为什么“左加右减,上加下减”?

以下文章来源于大小吴的数学课堂 ,作者大小吴

大小吴的数学课堂
大小吴的数学课堂

致力于做有趣的数学科普

你还记得在中学学习函数时背过的一个口诀吗?

“左加右减,上加下减”。

这个口诀描述的是函数图像平移时解析式的变化情况。

这句话的意思是:

左加右减指的是如果函数图像往左(右)平移个单位,则自变量加(减).

上加下减指的是如果函数图像往上(下)平移个单位,则常数项加(减).

如果你忘记了,我们来复习一下:以最简单的二次函数为例,如果将它向左平移4个单位,再向上平移2个单位,根据口诀“左加,上加”可以得到新的函数解析式

图片

实际上,根据二次函数顶点的平移我们能够比较容易理解这件事。原函数的顶点为点,而由于函数平移后顶点也随之平移,变为了点,则根据二次函数的顶点式便能够写出新的函数解析式


二次函数可以根据顶点的平移来理解,那么对于一般的函数而言这个规则是否也成立呢?

在回答这个问题之前,请你回想一下中学时学习函数的心路历程,想必以前你有过这样的疑问:对于平面直角坐标系而言,朝上是轴正方向,那么既然存在“上加下减”的说法,直觉告诉我们对于朝右的轴正方向,相对应地应该是“右加左减”才对。这到底是怎么一回事呢?

图片

其实,这是学习中学数学时一个常见的误区,我们不能简单地认为“上加下减”是因为轴正方向朝上。

我们应从如下角度去理解:首先,对上述新函数变换如下

这里可以看作是自变量,因变量,而对于函数图像来说,分别对应向轴负方向平移4个单位和向轴正方向平移2个单位。所以,这里其实并不矛盾,我们可以归纳出一般结论:

  • 轴负(正)方向平移,对于自变量来说是加(减),即左加右减。
  • 轴负(正)方向平移,对于因变量来说是加(减),即下加上减。

举个不恰当的例子,比如对于抛物线

说它不恰当,是因为它不满足函数的定义。不过我们依然可以根据这个规则去讨论它的平移。若将它向左平移4个单位,再向上平移2个单位,则根据上述规则可得到新的抛物线方程:

图片

讨论到这里,你是否还是有疑问:为什么偏偏对于正方向而言是减,对于负方向而言是加呢?这和我们的认知依然是矛盾的。

我们以一个一般的函数为例,对于函数来说,将它向右平移个单位得到函数.

图片

则原函数上的任意一点

经平移得到了点

因此

也就是说在新的函数解析式中,自变量会减去,这也即为“右减”。

通俗地说,对于坐标轴上的点,往右移动会使得的数值增加,而为了抵消这个增加量,函数里的自变量本身也要扣除相应的增加量,对于上下方向的轴也是同理。

你现在明白“左加右减,上加下减”的真正含义了吗?


来源:大小吴的数学课堂

编辑:tzy


近期热门文章Top10

↓ 点击标题即可查看 ↓
1. 正在玩手机的你,颜值也正在降低……
2. 它们,凭本事欠揍
3. 图中的小球有几种颜色?99%的人都答不对!
4. 公蚊子:我喝起血来连命都不要
5. 无针头注射器一出现,打针现场都不搞笑了!
6. 大雄都结婚了,哆啦A梦的道具是不是也该实现了?
7. 为啥北方爱吃甜粽子,南方却爱吃咸粽?这些"内幕"终于藏不住了…
8. 高考刚结束,这道数学填空题你做对了吗?| 正经玩
9. 饮料瓶里放个小钢珠,就可以......  | 正经玩
10. 为什么你睡觉时总流口水?| No.260
 点此查看以往全部热门文章 

图片