异常检测(也称为离群点检测)是检测异常实例的任务,异常实例与常规实例非常不同。这些实例称为异常或离群值,而正常实例称为内部值。
异常检测可用于多种应用,例如:
① 欺诈识别
② 检测制造中的缺陷产品
③ 数据清理——在训练另一个模型之前从数据集中去除异常值。
你可能已经注意到,一些不平衡分类的问题也经常使用异常检测算法来解决。例如,垃圾邮件检测任务可以被认为是一个分类任务(垃圾邮件比普通电子邮件少得多),但是我们可以用异常检测的方法实现这个任务。
一个相关的任务是奇异值检测(Novelty Detection)。它与异常检测的不同之处在于,假设该算法是在干净的数据集(没有异常值)上训练的。它被广泛应用于在线学习中,当需要识别一个新实例是否是一个离群值时。
检测离群值最简单的方法是尝试统计方法,这是很久以前开发出来的。其中最流行的一种方法被称为离群值检测Tukey方法(或四分位数距离IQR) 。
它的本质是计算百分位数和四分位数之间的范围。位于Q1-1.5 * IQR之前和Q3 + 1.5 * IQR之后的数据点被认为是异常值。下面你可以看到一个使用人的身高数据集的例子。高度低于54.95英寸(139厘米)和高于77.75英寸(197厘米)被认为是异常值。
聚类和降维算法
另一种简单、直观且通常有效的异常检测方法是使用一些聚类算法(如高斯混合模型和 DBSCAN)来解决密度估计任务。那么,任何位于低密度区域的实例都可以被认为是异常,我们只需要设置一些密度阈值。
孤立森林和 SVM
一些监督学习算法也可用于异常检测,其中最流行的两种是孤立森林和 SVM。这些算法更适合奇异值检测,但通常也适用于异常检测。
孤立森林算法构建了一个随机森林,其中每个决策树都是随机生长的。每走一步,这片森林就会隔离越来越多的点,直到所有点都变得孤立。由于异常位于远离通常数据点的位置,因此它们通常比正常实例以更少的步骤被孤立。该算法对于高维数据表现良好,但需要比 SVM 更大的数据集。
局部异常因子
局部异常值因子 (LOF) 算法基于异常位于低密度区域的假设。它不只是设置密度阈值(就像我们可以用 DBSCAN 做的那样),而是将某个点的密度与其最近邻居的 k 的密度进行比较。如果这个特定点的密度比它的邻点低得多(这意味着它离它们很远),它被认为是一个异常。
该算法既可用于异常检测,也可用于奇异值检测。由于其计算简单且质量好,会被经常使用。
最小协方差行列式
如何选择异常检测算法?
如果你需要清理数据集,你应该首先尝试经典的统计方法,比如 Tukey Method for Outlier Detection。如果知道数据分布是高斯分布 则可以使用Fast-MCD,。
用于稀疏高维数据的单类SVM 或用于连续高维数据的孤立森林
干货满满 快来领取Imagination和腾讯WeTest开发者免费课程!
END