LED芯片是如何制造的?那它有什么优点?

半导体观察IC 英铂科学仪器 昨天

什么是LED芯片呢?那么它有什么特点呢?LED芯片制造主要是为了制造有效可靠的低欧姆接触电极,并能满足可接触材料之间较为小的压降及提供焊线的压垫,同时尽可能的多地出光。渡膜工艺一般用真空蒸镀方法,4Pa高真空下,用电阻加热或电子束轰击加热方法使材料熔化,并在低气压下BZX79C18变成金属蒸气沉积在半导体材料表面。

    一般所用的P型接触金属包括AuBe、AuZn等合金,N面的接触金属常采用AuGeNi合金。镀膜后形成的合金层还需要通过光刻工艺将发光区尽可能多地露出来,使留下来的合金层能满足有效可靠的低欧姆接触电极及焊线压垫的要求。光刻工序结束后还要通过合金化过程,合金化通常是在H2或N2的保护下进行。合金化的时间和温度通常是根据半导体材料特性与合金炉形式等因素决定。当然若是蓝绿等芯片电极工艺还要复杂,需增加钝化膜生长、等离子刻蚀工艺等。


    LED芯片制造工序中,哪些工序对其光电性能有比较重要的影响?

    一般来说,LED外延生产完成之后她的主要电性能已定型,芯片制造不对其产甞核本性改变,但在镀膜、合金化过程中不恰当的条件会造成一些电参数的不良。比如说合金化温度偏低或偏高都会造成欧姆接触不良,欧姆接触不良是芯片制造中造成正向压降VF偏高的主要原因。在切割后,如果对芯片边缘进行一些腐蚀工艺,对改善芯片的反向漏电会有较好的帮助。这是因为用金刚石砂轮刀片切割后,芯片边缘会残留较多的碎屑粉末,这些如果粘在LED芯片的PN结处就会造成漏电,甚至会有击穿现象。另外,如果芯片表面光刻剥离不干净,将会造成正面焊线难与虚焊等情况。如果是背面也会造成压降偏高。在芯片生产过程中通过表面粗化、划成倒梯形结构等办法可以提高光强。


    LED芯片为什么要分成不同尺寸?尺寸大小对LED光电性能有哪些影响?

    LED芯片大小根据功率可分为小功率芯片、中功率芯片和大功率芯片。根据客户要求可分为单管级、数码级、点阵级以及装饰照明等类别。至于芯片的具体尺寸大小是根据不同芯片生产厂家的实际生产水平而定,没有具体的要求。只要工艺过关,芯片小可提高单位产出并降低成本,光电性能并不会发生根本变化。芯片的使用电流实际上与流过芯片的电流密度有关,芯片小使用电流小,芯片大使用电流大,它们的单位电流密度基本差不多。考虑到散热是大电流下的主要问题,所以它的发光效率比小电流低。另一方面,由于面积增大,芯片的体电阻会降低,所以正向导通电压会有所下降。


    LED大功率芯片一般指多大面积的芯片?为什么?

    用于白光的LED大功率芯片一般在市场上可以看到的都在40mil左右,所谓的大功率芯片的使用功率一般是指电功率在1W以上。由于量子效率一般小于20%大部分电能会转换成热能,所以大功率芯片的散热很重要,要求芯片有较大的面积。


    制造GaN外延材料的芯片工艺和加工设备与GaP、GaAs、InGaAlP相比有哪些不同的要求?为什么?

    普通的LED红黄芯片和高亮四元红黄芯片的基板都采用GaP、GaAs等化合物半导体材料,一般都可以做成N型衬底。采用湿法工艺进行光刻,较为后用金刚砂轮刀片切割成芯片。GaN材料的蓝绿芯片是用的蓝宝石衬底,由于蓝宝石衬底是绝缘的,所以不能作为LED的一个极,必须通过干法刻蚀工艺外延面上同时制作P/N两个电极并且还要通过一些钝化工艺。由于蓝宝石很硬,用金刚砂轮刀片很难划成芯片。它的工艺过程一般要比GaP、GaAs材料LED多而复杂。


    “透明电极”芯片的结构与它的特点是什么?

