中科院5nm激光光刻研究取得进展

摩尔芯闻 英铂科学仪器 昨天
近期,中国科学院苏州纳米技术与纳米仿生研究所张子旸研究员与国家纳米中心刘前研究员合作,在Nano Letters上发表了题为“5 nm Nanogap Electrodes and Arrays by a Super-resolution Laser Lithography”的研究论文,报道了一种他们开发的新型5 nm超高精度激光光刻加工方法(DOI: 10.1021/acs.nanolett.0c00978)。

半导体光刻最重要的指标是光刻分辨率,它跟波长及数值孔径NA有关,波长越短、NA越大,光刻精度就越高,EUV光刻机就是从之前193nm波长变成了13.5nm波长的EUV极紫外光,而NA指标要看物镜系统,国际上先进的光刻技术在这方面靠的是德国蔡司的NA=0.33的物镜,下一代才回到NA=0.55的水平。

中科院苏州所联合国家纳米中心开展的这项研究有所不同,在无机钛膜光刻上,采用双激光束(波长为405 nm)交叠技术,通过精确控制能量密度及步长,实现了1/55衍射极限的突破(NA=0.9),达到了最小5 nm的特征线宽。

从中可以看出,国内研究的光刻技术使用的是405nm波长的激光就实现了NA=0.9的衍射突破,可以制备5nm线宽工艺,这是一项重大突破。

不过,目前是实验室中取得的技术突破,并没有达到量产的程度,而且原文并没有特意强调是用来生产半导体芯片的,甚至一个字都没提到是光刻机,它更多地是用于快速制备纳米狭缝电极阵列结构。

具体来看,本研究中使用了研究团队所开发的具有完全知识产权的激光直写设备,利用了激光与物质的非线性相互作用来提高加工分辨率,其有别于传统的缩短激光波长或增大数值孔径的技术路径;并打破了传统激光直写技术中受体材料为有机光刻的限制,可使用多种受体材料,极大地扩展了激光直写的应用场景。本项工作中,研究团队针对激光微纳加工中所面临的实际问题出发,很好地解决了高效和高精度之间的固有矛盾,开发的新型微纳加工技术在集成电路光子芯片微机电系统等众多微纳加工领域展现了广阔的应用前景。

图1:亚十纳米图形结构的应用领域和方向

本工作中,基于光热反应机理,研究团队设计开发了一种新型三层堆叠薄膜结构。在无机钛膜光刻上,采用双激光束(波长为405 nm)交叠技术(见图2a),通过精确控制能量密度及步长,实现了1/55衍射极限的突破(NA=0.9),达到了最小5 nm的特征线宽。此外,研究团队还利用这种超分辨的激光直写技术,实现了纳米狭缝电极阵列结构的大规模制备(如图2b-c)。相较而言,采用常规聚焦离子束刻写,制备一个纳米狭缝电极需要10到20分钟,而利用本文开发的激光直写技术,可以一小时制备约5×105个纳米狭缝电极,展示了可用于大规模生产的潜力。

图2:双束交叠加工技术示意图(左)和5 nm 狭缝电极电镜图(右)

纳米狭缝电极作为纳米光电器件的基本结构,有着极为广泛的应用。在本研究中,该团队还利用发展的新技术制备出了纳米狭缝电极为基本结构的多维度可调的电控纳米SERS传感器。可在传感器一维方向上对反应“热点”完成定点可控,实现了类似逻辑门“0”、“1”信号的编码和重复,并可通过狭缝间距和外加电压的改变,实现了对反应“热点”强度的精确可调,这对表面科学和痕量检测等研究有着重要的意义。
来源:「内容转自:摩尔芯闻」,谢谢!




联系方式




英铂科学仪器(上海)有限公司

完善的半导体领域、微纳米实验室测试方案集成商

地址:上海市松江区松卫北路295弄陆国大厦507室

联系电话:158-2191-4709(陆经理)

联系电话:139-1847-4527(俞经理)

邮箱:Robbert.lu@ybsemi-solution.com

官网网址:www.ybsemi-solution.com

欢迎前来咨询、竭诚为您服务



扫码关注更多精彩