维码在线填写报名表,工作人员会在收到报名信息的第一时间电话联系确认相关信息
表单报名如出现异常,请联系助教
Tel:17611790910(微信同号)
11
缴费方式
1.银行转账汇款(由默希科技代收)
开户行:北京银行中关村海淀园支行
收款单位:默希科技(北京)有限公司
银行账号:20000033833400015141062
备注:姓名+单位+场次
2.支付宝转账
企业支付宝账户:mosikj@126.com
请核对户名:默希科技(北京)有限公司
3.现场刷卡/现金
培训当天可刷公务卡或现金或微信支付,请扫码填写报名信息以便我们提前为您准备发票等报销手续
12
常见问题
Q:有限元仿真模拟对我的论文有怎样的帮助,真的能提高文章档次吗?
A:对于一部分的研究领域,例如人工超材料,理论上的模拟计算可以说是必不可少的。而对于更多的研究领域,模拟计算可以作为实验的补充,能进一步验证实验的结论,提高结论的说服力。理论模拟丰富了文章的内容,在工作量上也使文章更充实。另外模拟计算很多时候可以优化实验设计,提高实验效率。
Q:我是零基础学员,两天的时间也能学会吗?
A:我们的培训就是针对零基础学员的。我们的课程一方面讲授模拟软件的使用,更重要的是另一方面讲解科研中的理论建模的思维方法。如何把模拟加入自己的科研工作,提升文章的质量。
Q:什么专业方向都可以做有限元模拟吗?
A:有限元方法是一种一般性的数值计算的方法,用来求解各种偏微分方程,理论上只要是能用偏微分方程描述的物理化学过程都可以都用有限元方法求解。有限元不仅在各个物理学科和工程领域这些传统领域有广泛的应用,而且现在越来越多的运用到交叉学科的研究中,例如柔性传感器件,能源器件,生物工程,微流控等等几乎目前所有的热门研究领域。
Q:每场培训有多少学员呀?不会是那种人山人海的大课吧?
A:为保证教学质量,也为学员营造舒适的学习环境,我们每场培训都会将招生人数限制在30人以内,以保证良好的课堂秩序,同时安排助教协助学员进行软件安装、现场答疑、课堂辅助教学等。
Q:我是慢热型的学生,接受新知识慢,一次学不够怎么办?
A:老学员可以免费复听,一次报名终身免费复学,只要你学不够,我们就一直教下去~
Q:可以开具发票进行报销吗?
A:当然可以!我们将为学员开具正规发票,并可以根据学员报销需求提供培训邀请函、项目明细清单、会议注册表等材料,并在培训当天将发票和报销材料发放给学员。
Q:培训提供食宿吗?
A:我们为学员提供两日培训的午餐,住宿需要学员自费,我们会在报名确认邮件中发送周边酒店信息,方便学员选择和预定。老学员复听不再重复安排午餐和资料,带着身份证现场签到即可。
END
扫描下方二维码回复“有限元模拟”
获取有限元模拟在科研中运用教学视频
北京中科幻彩动漫科技有限公司
科研论文插图封面设计与培训、有限元仿真模拟与培训、二维/三维动画、科普视频、科普VR、企业广告/宣传片、科技馆球幕/3D/4D电影
http://www.zhongkehuancai.com
北京市海淀区中关村东路89号恒兴大厦