    所谓透明电极一是要能够导电,二是要能够透光。这种材料现在较为广泛应用在液晶生产工艺中,其名称叫氧化铟锡,英文缩写ITO,但它不能作为焊垫使用。制作时先要在芯片表面做好欧姆电极,然后在表面覆盖一层ITO再在ITO表面镀一层焊垫。这样从引线上下来的电流通过ITO层均匀分布到各个欧姆接触电极上,同时ITO由于折射率处于空气与外延材料折射率之间,可提高出光角度,光通量也可增加。


    用于半导体照明的芯片技术的发展主流是什么?

    随着半导体LED技术的发展,其在照明领域的应用也越来越多,特别是白光LED的出现,更是成为半导体照明的热点。但是关键的芯片、封装技术还有待提高,在芯片方面要朝大功率、高光效和降低热阻方面发展。提高功率意味着芯片的使用电流加大,较为直接的办法是加大芯片尺寸,现在普遍出现的大功率芯片都在1mm×1mm左右,使用电流在350mA.由于使用电流的加大,散热问题成为突出问题,现在通过芯片倒装的方法基本解决了这一文题。随着LED技术的发展,其在照明领域的应用会面临一个从未有的机遇和挑战。


    什么是“倒装芯片?它的结构如何?有哪些优点?

    蓝光LED通常采用Al2O3衬底,Al2O3衬底硬度很高、热导率和电导率低,如果采用正装结构,一方面会带来防静电问题,另一方面,在大电流情况下散热也会成为较为主要的问题。同时由于正面电极朝上,会遮掉一部分光,发光效率会降低。大功率蓝光LED通过芯片倒装技术可以比传统的封装技术得到更多的有效出光。

    现在主流的倒装结构做法是:首先制备出具有适合共晶焊接电极的大尺寸蓝光LED芯片,同时制备出比蓝光LED芯片略大的衬底,并在上面制作出供共晶焊接的金导电层及引出导线层(超声金丝球焊点)。然后,利用共晶焊接设备将大功率蓝光LED芯片与衬底焊接在一起。

    这种结构的特点是外延层直接与衬底接触,硅衬底的热阻又远远低于蓝宝石衬底,所以散热的问题很好地解决了。由于倒装后蓝宝石衬底朝上,成为出光面,蓝宝石是透明的,因此出光问题也得到解决。以上就是LED技术的相关知识,相信随着科学技术的发展,未来的LED灯回越来越高效,使用寿命也会由很大的提升,为我们带来更大便利。


LED芯片的制造工艺流程

外延生长的基本原理是:在一块加热至适当温度的衬底基片(主要有蓝宝石和、SiC、Si)上,气态物质InGaAlP有控制的输送到衬底表面,生长出特定单晶薄膜。目前LED外延片生长技术主要采用有机金属化学气相沉积方法。

  MOCVD介绍:

  金属有机物化学气相淀积(Metal-Organic Chemical Vapor Deposition,简称 MOCVD), 1968年由美国洛克威尔公司提出来的一项制备化合物半导体单品薄膜的新技术。该设备集精密机械、半导体材料、真空电子、流体力学、光学化学、计算机多学科为一体,是一种自动化程度高、价格昂贵、技术集成度高的尖端光电专用设备,主要用于GaN(氮化镓)系半导体材料外延生长和蓝色、绿色或紫外发光二极管芯片的制造,也是光电行业最有发展前途的专用设备之一。

  LED芯片的制造工艺流程:

  外延片→清洗→镀透明电极层→透明电极图形光刻腐蚀→去胶→平台图形光刻→干法刻蚀→去胶→退火→SiO2沉积→窗口图形光刻→SiO2腐蚀→去胶→N极图形光刻→预清洗→镀膜→剥离→退火→P极图形光刻→镀膜→剥离→研磨→切割→芯片→成品测试

