三星台积电剑指3纳米,未来10年摩尔定律还将延续?


来源:内容来自「全球半导体观察」,谢谢。


作为摩尔定律最忠实的追随者与推动者,台积电三星已经挑起3nm的战局。据悉,三星已经完成了首个3nm制程的开发,计划2022年规模生产3nm芯片,此前台积电也计划2022年量产3nm如无意外,3nm芯片将在后年到来,对半导体产业链提出新的挑战。


双雄剑指3nm


《韩国经济》杂志称,三星已成功研发出首个基于GAAFET的3nm制程,预计2022年开启量产。7nm工艺相比,3nm工艺可将核心面积减少45%,功耗降低50%,性能提升35%。


按照三星的研发路线图,在6nm LPP之后,还有5nm LPE、4nm LPE两个节点,随后进入3nm节点,分为GAE(GAA Early)以及GAP(GAA Plus)两代。去年5月,三星3nm GAE设计套件0.1版本已经就绪,以帮助客户尽早启动3nm设计。三星预计该技术将在下一代手机、网络、自动驾驶人工智能物联网设备中使用。


以2022年量产为目标的台积电,也在按计划推进3nm研发。台积电首席执行官CC Wei曾表示,台积电在3nm节点技术开发进展顺利,已经与早期客户进行接触。台积电投资6000亿新台币的3nm宝山厂也于去年通过了用地申请,预计2020年动工,2022年量产。


台积电7nm节点取得了绝对优势,在5nm也进展顺利,获得了苹果A14等订单。三星并没有放松追赶的脚步,计划到2030年前在半导体业务投资1160亿美元,以增强在非内存芯片市场的实力。台积电创始人张忠谋日前对媒体表示,台积电与三星的战争还没有结束,台积电只是赢得了一两场战役,可整个战争还没有赢,目前台积电暂时占优。


制程如何走下去


众所周知,制程越小,晶体管栅极越窄,功耗越低,而集成难度和研发成本也将成倍提高。3nm是一个逼近物理极限的节点,半导体业内专家莫大康向《中国电子报》记者表示,3nm是一个焦点,不能仅靠台积电三星的推进,还要看制造商和设备商等产业链各个环节的努力,例如环栅结构(GAA)的导入,EUV的高数值孔径镜头等。


3nm首先对芯片设计验证仿真提出了新的挑战。


集邦咨询分析师徐绍甫向记者表示,制程微缩至3nm以下,除了芯片面积缩得更小,芯片内部信号如何有效传递是一大关键。设计完成后,如何确保验证仿真流程的时间成本不会大幅增加,也是芯片设计的一大挑战,需要EDA从业者的共同努力。此外,在做出更小的线宽线距之后,量产和良率拉抬是非常困难的事,需要制程技术的不断优化。


为了更快实现制程迭代和产能拉升,三星研发了专利版本GAA,即MBCFET(多桥道FET)。三星介绍,GAA基于纳米线架构,由于沟道更窄,需要更多的堆栈。三星MBCFET则采用纳米片架构,由于沟道比纳米线宽,可以实现每堆栈更大的电流,让元件集成更加简单。通过可控的纳米片宽度,MBCFET可提供更加灵活的设计而且MBCFET兼容FinFet,与FinFet使用同样的制作技术和设备,有利于降低制程迁移的难度,更快形成产能。


3nm也对光刻机的分辨率及套刻能力提出了更高要求。针对3nm节点,ASML将在NXE 3400C的下一代机型导入0.55高数值孔径,实现小于1.7nm的套刻误差,产能也将提升至每小时185片晶圆以上,量产时间在2022—2023年。徐绍甫表示,3nm对于光刻机曝光稳定度与光阻剂洁净度的要求更加严苛。加上3nm需要多重曝光工艺,增加了制程数目,也就意味缺陷产生机率会提高,光刻机参数调校必须缩小误差,降低容错率。另外,清洗洁净度、原子层蚀刻机与原子层成膜机等设备的精度也要提高。


针对5nm及以下节点的封装台积电完成了对3D IC工艺的开发,预计2021年导入3D封装3D IC能在单次封装堆叠更多的芯片,提升晶体管容量,并通过芯片之间的互联提升通信效率。


何为增长驱动力


2014—2019年,手机和高性能运算推动着先进制程按照一年一节点的节奏,从14nm走向5nm中芯国际联合CEO赵海军表示,成功的研发方法,不变的FinFet架构、设备材料的配合,是推动14nm5nm发展的重要因素。


目前来看,手机和高性能计算依旧是推动摩尔定律前进的重要动力。徐绍甫指出,在应用层面上,智能手机是3nm制程的重要战场,手机芯片从业者能负担高昂的研发经费,庞大的市场总量也能够分担其研发费用。另外,HPC应用,如CPUGPU等,需要3nm制程来提升性能表现。


3nm不是先进制程的终点,台积电对2nm已经有所规划,将以2024年量产为目标进行研发。比利时微电子研究中心(IMEC)在2019年10月召开的技术论坛上曾展示迈向1nm工艺节点的技术路线图。行业分析师表示,伴随高数值孔径EUV光刻机、选择性化学蚀刻剂、原子层精确沉积技术等的应用,未来10年,摩尔定律将继续延续。


制程要走下去,需要工艺路径的探索,也需要找到相应的商业场景。徐绍甫表示,2nm之后的应用性与必要性还难以定义,从实验室走向量产具有相当的难度,必须具备获利能力才具有开发意义,在材料选择、制程技术、后段晶圆封装上势必要持续优化。


福利


摩尔精英粉丝福利:半导体行业资料,免费下载




点击阅读原文,了解摩尔精英