物联网的人对人通信:用LoRa DIY一部双向呼叫器

EETOP 今天

射频测试技术周(5月10-14日)

射频专家在线分享:下一代射频芯片滤波器毫米波、相控阵方案等

EETOP
EETOP
EETOP半导体社区-国内知名的半导体行业媒体、半导体论坛、IC论坛、集成电路论坛、电子工程师博客、工程师BBS(150万论坛会员)。 www.eetop.cn bbs.eetop.cn edu.eetop.cn
544篇原创内容
公众号

来源:悦智网


图片
━━━━
如今,我们有很多方式来实现无线数据传输,Wi-Fi蓝牙、Zigbee和蜂窝连接是比较常见的几种方式。不过还有一种较新的协议受到了越来越多的欢迎。LoRa能够在中等距离范围内提供低功率、低带宽通信,通信距离为2到15公里之间,具体取决于环境的复杂程度。
图片
LoRa是为迅速发展的物联网而建立的,它使用扩频传输方式,将远程传感器嵌入式设备与中心节点相连接。数据速率一般为0.327千比特/秒(kb/s),最高可达50 kb/s,传输距离越长,数据速率越低。
最初的LoRa主要用于机器间通信,后来,功率需求非常低的特点受到了其他应用发明者的喜爱。同某些人总想尝试新的硬件技术一样,我也在思考LoRa是否也能用于人与人之间的通信。其数据速率太低,无法实现语音通话,但能否在更古老的设备中发挥作用呢?我能不能制作一个LoRa双向呼叫器?虽然我是一名专注于天线分析的硬件工程师,但我对设计射频电路并不熟悉。所以我的第一步是购买2个安信可Ra-02 LoRa模块和2个基于ATmega328微控制器,找出了我的电路实验板并进行了概念验证设计不久,我就可以来回发送字母数字的字符串了,结果显示在一块84×48像素、原本用于诺基亚手机的液晶显示屏上。

当然,我们不能用电路实验板来进行现场试验,所以我设计了一个印刷电路板的原型,复制实验板的设计,还带有电池和一些控制按钮。测试时正值德国冬季,天太冷,我和伙伴不愿意在户外跑太远,但我们验证了能够在相距1公里外进行通信。寒冷的天气也带来了意想不到的问题:其中一个呼叫器由镍氢电池供电,另一个呼叫器由锂离子电池供电;镍氢电池能够很好地适应低温环境,但锂离子电池在低温环境中出现了电压下降,导致微控制器重启。

接下来,我要进行更精密的设计。更换屏幕的改进最明显,我把屏幕升级成为了一块128×64像素的液晶显示屏。此外,我还升级了微控制器。我需要更大的计算能力,但又要兼容Arduino的生态系统。所以我采用了很多“post-AVR”Arduino微控制器中都使用的SAMD21 Cortex M0。

我还将安信可模块换成了更易买到的RFM95W收发器。最终的设计还包括了一个用于静音振动的呼叫器马达、一个3路导航按键和一个SD卡适配器。这个第二代印刷电路板的许多精调工作都是为了确保收发器天线的连线具有最优的50欧姆阻抗,幸好我有天线分析方面的经验。传输线在印刷电路板的另一侧使用了接地层,因此通过印刷电路板的厚度计算后得知,我的连线需要达到1毫米宽。我还调整了连接天线座和收发器模块的接地层,尽量获得最佳高频特性。

图片
此外,印刷电路板的阻焊层我选择了时髦的黑色,这带来了一个意想不到的结果。用来焊接表面贴装组件的回焊炉用的是红外线加热器,我首次尝试在电路板焊接元件时,黑色的阻焊层比我常用的绿色印刷电路板加热要快得多。结果是产生了过热焊点的金黄色污点,我成了时尚的牺牲品。

在调整并正确组装了全部元件之后,我开始进行测试,并发现开关按钮控制器有一个问题:按下电源开关后,稳压电源开始为SAMD21微控制器提供3.3伏的电压。出于安全考虑,如果控制器没有在2秒之内收到处理器启动的确认信息,那么它就会切断电源,但是SAMD21需要2.5秒才能响应。仔细查看控制器的数据手册后,我找到了最终的解决方案。我在数据手册中发现了另一款可等待10秒的控制器。收到新的开关控制器后,我立刻用热风枪安装好了新的组件。

测试中又出现了另一个小故障:我连接到板载实时时钟的数据线颠倒了。添加实时时钟是为了记录当地时间,该实时时钟通过一个I2C连接装置与SAMD21连接。解决这个问题后,我制作的呼叫器完成了,我把它命名为“LoRaNicator”。

我对硬件设计比对编码更感兴趣,因此这个系统软件非常基础,仅限于用户之间交换文本信息。我希望其他人可以将LoRaNicator作为一个开放平台,利用这种基础架构简单的低功率通信方式创造出更复杂的应用。另外,为了使LoRaNicator硬件扩展更加简便,我想尝试增加一组外部引脚,用于连接GPS或其他传感器等I2C设备

作者:Aleksej Lazarev



5.1优惠最后一天!



图片
支持EETOP,让我知道你在看哟 图片