响应性软物质和具有嵌入式存储器功能的软物质。图源:Nature 推荐:来自德国明斯特大学和荷兰特文特大学的科学家研究者在《Nature》上发文,对「智能物质」进行了概述。 论文 6:TextStyleBrush: Transfer of text aesthetics from a single example
摘要:用 AI 生成图像一直在以惊人的速度发展,这种生成技术能够重现历史场景,或者将照片变成类似梵高绘画风格。现在,Facebook AI 已经建立了一个可以替换场景和手写文本风格,只需要一个单词作为输入。 虽然大多数 AI 系统都可以通过定义明确、专业化任务做到这一点,但构建一个足够灵活的 AI 系统,以理解现实场景中文本和手写体的细微差别,具有很大的挑战。这意味着需要了解众多的文本样式,不仅包括不同的字体和书写风格,而且也包括不同的转换,如旋转,弯曲的文字以及图像噪声等问题。 Facebook AI 提出了 TSB(TextStyleBrush)架构。该架构以自监督的方法进行训练,没有使用目标风格监督,只使用了原始风格图像。该框架可以自动的寻找图片真实风格。在训练时,假设每个词框有真实值(出现在框中的文本);推理时,采用单一源样式图像和新内容(字符串),并生成带有目标内容的源样式的新图像。 研究者通过内容和风格表征来调节生成器以解决上述限制。通过提取特定于层的风格信息并将其注入到生成器的每一层来处理文本风格的多尺度特性。除了以期望的风格生成目标图像外,生成器还生成表示前景像素 (文本区域) 的软蒙版图像。通过这种方式,生成器可以控制文本的低分辨率和高分辨率细节,以匹配所需的输入风格。
推荐:Facebook 公布的一项新的图像 AI TextStyleBrush,该技术可以复制和再现图像中的文本风格。 论文 7:DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning
作者:Daochen Zha 1 、Jingru Xie 、 Wenye Ma 、 Sheng Zhang、 Xiangru Lian 、 Xia Hu 、 Ji Liu
1. Multi-head or Single-head? An Empirical Comparison for Transformer Training. (from Jiawei Han)2. Graph Neural Networks for Natural Language Processing: A Survey. (from Jian Pei)3. Biomedical Interpretable Entity Representations. (from Joydeep Ghosh)4. Text Generation with Efficient (Soft) Q-Learning. (from Eric P. Xing)5. Local Explanation of Dialogue Response Generation. (from Lise Getoor)6. Direction is what you need: Improving Word Embedding Compression in Large Language Models. (from Karl Aberer)7. Specializing Multilingual Language Models: An Empirical Study. (from Noah A. Smith)8. Scientific Language Models for Biomedical Knowledge Base Completion: An Empirical Study. (from Noah A. Smith)9. Assessing Multilingual Fairness in Pre-trained Multimodal Representations. (from Yang Liu)10. DocNLI: A Large-scale Dataset for Document-level Natural Language Inference. (from Dragomir Radev)
10 CV Papers.mp300:0023:47
本周 10 篇 CV 精选论文是:
1. Towards Total Recall in Industrial Anomaly Detection. (from Bernhard Schölkopf, Thomas Brox)2. Large-Scale Unsupervised Object Discovery. (from Cordelia Schmid, Patrick Pérez, Jean Ponce)3. Multi-Label Learning from Single Positive Labels. (from Pietro Perona)4. THUNDR: Transformer-based 3D HUmaN Reconstruction with Markers. (from William T. Freeman, Rahul Sukthankar)5. Dynamic Head: Unifying Object Detection Heads with Attentions. (from Lei Zhang)6. Domain Adaptive SiamRPN++ for Object Tracking in the Wild. (from Lei Zhang)7. BABEL: Bodies, Action and Behavior with English Labels. (from Michael J. Black)8. Deception Detection and Remote Physiological Monitoring: A Dataset and Baseline Experimental Results. (from Kevin W. Bowyer)9. JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting. (from Daniel Cohen-Or)10. Deep Contrastive Graph Representation via Adaptive Homotopy Learning. (from Xuelong Li) 10 ML Papers.mp300:0022:11 本周 10 篇 ML 精选论文是:
1. Online Learning of Competitive Equilibria in Exchange Economies. (from Michael I. Jordan)
2. Adversarial Robustness through the Lens of Causality. (from Bernhard Schölkopf)
3. Residual Reinforcement Learning from Demonstrations. (from Julien Mairal, Jean Ponce, Cordelia Schmid)
4. Rethinking Architecture Design for Tackling Data Heterogeneity in Federated Learning. (from Li Fei-Fei)
5. SECANT: Self-Expert Cloning for Zero-Shot Generalization of Visual Policies. (from Li Fei-Fei)
6. Courteous Behavior of Automated Vehicles at Unsignalized Intersections via Reinforcement Learning. (from Wolfram Burgard)