  其实外延片的生产制作过程是非常复杂的,在展完外延片后,下一步就开始对LED外延片做电极(P极,N极),接着就开始用激光机切割LED外延片(以前切割LED外延片主要用钻石刀),制造成芯片后,在晶圆上的不同位置抽取九个点做参数测试

  1、主要对电压、波长、亮度进行测试,能符合正常出货标准参数的晶圆片再继续做下一步的操作,如果这九点测试不符合相关要求的晶圆片,就放在一边另外处理。

  2、晶圆切割成芯片后,100%的目检(VI/VC),操作者要使用放大30倍数的显微镜下进行目测。

  3、接着使用全自动分类机根据不同的电压,波长,亮度的预测参数对芯片进行全自动化挑选、测试和分类。

  4、最后对LED芯片进行检查(VC)和贴标签。芯片区域要在蓝膜的中心,蓝膜上最多有5000粒芯片,但必须保证每张蓝膜上芯片的数量不得少于1000粒,芯片类型、批号、数量和光电测量统计数据记录在标签上,附在蜡光纸的背面。蓝膜上的芯片将做最后的目检测试与第*次目检标准相同,确保芯片排列整齐和质量合格。这样就制成LED芯片(目前市场上统称方片)。

  在LED芯片制作过程中,把一些有缺陷的或者电极有磨损的芯片,分捡出来,这些就是后面的散晶,此时在蓝膜上有一些不符合正常出货要求的晶片,也就自然成了边片。

  刚才谈到在晶圆上的不同位置抽取九个点做参数测试,对于不符合相关要求的晶圆片作另外处理,这些晶圆片是不能直接用来做LED方片,也就不做任何分检了,直接卖给客户了,也就是目前市场上的LED大圆片(但是大圆片里也有好东西,如方片)。

  LED制作流程分为两大部分。首先在衬低上制作氮化镓(GaN)基的外延片,这个过程主要是在金属有机化学气相沉积外延炉中完成的。准备好制作GaN外延片所需的材料源和各种高纯的气体之后,按照工艺的要求就可以逐步把外延片做好。常用的衬底主要有蓝宝石、碳化衬底,还有GaAs、AlN、ZnO等材料MOCVD是利用气相反应物(前驱物)及Ⅲ族的有机金属和Ⅴ族的NH3在衬底表面进行反应,将所需的产物沉积在衬底表面。通过控制温度、压力、反应物浓度和种类比例,从而控制镀膜成分、晶相等品质。MOCVD外延炉是制作LED外延片最常用的设备

  接下来是对LED PN结的两个电极进行加工,电极加工也是制作LED芯片的关键工序,包括清洗、蒸镀、黄光、化学蚀刻、熔合、研磨;然后对衬底进行划片、测试和分选,就可以得到所需的LED芯片。如果晶片清洗不够干净,蒸镀系统不正常,会导致蒸镀出来的金属层(指蚀刻后的电极)会有脱落,金属层外观变色,金泡等异常。蒸镀过程中有时需用弹簧夹固定晶片,因此会产生夹痕(在目检必须挑除)。黄光作业内容包括烘烤、上光阻、照相曝光、显影等,若显影不完全及光罩有破洞会有发光区残多出金属。晶片在前段制程中,各项制程如清洗、蒸镀、黄光、化学蚀刻、熔合、研磨等作业都必须使用镊子及花篮、载具等,因此会有晶粒电极刮伤情形发生。

来源:「转自微信公众号:半导体观察IC」,谢谢!




联系方式




英铂科学仪器(上海)有限公司

完善的半导体领域、微纳米实验室测试方案集成商

地址:上海市松江区松卫北路295弄陆国大厦507室

联系电话:158-2191-4709(陆经理)

联系电话:139-1847-4527(俞经理)

邮箱:Robbert.lu@ybsemi-solution.com

官网网址:www.ybsemi-solution.com

欢迎前来咨询、竭诚为您服务



扫码关注更多精彩